assile commited on
Commit
5027288
·
verified ·
1 Parent(s): 7219fe7

Delete roop-unleashed-main

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. roop-unleashed-main/.flake8 +0 -3
  2. roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md +0 -37
  3. roop-unleashed-main/.github/workflows/stale.yml +0 -29
  4. roop-unleashed-main/.gitignore +0 -15
  5. roop-unleashed-main/Dockerfile +0 -18
  6. roop-unleashed-main/LICENSE +0 -661
  7. roop-unleashed-main/README.md +0 -253
  8. roop-unleashed-main/clip/__init__.py +0 -1
  9. roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz +0 -3
  10. roop-unleashed-main/clip/clip.py +0 -241
  11. roop-unleashed-main/clip/clipseg.py +0 -538
  12. roop-unleashed-main/clip/model.py +0 -436
  13. roop-unleashed-main/clip/simple_tokenizer.py +0 -132
  14. roop-unleashed-main/clip/vitseg.py +0 -286
  15. roop-unleashed-main/config_colab.yaml +0 -14
  16. roop-unleashed-main/docs/screenshot.png +0 -3
  17. roop-unleashed-main/installer/installer.py +0 -87
  18. roop-unleashed-main/installer/macOSinstaller.sh +0 -73
  19. roop-unleashed-main/installer/windows_run.bat +0 -95
  20. roop-unleashed-main/mypy.ini +0 -7
  21. roop-unleashed-main/requirements.txt +0 -19
  22. roop-unleashed-main/roop-unleashed.ipynb +0 -166
  23. roop-unleashed-main/roop/FaceSet.py +0 -20
  24. roop-unleashed-main/roop/ProcessEntry.py +0 -7
  25. roop-unleashed-main/roop/ProcessMgr.py +0 -911
  26. roop-unleashed-main/roop/ProcessOptions.py +0 -18
  27. roop-unleashed-main/roop/StreamWriter.py +0 -60
  28. roop-unleashed-main/roop/__init__.py +0 -0
  29. roop-unleashed-main/roop/capturer.py +0 -46
  30. roop-unleashed-main/roop/core.py +0 -406
  31. roop-unleashed-main/roop/face_util.py +0 -338
  32. roop-unleashed-main/roop/ffmpeg_writer.py +0 -218
  33. roop-unleashed-main/roop/globals.py +0 -56
  34. roop-unleashed-main/roop/metadata.py +0 -2
  35. roop-unleashed-main/roop/processors/Enhance_CodeFormer.py +0 -71
  36. roop-unleashed-main/roop/processors/Enhance_DMDNet.py +0 -898
  37. roop-unleashed-main/roop/processors/Enhance_GFPGAN.py +0 -73
  38. roop-unleashed-main/roop/processors/Enhance_GPEN.py +0 -63
  39. roop-unleashed-main/roop/processors/Enhance_RestoreFormerPPlus.py +0 -64
  40. roop-unleashed-main/roop/processors/FaceSwapInsightFace.py +0 -60
  41. roop-unleashed-main/roop/processors/Frame_Colorizer.py +0 -70
  42. roop-unleashed-main/roop/processors/Frame_Filter.py +0 -105
  43. roop-unleashed-main/roop/processors/Frame_Masking.py +0 -71
  44. roop-unleashed-main/roop/processors/Frame_Upscale.py +0 -129
  45. roop-unleashed-main/roop/processors/Mask_Clip2Seg.py +0 -94
  46. roop-unleashed-main/roop/processors/Mask_XSeg.py +0 -58
  47. roop-unleashed-main/roop/processors/__init__.py +0 -0
  48. roop-unleashed-main/roop/template_parser.py +0 -23
  49. roop-unleashed-main/roop/typing.py +0 -9
  50. roop-unleashed-main/roop/util_ffmpeg.py +0 -130
roop-unleashed-main/.flake8 DELETED
@@ -1,3 +0,0 @@
1
- [flake8]
2
- select = E3, E4, F
3
- per-file-ignores = roop/core.py:E402
 
 
 
 
roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md DELETED
@@ -1,37 +0,0 @@
1
- ---
2
- name: Bug report
3
- about: Create a report to help us improve
4
- title: ''
5
- labels: ''
6
- assignees: ''
7
-
8
- ---
9
-
10
- **Describe the bug**
11
- A clear and concise description of what the bug is.
12
-
13
- **To Reproduce**
14
- Steps to reproduce the behavior:
15
- 1. Go to '...'
16
- 2. Click on '....'
17
- 3. Scroll down to '....'
18
- 4. See error
19
-
20
- **Details**
21
- What OS are you using?
22
- - [ ] Linux
23
- - [ ] Linux in WSL
24
- - [ ] Windows
25
- - [ ] Mac
26
-
27
- Are you using a GPU?
28
- - [ ] No. CPU FTW
29
- - [ ] NVIDIA
30
- - [ ] AMD
31
- - [ ] Intel
32
- - [ ] Mac
33
-
34
- **Which version of roop unleashed are you using?**
35
-
36
- **Screenshots**
37
- If applicable, add screenshots to help explain your problem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/.github/workflows/stale.yml DELETED
@@ -1,29 +0,0 @@
1
- # This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
2
- #
3
- # You can adjust the behavior by modifying this file.
