awacke1 commited on
Commit
34cf551
·
verified ·
1 Parent(s): 041b4e6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +197 -0
app.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import time
3
+
4
+ # Initialize the slide index in session state (if not already set)
5
+ if "slide_idx" not in st.session_state:
6
+ st.session_state.slide_idx = 0
7
+
8
+ # Define a list of 10 slides. Each slide has a left and a right page.
9
+ # Each paper entry contains the paper number, title, arXiv link, and code link.
10
+ slides = [
11
+ {
12
+ "left": """
13
+ **#1. Neural Module Networks for Reasoning**
14
+ [Arxiv](https://arxiv.org/abs/1234.5678) | [Code](https://github.com/example/nnm)
15
+
16
+ **#2. Neuro-Symbolic AI for Reasoning**
17
+ [Arxiv](https://arxiv.org/abs/2345.6789) | [Code](https://github.com/example/nsa)
18
+ """,
19
+ "right": """
20
+ **#3. Transformer Models for Multi-step Reasoning**
21
+ [Arxiv](https://arxiv.org/abs/3456.7890) | [Code](https://github.com/example/transformer)
22
+
23
+ **#4. Graph Neural Networks in AI**
24
+ [Arxiv](https://arxiv.org/abs/4567.8901) | [Code](https://github.com/example/gnn)
25
+ """
26
+ },
27
+ {
28
+ "left": """
29
+ **#5. Memory-Augmented Networks for Episodic Recall**
30
+ [Arxiv](https://arxiv.org/abs/5678.9012) | [Code](https://github.com/example/memory)
31
+
32
+ **#6. Self-Supervised Learning for AI**
33
+ [Arxiv](https://arxiv.org/abs/6789.0123) | [Code](https://github.com/example/selfsup)
34
+ """,
35
+ "right": """
36
+ **#7. Reinforcement Learning from Human Feedback**
37
+ [Arxiv](https://arxiv.org/abs/7890.1234) | [Code](https://github.com/example/rlhf)
38
+
39
+ **#8. Transfer Learning in AI Systems**
40
+ [Arxiv](https://arxiv.org/abs/8901.2345) | [Code](https://github.com/example/transfer)
41
+ """
42
+ },
43
+ {
44
+ "left": """
45
+ **#9. Deep Learning for Medical Imaging**
46
+ [Arxiv](https://arxiv.org/abs/9012.3456) | [Code](https://github.com/example/medimg)
47
+
48
+ **#10. Computer Vision in Telemedicine**
49
+ [Arxiv](https://arxiv.org/abs/0123.4567) | [Code](https://github.com/example/cvtele)
50
+ """,
51
+ "right": """
52
+ **#11. Automated Clinical Documentation via NLP**
53
+ [Arxiv](https://arxiv.org/abs/1234.5679) | [Code](https://github.com/example/clinicalnlp)
54
+
55
+ **#12. Real-Time Transcription and Analysis**
56
+ [Arxiv](https://arxiv.org/abs/2345.6780) | [Code](https://github.com/example/realtime)
57
+ """
58
+ },
59
+ {
60
+ "left": """
61
+ **#13. Personalized Treatment Recommendation**
62
+ [Arxiv](https://arxiv.org/abs/3456.7891) | [Code](https://github.com/example/treatment)
63
+
64
+ **#14. Integration of Genomic Data in AI**
65
+ [Arxiv](https://arxiv.org/abs/4567.8902) | [Code](https://github.com/example/genomics)
66
+ """,
67
+ "right": """
68
+ **#15. Crowdsourcing in AI Evaluation**
69
+ [Arxiv](https://arxiv.org/abs/5678.9013) | [Code](https://github.com/example/crowd)
70
+
71
+ **#16. Evaluating AI with Human Feedback**
72
+ [Arxiv](https://arxiv.org/abs/6789.0124) | [Code](https://github.com/example/evaluation)
73
+ """
74
+ },
75
+ {
76
+ "left": """
77
+ **#17. Gradio and Streamlit for Rapid Prototyping**
78
+ [Arxiv](https://arxiv.org/abs/7890.1235) | [Code](https://github.com/example/gradio)
79
+
80
+ **#18. Interactive Demos in Python**
81
+ [Arxiv](https://arxiv.org/abs/8901.2346) | [Code](https://github.com/example/interactive)
82
+ """,
83
+ "right": """
84
+ **#19. HPC for Scaling AI Models**
85
+ [Arxiv](https://arxiv.org/abs/9012.3457) | [Code](https://github.com/example/hpc)
86
+
87
+ **#20. Model Parallelism and Pipeline Techniques**
88
+ [Arxiv](https://arxiv.org/abs/0123.4568) | [Code](https://github.com/example/parallel)
89
+ """
90
+ },
91
+ {
92
+ "left": """
93
+ **#21. Imitation Learning for Behavior Cloning**
94
+ [Arxiv](https://arxiv.org/abs/1234.5680) | [Code](https://github.com/example/imitate)
95
+
96
+ **#22. GANs for Mirroring Human Actions**
97
+ [Arxiv](https://arxiv.org/abs/2345.6781) | [Code](https://github.com/example/ganmirror)
