Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
|
4 |
+
# Initialize the slide index in session state (if not already set)
|
5 |
+
if "slide_idx" not in st.session_state:
|
6 |
+
st.session_state.slide_idx = 0
|
7 |
+
|
8 |
+
# Define a list of 10 slides. Each slide has a left and a right page.
|
9 |
+
# Each paper entry contains the paper number, title, arXiv link, and code link.
|
10 |
+
slides = [
|
11 |
+
{
|
12 |
+
"left": """
|
13 |
+
**#1. Neural Module Networks for Reasoning**
|
14 |
+
[Arxiv](https://arxiv.org/abs/1234.5678) | [Code](https://github.com/example/nnm)
|
15 |
+
|
16 |
+
**#2. Neuro-Symbolic AI for Reasoning**
|
17 |
+
[Arxiv](https://arxiv.org/abs/2345.6789) | [Code](https://github.com/example/nsa)
|
18 |
+
""",
|
19 |
+
"right": """
|
20 |
+
**#3. Transformer Models for Multi-step Reasoning**
|
21 |
+
[Arxiv](https://arxiv.org/abs/3456.7890) | [Code](https://github.com/example/transformer)
|
22 |
+
|
23 |
+
**#4. Graph Neural Networks in AI**
|
24 |
+
[Arxiv](https://arxiv.org/abs/4567.8901) | [Code](https://github.com/example/gnn)
|
25 |
+
"""
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"left": """
|
29 |
+
**#5. Memory-Augmented Networks for Episodic Recall**
|
30 |
+
[Arxiv](https://arxiv.org/abs/5678.9012) | [Code](https://github.com/example/memory)
|
31 |
+
|
32 |
+
**#6. Self-Supervised Learning for AI**
|
33 |
+
[Arxiv](https://arxiv.org/abs/6789.0123) | [Code](https://github.com/example/selfsup)
|
34 |
+
""",
|
35 |
+
"right": """
|
36 |
+
**#7. Reinforcement Learning from Human Feedback**
|
37 |
+
[Arxiv](https://arxiv.org/abs/7890.1234) | [Code](https://github.com/example/rlhf)
|
38 |
+
|
39 |
+
**#8. Transfer Learning in AI Systems**
|
40 |
+
[Arxiv](https://arxiv.org/abs/8901.2345) | [Code](https://github.com/example/transfer)
|
41 |
+
"""
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"left": """
|
45 |
+
**#9. Deep Learning for Medical Imaging**
|
46 |
+
[Arxiv](https://arxiv.org/abs/9012.3456) | [Code](https://github.com/example/medimg)
|
47 |
+
|
48 |
+
**#10. Computer Vision in Telemedicine**
|
49 |
+
[Arxiv](https://arxiv.org/abs/0123.4567) | [Code](https://github.com/example/cvtele)
|
50 |
+
""",
|
51 |
+
"right": """
|
52 |
+
**#11. Automated Clinical Documentation via NLP**
|
53 |
+
[Arxiv](https://arxiv.org/abs/1234.5679) | [Code](https://github.com/example/clinicalnlp)
|
54 |
+
|
55 |
+
**#12. Real-Time Transcription and Analysis**
|
56 |
+
[Arxiv](https://arxiv.org/abs/2345.6780) | [Code](https://github.com/example/realtime)
|
57 |
+
"""
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"left": """
|
61 |
+
**#13. Personalized Treatment Recommendation**
|
62 |
+
[Arxiv](https://arxiv.org/abs/3456.7891) | [Code](https://github.com/example/treatment)
|
63 |
+
|
64 |
+
**#14. Integration of Genomic Data in AI**
|
65 |
+
[Arxiv](https://arxiv.org/abs/4567.8902) | [Code](https://github.com/example/genomics)
|
66 |
+
""",
|
67 |
+
"right": """
|
68 |
+
**#15. Crowdsourcing in AI Evaluation**
|
69 |
+
[Arxiv](https://arxiv.org/abs/5678.9013) | [Code](https://github.com/example/crowd)
|
70 |
+
|
71 |
+
**#16. Evaluating AI with Human Feedback**
|
72 |
+
[Arxiv](https://arxiv.org/abs/6789.0124) | [Code](https://github.com/example/evaluation)
|
73 |
+
"""
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"left": """
|
77 |
+
**#17. Gradio and Streamlit for Rapid Prototyping**
|
78 |
+
[Arxiv](https://arxiv.org/abs/7890.1235) | [Code](https://github.com/example/gradio)
|
79 |
+
|
80 |
+
**#18. Interactive Demos in Python**
|
81 |
+
[Arxiv](https://arxiv.org/abs/8901.2346) | [Code](https://github.com/example/interactive)
|
82 |
+
""",
|
83 |
+
"right": """
|
84 |
+
**#19. HPC for Scaling AI Models**
|
85 |
+
[Arxiv](https://arxiv.org/abs/9012.3457) | [Code](https://github.com/example/hpc)
|
86 |
+
|
87 |
+
**#20. Model Parallelism and Pipeline Techniques**
|
88 |
+
[Arxiv](https://arxiv.org/abs/0123.4568) | [Code](https://github.com/example/parallel)
|
89 |
+
"""
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"left": """
|
93 |
+
**#21. Imitation Learning for Behavior Cloning**
|
94 |
+
[Arxiv](https://arxiv.org/abs/1234.5680) | [Code](https://github.com/example/imitate)
|
95 |
+
|
96 |
+
**#22. GANs for Mirroring Human Actions**
|
97 |
+
[Arxiv](https://arxiv.org/abs/2345.6781) | [Code](https://github.com/example/ganmirror)
|
98 |
+
""",
|
99 |
+
"right": """
|
100 |
+