4
- # For more information, see:
5
- # https://github.com/actions/stale
6
- name: Mark stale issues and pull requests
7
-
8
- on:
9
- schedule:
10
- - cron: '32 0 * * *'
11
-
12
- jobs:
13
- stale:
14
-
15
- runs-on: ubuntu-latest
16
- permissions:
17
- issues: write
18
- pull-requests: write
19
-
20
- steps:
21
- - uses: actions/stale@v5
22
- with:
23
- repo-token: ${{ secrets.GITHUB_TOKEN }}
24
- stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
25
- stale-pr-message: 'This PR is stale because it has been open 45 days with no activity. Remove stale label or comment or this will be closed in 10 days.'
26
- close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
27
- days-before-stale: 30
28
- days-before-close: 5
29
- days-before-pr-close: -1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/.gitignore DELETED
@@ -1,15 +0,0 @@
1
- .vs
2
- .idea
3
- models
4
- temp
5
- __pycache__
6
- *.pth
7
- /start.bat
8
- /env
9
- .vscode
10
- output
11
- temp
12
- config.yaml
13
- run.bat
14
- venv
15
- start.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/Dockerfile DELETED
@@ -1,18 +0,0 @@
1
- FROM python:3.11
2
-
3
- # making app folder
4
- WORKDIR /app
5
-
6
- # copying files
7
- COPY . .
8
-
9
- # installing requirements
10
- RUN apt-get update
11
- RUN apt-get install ffmpeg -y
12
- RUN pip install --upgrade pip
13
- RUN pip install -r ./requirements.txt
14
-
15
- # launching gradio app
16
- ENV GRADIO_SERVER_NAME="0.0.0.0"
17
- EXPOSE 7860
18
- ENTRYPOINT python ./run.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/LICENSE DELETED
@@ -1,661 +0,0 @@
1
- GNU AFFERO GENERAL PUBLIC LICENSE
2
- Version 3, 19 November 2007
3
-
4
- Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
- Everyone is permitted to copy and distribute verbatim copies
6
- of this license document, but changing it is not allowed.
7
-
8
- Preamble
9
-
10
- The GNU Affero General Public License is a free, copyleft license for
11
- software and other kinds of works, specifically designed to ensure
12
- cooperation with the community in the case of network server software.
13
-
14
- The licenses for most software and other practical works are designed
15
- to take away your freedom to share and change the works. By contrast,
16
- our General Public Licenses are intended to guarantee your freedom to
17
- share and change all versions of a program--to make sure it remains free
18
- software for all its users.
19
-
20
- When we speak of free software, we are referring to freedom, not
21
- price. Our General Public Licenses are designed to make sure that you
22
- have the freedom to distribute copies of free software (and charge for
23
- them if you wish), that you receive source code or can get it if you
24
- want it, that you can change the software or use pieces of it in new
25
- free programs, and that you know you can do these things.
26
-
27
- Developers that use our General Public Licenses protect your rights
28
- with two steps: (1) assert copyright on the software, and (2) offer
29
- you this License which gives you legal permission to copy, distribute
30
- and/or modify the software.
31
-
32
- A secondary benefit of defending all users' freedom is that
33
- improvements made in alternate versions of the program, if they
34
- receive widespread use, become available for other developers to
35
- incorporate. Many developers of free software are heartened and
36
- encouraged by the resulting cooperation. However, in the case of
37
- software used on network servers, this result may fail to come about.
38
- The GNU General Public License permits making a modified version and
39
- letting the public access it on a server without ever releasing its
40
- source code to the public.
41
-
42
- The GNU Affero General Public License is designed specifically to
43
- ensure that, in such cases, the modified source code becomes available
44
- to the community. It requires the operator of a network server to
45
- provide the source code of the modified version running there to the
46
- users of that server. Therefore, public use of a modified version, on
47
- a publicly accessible server, gives the public access to the source
48
- code of the modified version.
49
-
50
- An older license, called the Affero General Public License and
51
- published by Affero, was designed to accomplish similar goals. This is
52
- a different license, not a version of the Affero GPL, but Affero has
53
- released a new version of the Affero GPL which permits relicensing under
54
- this license.
55
-
56
- The precise terms and conditions for copying, distribution and
57
- modification follow.
58
-
59
- TERMS AND CONDITIONS
60
-
61
- 0. Definitions.
62
-
63
- "This License" refers to version 3 of the GNU Affero General Public License.
64
-
65
- "Copyright" also means copyright-like laws that apply to other kinds of
66
- works, such as semiconductor masks.
67
-
68
- "The Program" refers to any copyrightable work licensed under this
69
- License. Each licensee is addressed as "you". "Licensees" and
70
- "recipients" may be individuals or organizations.
71
-
72
- To "modify" a work means to copy from or adapt all or part of the work
73
- in a fashion requiring copyright permission, other than the making of an
74
- exact copy. The resulting work is called a "modified version" of the
75
- earlier work or a work "based on" the earlier work.
76
-
77
- A "covered work" means either the unmodified Program or a work based
78
- on the Program.
79
-
80
- To "propagate" a work means to do anything with it that, without
81
- permission, would make you directly or secondarily liable for
82
- infringement under applicable copyright law, except executing it on a
83
- computer or modifying a private copy. Propagation includes copying,
84
- distribution (with or without modification), making available to the
85
- public, and in some countries other activities as well.
86
-
87
- To "convey" a work means any kind of propagation that enables other
88
- parties to make or receive copies. Mere interaction with a user through
89
- a computer network, with no transfer of a copy, is not conveying.