98
+ """,
99
+ "right": """
100
+ **#23. Empathic AI for Shared World Modeling**
101
+ [Arxiv](https://arxiv.org/abs/3456.7892) | [Code](https://github.com/example/empathic)
102
+
103
+ **#24. Deep Reinforcement Learning in Clinical Support**
104
+ [Arxiv](https://arxiv.org/abs/4567.8903) | [Code](https://github.com/example/deeprl)
105
+ """
106
+ },
107
+ {
108
+ "left": """
109
+ **#25. Mixture of Experts for AI Systems**
110
+ [Arxiv](https://arxiv.org/abs/5678.9014) | [Code](https://github.com/example/moe)
111
+
112
+ **#26. Conditional Computation and Routing Strategies**
113
+ [Arxiv](https://arxiv.org/abs/6789.0125) | [Code](https://github.com/example/routing)
114
+ """,
115
+ "right": """
116
+ **#27. Ensemble Learning in AI**
117
+ [Arxiv](https://arxiv.org/abs/7890.1236) | [Code](https://github.com/example/ensemble)
118
+
119
+ **#28. Knowledge Distillation Across Models**
120
+ [Arxiv](https://arxiv.org/abs/8901.2347) | [Code](https://github.com/example/distill)
121
+ """
122
+ },
123
+ {
124
+ "left": """
125
+ **#29. Neural Networks for Adversarial Attacks**
126
+ [Arxiv](https://arxiv.org/abs/9012.3458) | [Code](https://github.com/example/adversary)
127
+
128
+ **#30. Robust Training with Natural Transformations**
129
+ [Arxiv](https://arxiv.org/abs/0123.4569) | [Code](https://github.com/example/robust)
130
+ """,
131
+ "right": """
132
+ **#31. Text-to-Image Translation with GANs**
133
+ [Arxiv](https://arxiv.org/abs/1234.5681) | [Code](https://github.com/example/t2i)
134
+
135
+ **#32. Controlled Caption Generation via Adversarial Attacks**
136
+ [Arxiv](https://arxiv.org/abs/2345.6782) | [Code](https://github.com/example/caption)
137
+ """
138
+ },
139
+ {
140
+ "left": """
141
+ **#33. Multi-Modal Autoencoders for Medical Data**
142
+ [Arxiv](https://arxiv.org/abs/3456.7893) | [Code](https://github.com/example/multimodal)
143
+
144
+ **#34. Integration of Vision and Language in Healthcare**
145
+ [Arxiv](https://arxiv.org/abs/4567.8904) | [Code](https://github.com/example/visionlang)
146
+ """,
147
+ "right": """
148
+ **#35. Reinforcement Learning for Medical QA Systems**
149
+ [Arxiv](https://arxiv.org/abs/5678.9015) | [Code](https://github.com/example/medicalqa)
150
+
151
+ **#36. Large-Scale Clinical Language Models**
152
+ [Arxiv](https://arxiv.org/abs/6789.0126) | [Code](https://github.com/example/clinicalllm)
153
+ """
154
+ },
155
+ {
156
+ "left": """
157
+ **#37. Efficient Transformers for Clinical NLP**
158
+ [Arxiv](https://arxiv.org/abs/7890.1237) | [Code](https://github.com/example/lightllm)
159
+
160
+ **#38. Continual Learning for Medical AI**
161
+ [Arxiv](https://arxiv.org/abs/8901.2348) | [Code](https://github.com/example/continual)
162
+ """,
163
+ "right": """
164
+ **#39. Active Learning for AI Annotation**
165
+ [Arxiv](https://arxiv.org/abs/9012.3459) | [Code](https://github.com/example/active)
166
+
167
+ **#40. Automated Model Selection and Routing**
168
+ [Arxiv](https://arxiv.org/abs/0123.4570) | [Code](https://github.com/example/modelselect)
169
+ """
170
+ }
171
+ ]
172
+
173
+ num_slides = len(slides)
174
+ current_slide = slides[st.session_state.slide_idx]
175
+
176
+ # Display slide header (e.g. "Slide 1 of 10")
177
+ st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}")
178
+
179
+ # Display left and right pages side by side
180
+ col_left, col_right = st.columns(2)
181
+ with col_left:
182
+ st.markdown("### Left Page")
183
+ st.markdown(current_slide["left"], unsafe_allow_html=True)
184
+ with col_right:
185
+ st.markdown("### Right Page")
186
+ st.markdown(current_slide["right"], unsafe_allow_html=True)
187
+
188
+ # Countdown timer (15 seconds) for auto-advancement
189
+ for remaining in range(15, 0, -1):
190
+ st.markdown(f"**Advancing in {remaining} seconds...**")
191
+ time.sleep(1)
192
+
193
+ # Advance to the next slide (wrap around if at the end)
194
+ st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides
195
+
196
+ # Rerun the app to display the next slide
197
+ st.rerun()