**#23. Empathic AI for Shared World Modeling**
|
101 |
+
[Arxiv](https://arxiv.org/abs/3456.7892) | [Code](https://github.com/example/empathic)
|
102 |
+
|
103 |
+
**#24. Deep Reinforcement Learning in Clinical Support**
|
104 |
+
[Arxiv](https://arxiv.org/abs/4567.8903) | [Code](https://github.com/example/deeprl)
|
105 |
+
"""
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"left": """
|
109 |
+
**#25. Mixture of Experts for AI Systems**
|
110 |
+
[Arxiv](https://arxiv.org/abs/5678.9014) | [Code](https://github.com/example/moe)
|
111 |
+
|
112 |
+
**#26. Conditional Computation and Routing Strategies**
|
113 |
+
[Arxiv](https://arxiv.org/abs/6789.0125) | [Code](https://github.com/example/routing)
|
114 |
+
""",
|
115 |
+
"right": """
|
116 |
+
**#27. Ensemble Learning in AI**
|
117 |
+
[Arxiv](https://arxiv.org/abs/7890.1236) | [Code](https://github.com/example/ensemble)
|
118 |
+
|
119 |
+
**#28. Knowledge Distillation Across Models**
|
120 |
+
[Arxiv](https://arxiv.org/abs/8901.2347) | [Code](https://github.com/example/distill)
|
121 |
+
"""
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"left": """
|
125 |
+
**#29. Neural Networks for Adversarial Attacks**
|
126 |
+
[Arxiv](https://arxiv.org/abs/9012.3458) | [Code](https://github.com/example/adversary)
|
127 |
+
|
128 |
+
**#30. Robust Training with Natural Transformations**
|
129 |
+
[Arxiv](https://arxiv.org/abs/0123.4569) | [Code](https://github.com/example/robust)
|
130 |
+
""",
|
131 |
+
"right": """
|
132 |
+
**#31. Text-to-Image Translation with GANs**
|
133 |
+
[Arxiv](https://arxiv.org/abs/1234.5681) | [Code](https://github.com/example/t2i)
|
134 |
+
|
135 |
+
**#32. Controlled Caption Generation via Adversarial Attacks**
|
136 |
+
[Arxiv](https://arxiv.org/abs/2345.6782) | [Code](https://github.com/example/caption)
|
137 |
+
"""
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"left": """
|
141 |
+
**#33. Multi-Modal Autoencoders for Medical Data**
|
142 |
+
[Arxiv](https://arxiv.org/abs/3456.7893) | [Code](https://github.com/example/multimodal)
|
143 |
+
|
144 |
+
**#34. Integration of Vision and Language in Healthcare**
|
145 |
+
[Arxiv](https://arxiv.org/abs/4567.8904) | [Code](https://github.com/example/visionlang)
|
146 |
+
""",
|
147 |
+
"right": """
|
148 |
+
**#35. Reinforcement Learning for Medical QA Systems**
|
149 |
+
[Arxiv](https://arxiv.org/abs/5678.9015) | [Code](https://github.com/example/medicalqa)
|
150 |
+
|
151 |
+
**#36. Large-Scale Clinical Language Models**
|
152 |
+
[Arxiv](https://arxiv.org/abs/6789.0126) | [Code](https://github.com/example/clinicalllm)
|
153 |
+
"""
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"left": """
|
157 |
+
**#37. Efficient Transformers for Clinical NLP**
|
158 |
+
[Arxiv](https://arxiv.org/abs/7890.1237) | [Code](https://github.com/example/lightllm)
|
159 |
+
|
160 |
+
**#38. Continual Learning for Medical AI**
|
161 |
+
[Arxiv](https://arxiv.org/abs/8901.2348) | [Code](https://github.com/example/continual)
|
162 |
+
""",
|
163 |
+
"right": """
|
164 |
+
**#39. Active Learning for AI Annotation**
|
165 |
+
[Arxiv](https://arxiv.org/abs/9012.3459) | [Code](https://github.com/example/active)
|
166 |
+
|
167 |
+
**#40. Automated Model Selection and Routing**
|
168 |
+
[Arxiv](https://arxiv.org/abs/0123.4570) | [Code](https://github.com/example/modelselect)
|
169 |
+
"""
|
170 |
+
}
|
171 |
+
]
|
172 |
+
|
173 |
+
num_slides = len(slides)
|
174 |
+
current_slide = slides[st.session_state.slide_idx]
|
175 |
+
|
176 |
+
# Display slide header (e.g. "Slide 1 of 10")
|
177 |
+
st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}")
|
178 |
+
|
179 |
+
# Display left and right pages side by side
|
180 |
+
col_left, col_right = st.columns(2)
|
181 |
+
with col_left:
|
182 |
+
st.markdown("### Left Page")
|
183 |
+
st.markdown(current_slide["left"], unsafe_allow_html=True)
|
184 |
+
with col_right:
|
185 |
+
st.markdown("### Right Page")
|
186 |
+
st.markdown(current_slide["right"], unsafe_allow_html=True)
|
187 |
+
|
188 |
+
# Countdown timer (15 seconds) for auto-advancement
|
189 |
+
for remaining in range(15, 0, -1):
|
190 |
+
st.markdown(f"**Advancing in {remaining} seconds...**")
|
191 |
+
time.sleep(1)
|
192 |
+
|
193 |
+
# Advance to the next slide (wrap around if at the end)
|
194 |
+
st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides
|
195 |
+
|
196 |
+
# Rerun the app to display the next slide
|
197 |
+
st.rerun()
|