90
-
91
- An interactive user interface displays "Appropriate Legal Notices"
92
- to the extent that it includes a convenient and prominently visible
93
- feature that (1) displays an appropriate copyright notice, and (2)
94
- tells the user that there is no warranty for the work (except to the
95
- extent that warranties are provided), that licensees may convey the
96
- work under this License, and how to view a copy of this License. If
97
- the interface presents a list of user commands or options, such as a
98
- menu, a prominent item in the list meets this criterion.
99
-
100
- 1. Source Code.
101
-
102
- The "source code" for a work means the preferred form of the work
103
- for making modifications to it. "Object code" means any non-source
104
- form of a work.
105
-
106
- A "Standard Interface" means an interface that either is an official
107
- standard defined by a recognized standards body, or, in the case of
108
- interfaces specified for a particular programming language, one that
109
- is widely used among developers working in that language.
110
-
111
- The "System Libraries" of an executable work include anything, other
112
- than the work as a whole, that (a) is included in the normal form of
113
- packaging a Major Component, but which is not part of that Major
114
- Component, and (b) serves only to enable use of the work with that
115
- Major Component, or to implement a Standard Interface for which an
116
- implementation is available to the public in source code form. A
117
- "Major Component", in this context, means a major essential component
118
- (kernel, window system, and so on) of the specific operating system
119
- (if any) on which the executable work runs, or a compiler used to
120
- produce the work, or an object code interpreter used to run it.
121
-
122
- The "Corresponding Source" for a work in object code form means all
123
- the source code needed to generate, install, and (for an executable
124
- work) run the object code and to modify the work, including scripts to
125
- control those activities. However, it does not include the work's
126
- System Libraries, or general-purpose tools or generally available free
127
- programs which are used unmodified in performing those activities but
128
- which are not part of the work. For example, Corresponding Source
129
- includes interface definition files associated with source files for
130
- the work, and the source code for shared libraries and dynamically
131
- linked subprograms that the work is specifically designed to require,
132
- such as by intimate data communication or control flow between those
133
- subprograms and other parts of the work.
134
-
135
- The Corresponding Source need not include anything that users
136
- can regenerate automatically from other parts of the Corresponding
137
- Source.
138
-
139
- The Corresponding Source for a work in source code form is that
140
- same work.
141
-
142
- 2. Basic Permissions.
143
-
144
- All rights granted under this License are granted for the term of
145
- copyright on the Program, and are irrevocable provided the stated
146
- conditions are met. This License explicitly affirms your unlimited
147
- permission to run the unmodified Program. The output from running a
148
- covered work is covered by this License only if the output, given its
149
- content, constitutes a covered work. This License acknowledges your
150
- rights of fair use or other equivalent, as provided by copyright law.
151
-
152
- You may make, run and propagate covered works that you do not
153
- convey, without conditions so long as your license otherwise remains
154
- in force. You may convey covered works to others for the sole purpose
155
- of having them make modifications exclusively for you, or provide you
156
- with facilities for running those works, provided that you comply with
157
- the terms of this License in conveying all material for which you do
158
- not control copyright. Those thus making or running the covered works
159
- for you must do so exclusively on your behalf, under your direction
160
- and control, on terms that prohibit them from making any copies of
161
- your copyrighted material outside their relationship with you.
162
-
163
- Conveying under any other circumstances is permitted solely under
164
- the conditions stated below. Sublicensing is not allowed; section 10
165
- makes it unnecessary.
166
-
167
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
-
169
- No covered work shall be deemed part of an effective technological
170
- measure under any applicable law fulfilling obligations under article
171
- 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
- similar laws prohibiting or restricting circumvention of such
173
- measures.
174
-
175
- When you convey a covered work, you waive any legal power to forbid
176
- circumvention of technological measures to the extent such circumvention
177
- is effected by exercising rights under this License with respect to
178
- the covered work, and you disclaim any intention to limit operation or
179
- modification of the work as a means of enforcing, against the work's
180
- users, your or third parties' legal rights to forbid circumvention of
181
- technological measures.
182
-
183
- 4. Conveying Verbatim Copies.
184
-
185
- You may convey verbatim copies of the Program's source code as you
186
- receive it, in any medium, provided that you conspicuously and
187
- appropriately publish on each copy an appropriate copyright notice;
188
- keep intact all notices stating that this License and any
189
- non-permissive terms added in accord with section 7 apply to the code;
190
- keep intact all notices of the absence of any warranty; and give all
191
- recipients a copy of this License along with the Program.
192
-
193
- You may charge any price or no price for each copy that you convey,
194
- and you may offer support or warranty protection for a fee.
195
-
196
- 5. Conveying Modified Source Versions.
197
-
198
- You may convey a work based on the Program, or the modifications to
199
- produce it from the Program, in the form of source code under the
200
- terms of section 4, provided that you also meet all of these conditions:
201
-
202
- a) The work must carry prominent notices stating that you modified
203
- it, and giving a relevant date.
204
-
205
- b) The work must carry prominent notices stating that it is
206
- released under this License and any conditions added under section
207
- 7. This requirement modifies the requirement in section 4 to
208
- "keep intact all notices".
209
-
210
- c) You must license the entire work, as a whole, under this
211
- License to anyone who comes into possession of a copy. This
212
- License will therefore apply, along with any applicable section 7
213
- additional terms, to the whole of the work, and all its parts,
214
- regardless of how they are packaged. This License gives no
215
- permission to license the work in any other way, but it does not
216
- invalidate such permission if you have separately received it.
