Spaces:
Sleeping
Sleeping
File size: 8,653 Bytes
4f8474c c8b0280 4f8474c 6af0f90 4f8474c 6af0f90 a22369d 6af0f90 a22369d 6af0f90 a22369d 4f8474c d71917f 4f8474c 857bb0f 4f8474c 6af0f90 4f8474c a22369d 4f8474c c51c321 4f8474c c8b0280 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 94fb4eb 4f8474c 6af0f90 94fb4eb 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 6af0f90 4f8474c 857bb0f 4f8474c 857bb0f 4f8474c 6af0f90 2691303 333fb08 6af0f90 4f8474c 6af0f90 4f8474c c8b0280 4f8474c 2691303 6af0f90 333fb08 6af0f90 4f8474c 6af0f90 4f8474c 857bb0f 4f8474c 857bb0f 4f8474c 6af0f90 4f8474c 857bb0f 4f8474c 6af0f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import numpy as np
import csv
from model import cumbersome_model2
from model import UNet_family
from model import UNet_attention
from model import tf_model
from model import tf_data
import time
import torch
import os
import random
import shutil
from scipy.signal import decimate, resample_poly, firwin, lfilter
os.environ["CUDA_VISIBLE_DEVICES"]="0"
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def resample(signal, fs, tgt_fs):
# downsample the signal to the target sample rate
if fs>tgt_fs:
fs_down = tgt_fs # Desired sample rate
q = int(fs / fs_down) # Downsampling factor
signal_new = []
for ch in signal:
x_down = decimate(ch, q)
signal_new.append(x_down)
# upsample the signal to the target sample rate
elif fs<tgt_fs:
fs_up = tgt_fs # Desired sample rate
p = int(fs_up / fs) # Upsampling factor
signal_new = []
for ch in signal:
x_up = resample_poly(ch, p, 1)
signal_new.append(x_up)
else:
signal_new = signal
signal_new = np.array(signal_new).astype(np.float64)
return signal_new
def FIR_filter(signal, lowcut, highcut):
fs = 256.0
# Number of FIR filter taps
numtaps = 1000
# Use firwin to create a bandpass FIR filter
fir_coeff = firwin(numtaps, [lowcut, highcut], pass_zero=False, fs=fs)
# Apply the filter to signal:
filtered_signal = lfilter(fir_coeff, 1.0, signal)
return filtered_signal
def read_train_data(file_name):
with open(file_name, 'r', newline='') as f:
lines = csv.reader(f)
data = []
for line in lines:
data.append(line)
data = np.array(data).astype(np.float64)
return data
def cut_data(filepath, raw_data):
raw_data = np.array(raw_data).astype(np.float64)
total = int(len(raw_data[0]) / 1024)
for i in range(total):
table = raw_data[:, i * 1024:(i + 1) * 1024]
filename = filepath + 'temp2/' + str(i) + '.csv'
with open(filename, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(table)
return total
def glue_data(file_name, total):
gluedata = 0
for i in range(total):
file_name1 = file_name + 'output{}.csv'.format(str(i))
with open(file_name1, 'r', newline='') as f:
lines = csv.reader(f)
raw_data = []
for line in lines:
raw_data.append(line)
raw_data = np.array(raw_data).astype(np.float64)
#print(i)
if i == 0:
gluedata = raw_data
else:
smooth = (gluedata[:, -1] + raw_data[:, 1]) / 2
gluedata[:, -1] = smooth
raw_data[:, 1] = smooth
gluedata = np.append(gluedata, raw_data, axis=1)
#print(gluedata.shape)
return gluedata
def save_data(data, filename):
with open(filename, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(data)
def dataDelete(path):
try:
shutil.rmtree(path)
except OSError as e:
pass
#print(e)
else:
pass
#print("The directory is deleted successfully")
def decode_data(data, std_num, mode=5):
if mode == "ICUNet":
# 1. read name
model = cumbersome_model2.UNet1(n_channels=30, n_classes=30).to(device)
resumeLoc = './model/ICUNet/modelsave' + '/checkpoint.pth.tar'
# 2. load model
checkpoint = torch.load(resumeLoc, map_location=device)
model.load_state_dict(checkpoint['state_dict'], False)
model.eval()
# 3. decode strategy
with torch.no_grad():
data = data[np.newaxis, :, :]
data = torch.Tensor(data).to(device)
decode = model(data)
elif mode == "ICUNet++" or mode == "ICUNet_attn":
# 1. read name
if mode == "ICUNet++":
model = UNet_family.NestedUNet3(num_classes=30).to(device)
