Spaces:
Sleeping
Sleeping
Commit
·
d71917f
1
Parent(s):
3ab4789
update utils
Browse files
utils.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import numpy as np
|
2 |
import csv
|
3 |
-
from model import cumbersome_model2
|
4 |
-
from model import UNet_family
|
5 |
-
from model import UNet_attention
|
6 |
from model import tf_model
|
7 |
from model import tf_data
|
|
|
|
|
8 |
|
9 |
import time
|
10 |
import torch
|
@@ -13,6 +15,8 @@ import random
|
|
13 |
import shutil
|
14 |
from scipy.signal import decimate, resample_poly, firwin, lfilter
|
15 |
|
|
|
|
|
16 |
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
18 |
|
@@ -65,12 +69,12 @@ def read_train_data(file_name):
|
|
65 |
return data
|
66 |
|
67 |
|
68 |
-
def cut_data(raw_data):
|
69 |
raw_data = np.array(raw_data).astype(np.float64)
|
70 |
total = int(len(raw_data[0]) / 1024)
|
71 |
for i in range(total):
|
72 |
table = raw_data[:, i * 1024:(i + 1) * 1024]
|
73 |
-
filename = '
|
74 |
with open(filename, 'w', newline='') as csvfile:
|
75 |
writer = csv.writer(csvfile)
|
76 |
writer.writerows(table)
|
@@ -114,8 +118,8 @@ def dataDelete(path):
|
|
114 |
except OSError as e:
|
115 |
print(e)
|
116 |
else:
|
117 |
-
pass
|
118 |
-
|
119 |
|
120 |
|
121 |
def decode_data(data, std_num, mode=5):
|
@@ -181,11 +185,12 @@ def decode_data(data, std_num, mode=5):
|
|
181 |
|
182 |
def preprocessing(filename, samplerate):
|
183 |
# establish temp folder
|
|
|
184 |
try:
|
185 |
-
os.mkdir("
|
186 |
except OSError as e:
|
187 |
-
dataDelete("
|
188 |
-
os.mkdir("
|
189 |
print(e)
|
190 |
|
191 |
# read data
|
@@ -198,17 +203,17 @@ def preprocessing(filename, samplerate):
|
|
198 |
signal = FIR_filter(signal, 1, 50)
|
199 |
#print(signal.shape)
|
200 |
# cutting data
|
201 |
-
total_file_num = cut_data(signal)
|
202 |
|
203 |
return total_file_num
|
204 |
|
205 |
|
206 |
# model = tf.keras.models.load_model('./denoise_model/')
|
207 |
-
def reconstruct(model_name, total, outputfile):
|
208 |
# -------------------decode_data---------------------------
|
209 |
second1 = time.time()
|
210 |
for i in range(total):
|
211 |
-
file_name = '
|
212 |
data_noise = read_train_data(file_name)
|
213 |
|
214 |
std = np.std(data_noise)
|
@@ -220,13 +225,13 @@ def reconstruct(model_name, total, outputfile):
|
|
220 |
d_data = decode_data(data_noise, std, model_name)
|
221 |
d_data = d_data[0]
|
222 |
|
223 |
-
outputname =
|
224 |
save_data(d_data, outputname)
|
225 |
|
226 |
# --------------------glue_data----------------------------
|
227 |
-
glue_data("
|
228 |
# -------------------delete_data---------------------------
|
229 |
-
dataDelete("
|
230 |
second2 = time.time()
|
231 |
|
232 |
print("Using", model_name,"model to reconstruct", outputfile, " has been success in", second2 - second1, "sec(s)")
|
|
|
1 |
import numpy as np
|
2 |
import csv
|
3 |
+
#from model import cumbersome_model2
|
4 |
+
#from model import UNet_family
|
5 |
+
#from model import UNet_attention
|
6 |
from model import tf_model
|
7 |
from model import tf_data
|
8 |
+
#from opts import get_opts
|
9 |
+
#from tools import pick_models
|
10 |
|
11 |
import time
|
12 |
import torch
|
|
|
15 |
import shutil
|
16 |
from scipy.signal import decimate, resample_poly, firwin, lfilter
|
17 |
|
18 |
+
from pathlib import Path
|
19 |
+
|
20 |
|
21 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
22 |
|
|
|
69 |
return data
|
70 |
|
71 |
|
72 |
+
def cut_data(filepath, raw_data):
|
73 |
raw_data = np.array(raw_data).astype(np.float64)
|
74 |
total = int(len(raw_data[0]) / 1024)
|
75 |
for i in range(total):
|
76 |
table = raw_data[:, i * 1024:(i + 1) * 1024]
|
77 |
+
filename = filepath + '/temp2/' + str(i) + '.csv'
|
78 |
with open(filename, 'w', newline='') as csvfile:
|
79 |
writer = csv.writer(csvfile)
|
80 |
writer.writerows(table)
|
|
|
118 |
except OSError as e:
|
119 |
print(e)
|
120 |
else:
|
121 |
+
#pass
|
122 |
+
print("The directory is deleted successfully")
|
123 |
|
124 |
|
125 |
def decode_data(data, std_num, mode=5):
|
|
|
185 |
|
186 |
def preprocessing(filename, samplerate):
|
187 |
# establish temp folder
|
188 |
+
tmp_filepath = str(Path(str(filename)).parent)
|
189 |
try:
|
190 |
+
os.mkdir(tmp_filepath+"/temp2/")
|
191 |
except OSError as e:
|
192 |
+
dataDelete(tmp_filepath+"/temp2/")
|
193 |
+
os.mkdir(tmp_filepath+"/temp2/")
|
194 |
print(e)
|
195 |
|
196 |
# read data
|
|
|
203 |
signal = FIR_filter(signal, 1, 50)
|
204 |
#print(signal.shape)
|
205 |
# cutting data
|
206 |
+
total_file_num = cut_data(tmp_filepath, signal)
|
207 |
|
208 |
return total_file_num
|
209 |
|
210 |
|
211 |
# model = tf.keras.models.load_model('./denoise_model/')
|
212 |
+
def reconstruct(model_name, total, filepath, outputfile):
|
213 |
# -------------------decode_data---------------------------
|
214 |
second1 = time.time()
|
215 |
for i in range(total):
|
216 |
+
file_name = filepath + '/temp2/{}.csv'.format(str(i))
|
217 |
data_noise = read_train_data(file_name)
|
218 |
|
219 |
std = np.std(data_noise)
|
|
|
225 |
d_data = decode_data(data_noise, std, model_name)
|
226 |
d_data = d_data[0]
|
227 |
|
228 |
+
outputname = filepath + '/temp2/output{}.csv'.format(str(i))
|
229 |
save_data(d_data, outputname)
|
230 |
|
231 |
# --------------------glue_data----------------------------
|
232 |
+
glue_data(filepath+"/temp2/", total, filepath+'/'+outputfile)
|
233 |
# -------------------delete_data---------------------------
|
234 |
+
dataDelete(filepath+"/temp2/")
|
235 |
second2 = time.time()
|
236 |
|
237 |
print("Using", model_name,"model to reconstruct", outputfile, " has been success in", second2 - second1, "sec(s)")
|