217
-
218
- d) If the work has interactive user interfaces, each must display
219
- Appropriate Legal Notices; however, if the Program has interactive
220
- interfaces that do not display Appropriate Legal Notices, your
221
- work need not make them do so.
222
-
223
- A compilation of a covered work with other separate and independent
224
- works, which are not by their nature extensions of the covered work,
225
- and which are not combined with it such as to form a larger program,
226
- in or on a volume of a storage or distribution medium, is called an
227
- "aggregate" if the compilation and its resulting copyright are not
228
- used to limit the access or legal rights of the compilation's users
229
- beyond what the individual works permit. Inclusion of a covered work
230
- in an aggregate does not cause this License to apply to the other
231
- parts of the aggregate.
232
-
233
- 6. Conveying Non-Source Forms.
234
-
235
- You may convey a covered work in object code form under the terms
236
- of sections 4 and 5, provided that you also convey the
237
- machine-readable Corresponding Source under the terms of this License,
238
- in one of these ways:
239
-
240
- a) Convey the object code in, or embodied in, a physical product
241
- (including a physical distribution medium), accompanied by the
242
- Corresponding Source fixed on a durable physical medium
243
- customarily used for software interchange.
244
-
245
- b) Convey the object code in, or embodied in, a physical product
246
- (including a physical distribution medium), accompanied by a
247
- written offer, valid for at least three years and valid for as
248
- long as you offer spare parts or customer support for that product
249
- model, to give anyone who possesses the object code either (1) a
250
- copy of the Corresponding Source for all the software in the
251
- product that is covered by this License, on a durable physical
252
- medium customarily used for software interchange, for a price no
253
- more than your reasonable cost of physically performing this
254
- conveying of source, or (2) access to copy the
255
- Corresponding Source from a network server at no charge.
256
-
257
- c) Convey individual copies of the object code with a copy of the
258
- written offer to provide the Corresponding Source. This
259
- alternative is allowed only occasionally and noncommercially, and
260
- only if you received the object code with such an offer, in accord
261
- with subsection 6b.
262
-
263
- d) Convey the object code by offering access from a designated
264
- place (gratis or for a charge), and offer equivalent access to the
265
- Corresponding Source in the same way through the same place at no
266
- further charge. You need not require recipients to copy the
267
- Corresponding Source along with the object code. If the place to
268
- copy the object code is a network server, the Corresponding Source
269
- may be on a different server (operated by you or a third party)
270
- that supports equivalent copying facilities, provided you maintain
271
- clear directions next to the object code saying where to find the
272
- Corresponding Source. Regardless of what server hosts the
273
- Corresponding Source, you remain obligated to ensure that it is
274
- available for as long as needed to satisfy these requirements.
275
-
276
- e) Convey the object code using peer-to-peer transmission, provided
277
- you inform other peers where the object code and Corresponding
278
- Source of the work are being offered to the general public at no
279
- charge under subsection 6d.
280
-
281
- A separable portion of the object code, whose source code is excluded
282
- from the Corresponding Source as a System Library, need not be
283
- included in conveying the object code work.
284
-
285
- A "User Product" is either (1) a "consumer product", which means any
286
- tangible personal property which is normally used for personal, family,
287
- or household purposes, or (2) anything designed or sold for incorporation
288
- into a dwelling. In determining whether a product is a consumer product,
289
- doubtful cases shall be resolved in favor of coverage. For a particular
290
- product received by a particular user, "normally used" refers to a
291
- typical or common use of that class of product, regardless of the status
292
- of the particular user or of the way in which the particular user
293
- actually uses, or expects or is expected to use, the product. A product
294
- is a consumer product regardless of whether the product has substantial
295
- commercial, industrial or non-consumer uses, unless such uses represent
296
- the only significant mode of use of the product.
297
-
298
- "Installation Information" for a User Product means any methods,
299
- procedures, authorization keys, or other information required to install
300
- and execute modified versions of a covered work in that User Product from
301
- a modified version of its Corresponding Source. The information must
302
- suffice to ensure that the continued functioning of the modified object
303
- code is in no case prevented or interfered with solely because
304
- modification has been made.
305
-
306
- If you convey an object code work under this section in, or with, or
307
- specifically for use in, a User Product, and the conveying occurs as
308
- part of a transaction in which the right of possession and use of the
309
- User Product is transferred to the recipient in perpetuity or for a
310
- fixed term (regardless of how the transaction is characterized), the
311
- Corresponding Source conveyed under this section must be accompanied
312
- by the Installation Information. But this requirement does not apply
313
- if neither you nor any third party retains the ability to install
314
- modified object code on the User Product (for example, the work has
315
- been installed in ROM).
316
-
317
- The requirement to provide Installation Information does not include a
318
- requirement to continue to provide support service, warranty, or updates
319
- for a work that has been modified or installed by the recipient, or for
320
- the User Product in which it has been modified or installed. Access to a
321
- network may be denied when the modification itself materially and
322
- adversely affects the operation of the network or violates the rules and
323
- protocols for communication across the network.
324
-
325
- Corresponding Source conveyed, and Installation Information provided,
326
- in accord with this section must be in a format that is publicly
327
- documented (and with an implementation available to the public in
328
- source code form), and must require no special password or key for
329
- unpacking, reading or copying.
330
-
331
- 7. Additional Terms.
332
-
333
- "Additional permissions" are terms that supplement the terms of this
334
- License by making exceptions from one or more of its conditions.