elif mode == "ICUNet_attn":
model = UNet_attention.UNetpp3_Transformer(num_classes=30).to(device)
resumeLoc = './model/' + mode + '/modelsave' + '/checkpoint.pth.tar'
# 2. load model
checkpoint = torch.load(resumeLoc, map_location=device)
model.load_state_dict(checkpoint['state_dict'], False)
model.eval()
# 3. decode strategy
with torch.no_grad():
data = data[np.newaxis, :, :]
data = torch.Tensor(data).to(device)
decode1, decode2, decode = model(data)
elif mode == "ART":
# 1. read name
resumeLoc = './model/' + mode + '/modelsave/checkpoint.pth.tar'
# 2. load model
checkpoint = torch.load(resumeLoc, map_location=device)
model = tf_model.make_model(30, 30, N=2).to(device)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# 3. decode strategy
with torch.no_grad():
data = torch.FloatTensor(data).to(device)
data = data.unsqueeze(0)
src = data
tgt = data # you can modify to randomize data
batch = tf_data.Batch(src, tgt, 0)
out = model.forward(batch.src, batch.src[:,:,1:], batch.src_mask, batch.trg_mask)
decode = model.generator(out)
decode = decode.permute(0, 2, 1)
add_tensor = torch.zeros(1, 30, 1).to(device)
decode = torch.cat((decode, add_tensor), dim=2)
# 4. numpy
#print(decode.shape)
decode = np.array(decode.cpu()).astype(np.float64)
return decode
def reorder_data(raw_data, mapping_result):
new_data = np.zeros((30, raw_data.shape[1]))
zero_arr = np.zeros((1, raw_data.shape[1]))
for i, (indices, flag) in enumerate(zip(mapping_result["index"], mapping_result["isOriginalData"])):
if flag == True:
new_data[i, :] = raw_data[indices[0], :]
elif indices[0] == None:
new_data[i, :] = zero_arr
else:
data = [raw_data[idx, :] for idx in indices]
new_data[i, :] = np.mean(data, axis=0)
return new_data
def preprocessing(filepath, inputfile, samplerate, mapping_result):
# establish temp folder
try:
os.mkdir(filepath+"temp2/")
except OSError as e:
dataDelete(filepath+"temp2/")
os.mkdir(filepath+"temp2/")
print(e)
# read data
signal = read_train_data(inputfile)
#print(signal.shape)
# channel mapping
signal = reorder_data(signal, mapping_result)
#print(signal.shape)
# resample
signal = resample(signal, samplerate, 256)
#print(signal.shape)
# FIR_filter
signal = FIR_filter(signal, 1, 50)
#print(signal.shape)
# cutting data
total_file_num = cut_data(filepath, signal)
return total_file_num
def restore_order(data, all_data, mapping_result):
for i, (indices, flag) in enumerate(zip(mapping_result["index"], mapping_result["isOriginalData"])):
if flag == True:
all_data[indices[0], :] = data[i, :]
return all_data
def postprocessing(data, samplerate, outputfile, mapping_result, batch_cnt, channel_num):
# resample to original sampling rate
data = resample(data, 256, samplerate)
# reverse channel mapping
all_data = np.zeros((channel_num, data.shape[1])) if batch_cnt==0 else read_train_data(outputfile)
all_data = restore_order(data, all_data, mapping_result)
# save data
save_data(all_data, outputfile)
# model = tf.keras.models.load_model('./denoise_model/')
def reconstruct(model_name, total, filepath, batch_cnt):
# -------------------decode_data---------------------------
second1 = time.time()
for i in range(total):
file_name = filepath + 'temp2/{}.csv'.format(str(i))
data_noise = read_train_data(file_name)
std = np.std(data_noise)
avg = np.average(data_noise)
data_noise = (data_noise-avg)/std
# Deep Learning Artifact Removal
d_data = decode_data(data_noise, std, model_name)
d_data = d_data[0]
outputname = filepath + 'temp2/output{}.csv'.format(str(i))
save_data(d_data, outputname)
# --------------------glue_data----------------------------
data = glue_data(filepath+"temp2/", total)
# -------------------delete_data---------------------------
dataDelete(filepath+"temp2/")
second2 = time.time()
print(f"Using {model_name} model to reconstruct batch-{batch_cnt+1} has been success in {second2 - second1} sec(s)")
return data
|