335
- Additional permissions that are applicable to the entire Program shall
336
- be treated as though they were included in this License, to the extent
337
- that they are valid under applicable law. If additional permissions
338
- apply only to part of the Program, that part may be used separately
339
- under those permissions, but the entire Program remains governed by
340
- this License without regard to the additional permissions.
341
-
342
- When you convey a copy of a covered work, you may at your option
343
- remove any additional permissions from that copy, or from any part of
344
- it. (Additional permissions may be written to require their own
345
- removal in certain cases when you modify the work.) You may place
346
- additional permissions on material, added by you to a covered work,
347
- for which you have or can give appropriate copyright permission.
348
-
349
- Notwithstanding any other provision of this License, for material you
350
- add to a covered work, you may (if authorized by the copyright holders of
351
- that material) supplement the terms of this License with terms:
352
-
353
- a) Disclaiming warranty or limiting liability differently from the
354
- terms of sections 15 and 16 of this License; or
355
-
356
- b) Requiring preservation of specified reasonable legal notices or
357
- author attributions in that material or in the Appropriate Legal
358
- Notices displayed by works containing it; or
359
-
360
- c) Prohibiting misrepresentation of the origin of that material, or
361
- requiring that modified versions of such material be marked in
362
- reasonable ways as different from the original version; or
363
-
364
- d) Limiting the use for publicity purposes of names of licensors or
365
- authors of the material; or
366
-
367
- e) Declining to grant rights under trademark law for use of some
368
- trade names, trademarks, or service marks; or
369
-
370
- f) Requiring indemnification of licensors and authors of that
371
- material by anyone who conveys the material (or modified versions of
372
- it) with contractual assumptions of liability to the recipient, for
373
- any liability that these contractual assumptions directly impose on
374
- those licensors and authors.
375
-
376
- All other non-permissive additional terms are considered "further
377
- restrictions" within the meaning of section 10. If the Program as you
378
- received it, or any part of it, contains a notice stating that it is
379
- governed by this License along with a term that is a further
380
- restriction, you may remove that term. If a license document contains
381
- a further restriction but permits relicensing or conveying under this
382
- License, you may add to a covered work material governed by the terms
383
- of that license document, provided that the further restriction does
384
- not survive such relicensing or conveying.
385
-
386
- If you add terms to a covered work in accord with this section, you
387
- must place, in the relevant source files, a statement of the
388
- additional terms that apply to those files, or a notice indicating
389
- where to find the applicable terms.
390
-
391
- Additional terms, permissive or non-permissive, may be stated in the
392
- form of a separately written license, or stated as exceptions;
393
- the above requirements apply either way.
394
-
395
- 8. Termination.
396
-
397
- You may not propagate or modify a covered work except as expressly
398
- provided under this License. Any attempt otherwise to propagate or
399
- modify it is void, and will automatically terminate your rights under
400
- this License (including any patent licenses granted under the third
401
- paragraph of section 11).
402
-
403
- However, if you cease all violation of this License, then your
404
- license from a particular copyright holder is reinstated (a)
405
- provisionally, unless and until the copyright holder explicitly and
406
- finally terminates your license, and (b) permanently, if the copyright
407
- holder fails to notify you of the violation by some reasonable means
408
- prior to 60 days after the cessation.
409
-
410
- Moreover, your license from a particular copyright holder is
411
- reinstated permanently if the copyright holder notifies you of the
412
- violation by some reasonable means, this is the first time you have
413
- received notice of violation of this License (for any work) from that
414
- copyright holder, and you cure the violation prior to 30 days after
415
- your receipt of the notice.
416
-
417
- Termination of your rights under this section does not terminate the
418
- licenses of parties who have received copies or rights from you under
419
- this License. If your rights have been terminated and not permanently
420
- reinstated, you do not qualify to receive new licenses for the same
421
- material under section 10.
422
-
423
- 9. Acceptance Not Required for Having Copies.
424
-
425
- You are not required to accept this License in order to receive or
426
- run a copy of the Program. Ancillary propagation of a covered work
427
- occurring solely as a consequence of using peer-to-peer transmission
428
- to receive a copy likewise does not require acceptance. However,
429
- nothing other than this License grants you permission to propagate or
430
- modify any covered work. These actions infringe copyright if you do
431
- not accept this License. Therefore, by modifying or propagating a
432
- covered work, you indicate your acceptance of this License to do so.
433
-
434
- 10. Automatic Licensing of Downstream Recipients.
435
-
436
- Each time you convey a covered work, the recipient automatically
437
- receives a license from the original licensors, to run, modify and
438
- propagate that work, subject to this License. You are not responsible
439
- for enforcing compliance by third parties with this License.
440
-
441
- An "entity transaction" is a transaction transferring control of an
442
- organization, or substantially all assets of one, or subdividing an
443
- organization, or merging organizations. If propagation of a covered
444
- work results from an entity transaction, each party to that
445
- transaction who receives a copy of the work also receives whatever
446
- licenses to the work the party's predecessor in interest had or could
447
- give under the previous paragraph, plus a right to possession of the
448
- Corresponding Source of the work from the predecessor in interest, if
449
- the predecessor has it or can get it with reasonable efforts.
450
-
451
- You may not impose any further restrictions on the exercise of the
452
- rights granted or affirmed under this License. For example, you may
453
- not impose a license fee, royalty, or other charge for exercise of
454
- rights granted under this License, and you may not initiate litigation
455
- (including a cross-claim or counterclaim in a lawsuit) alleging that
456
- any patent claim is infringed by making, using, selling, offering for
457
- sale, or importing the Program or any portion of it.
458
-
459
- 11. Patents.
460
-
461
- A "contributor" is a copyright holder who authorizes use under this
462
- License of the Program or a work on which the Program is based. The
463
- work thus licensed is called the contributor's "contributor version".
464
-
465
- A contributor's "essential patent claims" are all patent claims
466
- owned or controlled by the contributor, whether already acquired or
467
- hereafter acquired, that would be infringed by some manner, permitted
468
- by this License, of making, using, or selling its contributor version,
469
- but do not include claims that would be infringed only as a
470
- consequence of further modification of the contributor version. For
471
- purposes of this definition, "control" includes the right to grant
472
- patent sublicenses in a manner consistent with the requirements of
473
- this License.
474
-
475
- Each contributor grants you a non-exclusive, worldwide, royalty-free
476
- patent license under the contributor's essential patent claims, to
477
- make, use, sell, offer for sale, import and otherwise run, modify and
478
- propagate the contents of its contributor version.
479
-
480
- In the following three paragraphs, a "patent license" is any express
481
- agreement or commitment, however denominated, not to enforce a patent
482
- (such as an express permission to practice a patent or covenant not to
483
- sue for patent infringement). To "grant" such a patent license to a
484
- party means to make such an agreement or commitment not to enforce a
485
- patent against the party.
486
-
487
- If you convey a covered work, knowingly relying on a patent license,
488
- and the Corresponding Source of the work is not available for anyone
489
- to copy, free of charge and under the terms of this License, through a
490
- publicly available network server or other readily accessible means,
491
- then you must either (1) cause the Corresponding Source to be so
492
- available, or (2) arrange to deprive yourself of the benefit of the
493
- patent license for this particular work, or (3) arrange, in a manner
494
- consistent with the requirements of this License, to extend the patent
495
- license to downstream recipients. "Knowingly relying" means you have
496
- actual knowledge that, but for the patent license, your conveying the
497
- covered work in a country, or your recipient's use of the covered work
498
- in a country, would infringe one or more identifiable patents in that
499
- country that you have reason to believe are valid.
500
-
501
- If, pursuant to or in connection with a single transaction or
502
- arrangement, you convey, or propagate by procuring conveyance of, a
503
- covered work, and grant a patent license to some of the parties
504
- receiving the covered work authorizing them to use, propagate, modify
505
- or convey a specific copy of the covered work, then the patent license
506
- you grant is automatically extended to all recipients of the covered
507
- work and works based on it.
508
-
509
- A patent license is "discriminatory" if it does not include within
510
- the scope of its coverage, prohibits the exercise of, or is
511
- conditioned on the non-exercise of one or more of the rights that are
512
- specifically granted under this License. You may not convey a covered
513
- work if you are a party to an arrangement with a third party that is
514
- in the business of distributing software, under which you make payment
515
- to the third party based on the extent of your activity of conveying
516
- the work, and under which the third party grants, to any of the
517
- parties who would receive the covered work from you, a discriminatory
518
- patent license (a) in connection with copies of the covered work
519
- conveyed by you (or copies made from those copies), or (b) primarily
520
- for and in connection with specific products or compilations that
521
- contain the covered work, unless you entered into that arrangement,
522
- or that patent license was granted, prior to 28 March 2007.
523
-
524
- Nothing in this License shall be construed as excluding or limiting
525
- any implied license or other defenses to infringement that may
526
- otherwise be available to you under applicable patent law.
527
-
528
- 12. No Surrender of Others' Freedom.
529
-
530
- If conditions are imposed on you (whether by court order, agreement or
531
- otherwise) that contradict the conditions of this License, they do not
532
- excuse you from the conditions of this License. If you cannot convey a
533
- covered work so as to satisfy simultaneously your obligations under this
534
- License and any other pertinent obligations, then as a consequence you may
535
- not convey it at all. For example, if you agree to terms that obligate you
536
- to collect a royalty for further conveying from those to whom you convey
537
- the Program, the only way you could satisfy both those terms and this
538
- License would be to refrain entirely from conveying the Program.
539
-
540
- 13. Remote Network Interaction; Use with the GNU General Public License.
541
-
542
- Notwithstanding any other provision of this License, if you modify the
543
- Program, your modified version must prominently offer all users
544
- interacting with it remotely through a computer network (if your version
545
- supports such interaction) an opportunity to receive the Corresponding
546
- Source of your version by providing access to the Corresponding Source
547
- from a network server at no charge, through some standard or customary
548
- means of facilitating copying of software. This Corresponding Source
549
- shall include the Corresponding Source for any work covered by version 3
550
- of the GNU General Public License that is incorporated pursuant to the
551
- following paragraph.
552
-
553
- Notwithstanding any other provision of this License, you have
554
- permission to link or combine any covered work with a work licensed
555
- under version 3 of the GNU General Public License into a single
556
- combined work, and to convey the resulting work. The terms of this
557
- License will continue to apply to the part which is the covered work,
558
- but the work with which it is combined will remain governed by version
559
- 3 of the GNU General Public License.
560
-
561
- 14. Revised Versions of this License.
562
-
563
- The Free Software Foundation may publish revised and/or new versions of
564
- the GNU Affero General Public License from time to time. Such new versions
565
- will be similar in spirit to the present version, but may differ in detail to
566
- address new problems or concerns.
567
-
568
- Each version is given a distinguishing version number. If the
569
- Program specifies that a certain numbered version of the GNU Affero General
570
- Public License "or any later version" applies to it, you have the
571
- option of following the terms and conditions either of that numbered
572
- version or of any later version published by the Free Software
573
- Foundation. If the Program does not specify a version number of the
574
- GNU Affero General Public License, you may choose any version ever published
575
- by the Free Software Foundation.
576
-
577
- If the Program specifies that a proxy can decide which future
578
- versions of the GNU Affero General Public License can be used, that proxy's
579
- public statement of acceptance of a version permanently authorizes you
580
- to choose that version for the Program.
581
-
582
- Later license versions may give you additional or different
583
- permissions. However, no additional obligations are imposed on any
584
- author or copyright holder as a result of your choosing to follow a
585
- later version.
586
-
587
- 15. Disclaimer of Warranty.
588
-
589
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
- HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
- OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
- PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
- IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
- ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
-
598
- 16. Limitation of Liability.
599
-
600
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
- WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
- THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
- GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
- USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
- DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
- EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
- SUCH DAMAGES.
609
-
610
- 17. Interpretation of Sections 15 and 16.
611
-
612
- If the disclaimer of warranty and limitation of liability provided
613
- above cannot be given local legal effect according to their terms,
614
- reviewing courts shall apply local law that most closely approximates
615
- an absolute waiver of all civil liability in connection with the
616
- Program, unless a warranty or assumption of liability accompanies a
617
- copy of the Program in return for a fee.
618
-
619
- END OF TERMS AND CONDITIONS
620
-
621
- How to Apply These Terms to Your New Programs
622
-
623
- If you develop a new program, and you want it to be of the greatest
624
- possible use to the public, the best way to achieve this is to make it
625
- free software which everyone can redistribute and change under these terms.
626
-
627
- To do so, attach the following notices to the program. It is safest
628
- to attach them to the start of each source file to most effectively
629
- state the exclusion of warranty; and each file should have at least
630
- the "copyright" line and a pointer to where the full notice is found.
631
-
632
- <one line to give the program's name and a brief idea of what it does.>
633
- Copyright (C) <year> <name of author>
634
-
635
- This program is free software: you can redistribute it and/or modify
636
- it under the terms of the GNU Affero General Public License as published
637
- by the Free Software Foundation, either version 3 of the License, or
638
- (at your option) any later version.
639
-
640
- This program is distributed in the hope that it will be useful,
641
- but WITHOUT ANY WARRANTY; without even the implied warranty of
642
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
- GNU Affero General Public License for more details.
644
-
645
- You should have received a copy of the GNU Affero General Public License
646
- along with this program. If not, see <https://www.gnu.org/licenses/>.
647
-
648
- Also add information on how to contact you by electronic and paper mail.
649
-
650
- If your software can interact with users remotely through a computer
651
- network, you should also make sure that it provides a way for users to
652
- get its source. For example, if your program is a web application, its
653
- interface could display a "Source" link that leads users to an archive
654
- of the code. There are many ways you could offer source, and different
655
- solutions will be better for different programs; see section 13 for the
656
- specific requirements.
657
-
658
- You should also get your employer (if you work as a programmer) or school,
659
- if any, to sign a "copyright disclaimer" for the program, if necessary.
660
- For more information on this, and how to apply and follow the GNU AGPL, see
661
- <https://www.gnu.org/licenses/>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/README.md DELETED
@@ -1,253 +0,0 @@
1
- # roop-unleashed
2
-
3
- [Changelog](#changelog) • [Usage](#usage) • [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki)
4
-
5
-
6
- Uncensored Deepfakes for images and videos without training and an easy-to-use GUI.
7
-
8
-
9
- ![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637)
10
-
11
- ### Features
12
-
13
- - Platform-independant Browser GUI
14
- - Selection of multiple input/output faces in one go
15
- - Many different swapping modes, first detected, face selections, by gender
16
- - Batch processing of images/videos
17
- - Masking of face occluders using text prompts or automatically
18
- - Optional Face Upscaler/Restoration using different enhancers
19
- - Preview swapping from different video frames
20
- - Live Fake Cam using your webcam
21
- - Extras Tab for cutting videos etc.
22
- - Settings - storing configuration for next session
23
- - Theme Support
24
-
25
- and lots more...
26
-
27
-
28
- ## Disclaimer
29
-
30
- This project is for technical and academic use only.
31
- Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
32
- **Please do not apply it to illegal and unethical scenarios.**
33
-
34
- In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability
35
-
36
- ### Installation
37
-
38
- Please refer to the [wiki](https://github.com/C0untFloyd/roop-unleashed/wiki).
39
-
40
- #### macOS Installation
41
- Simply run the following command. It will check and install all dependencies if necessary.
42
-
43
- `/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)"`
44
-
45
-
46
-
47
- ### Usage
48
-
49
- - Windows: run the `windows_run.bat` from the Installer.
50
- - Linux: `python run.py`
51
- - macOS: `sh runMacOS.sh`
52
- - Dockerfile:
53
- ```shell
54
- docker build -t roop-unleashed . && docker run -t \
55
- -p 7860:7860 \
56
- -v ./config.yaml:/app/config.yaml \
57
- -v ./models:/app/models \
58
- -v ./temp:/app/temp \
59
- -v ./output:/app/output \
60
- roop-unleashed
61
- ```
62
-
63
- <a target="_blank" href="https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/main/roop-unleashed.ipynb">
64
- <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
65
- </a>
66
-
67
-
68
- Additional commandline arguments are currently unsupported and settings should be done via the UI.
69
-
70
- > Note: When you run this program for the first time, it will download some models roughly ~2Gb in size.
71
-
72
-
73
-
74
-
75
- ### Changelog
76
-
77
- **31.12.2024** v4.4.0 Hotfix
78
-
79
- Bugfix: Updated Colab to use present Cuda Drivers
80
- Bugfix: Live-Cam not working because of new face swapper
81
- Set default swapping model back to Insightface
82
-
83
- Happy New Year!
84
-
85
-
86
- **30.12.2024** v4.4.0
87
-
88
- - Added random face selection mode
89
- - Added alternative face swapping model with 128px & 256 px output ([ReSwapper](https://github.com/somanchiu/ReSwapper/tree/main))
90
- - Video repair added to Extras Tab
91
- - Updated most packages to newer versions. CUDA >= 12.4 now required!
92
- - Several minor bugfixes and QoL Changes
93
-
94
-
95
- **28.9.2024** v4.3.1
96
-
97
- - Bugfix: Several possible memory leaks
98
- - Added different output modes, e.g. to virtual cam stream
99
- - New swapping mode "All input faces"
100
- - Average total fps displayed and setting for autorun
101
-
102
-
103
- **16.9.2024** v4.2.8
104
-
105
- - Bugfix: Starting roop-unleashed without NVIDIA gpu but cuda option enabled
106
- - Bugfix: Target Faces couldn't be moved left/right
107
- - Bugfix: Enhancement and upscaling working again in virtual cam
108
- - Corrupt videos caught when adding to target files, displaying warning msg
109
- - Source Files Component cleared after face detection to release temp files
110
- - Added masking and mouth restore options to virtual cam
111
-
112
-
113
- **9.9.2024** v4.2.3
114
-
115
- - Hotfix for gradio pydantic issue with fastapi
116
- - Upgraded to Gradio 4.43 hoping it will fix remaining issues
117
- - Added new action when no face detected -> use last swapped
118
- - Specified image format for image controls - opening new tabs on preview images possible again!
119
- - Hardcoded image output format for livecam to jpeg - might be faster than previous webp
120
- - Chain events to be only executed if previous was a success
121
-
122
-
123
- **5.9.2024** v4.2.0
124
-
125
- - Added ability to move input & target faces order
126
- - New CLI Arguments override settings
127
- - Small UI changes to faceswapping tab
128
- - Added mask option and code for restoration of original mouth area
129
- - Updated gradio to v4.42.0
130
- - Added CLI Arguments --server_share and --cuda_device_id
131
- - Added webp image support
132
-
133
-
134
- **15.07.2024** v4.1.1
135
-
136
- - Bugfix: Post-processing after swapping
137
-
138
-
139
- **14.07.2024** v4.1.0
140
-
141
- - Added subsample upscaling to increase swap resolution
142
- - Upgraded gradio
143
-
144
-
145
- **12.05.2024** v4.0.0
146
-
147
- - Bugfix: Unnecessary init every frame in live-cam
148
- - Bugfix: Installer downloading insightface package each run
149
- - Added xseg masking to live-cam
150
- - Added realesrganx2 to frame processors
151
- - Upgraded some requirements
152
- - Added subtypes and different model support to frame processors
153
- - Allow frame processors to change resolutions of videos
154
- - Different OpenCV Cap for MacOS Virtual Cam
155
- - Added complete frame processing to extras tab
156
- - Colorize, upscale and misc filters added
157
-
158
-
159
- **22.04.2024** v3.9.0
160
-
161
- - Bugfix: Face detection bounding box corrupt values at weird angles
162
- - Rewrote mask previewing to work with every model
163
- - Switching mask engines toggles text interactivity
164
- - Clearing target files, resets face selection dropdown
165
- - Massive rewrite of swapping architecture, needed for xseg implementation
166
- - Added DFL Xseg Support for partial face occlusion
167
- - Face masking only runs when there is a face detected
168
- - Removed unnecessary toggle checkbox for text masking
169
-
170
-
171
- **22.03.2024** v3.6.5
172
-
173
- - Bugfix: Installer pulling latest update on first installation
174
- - Bugfix: Regression issue, blurring/erosion missing from face swap
175
- - Exposed erosion and blur amounts to UI
176
- - Using same values for manual masking too
177
-
178
-
179
- **20.03.2024** v3.6.3
180
-
181
- - Bugfix: Workaround for Gradio Slider Change Bug
182
- - Bugfix: CSS Styling to fix Gradio Image Height Bug
183
- - Made face swapping mask offsets resolution independant
184
- - Show offset mask as overlay
185
- - Changed layout for masking
186
-
187
-
188
- **18.03.2024** v3.6.0
189
-
190
- - Updated to Gradio 4.21.0 - requiring many changes under the hood
191
- - New manual masking (draw the mask yourself)
192
- - Extras Tab, streamlined cutting/joining videos
193
- - Re-added face selection by gender (on-demand loading, default turned off)
194
- - Removed unnecessary activate live-cam option
195
- - Added time info to preview frame and changed frame slider event to allow faster changes
196
-
197
-
198
- **10.03.2024** v3.5.5
199
-
200
- - Bugfix: Installer Path Env
201
- - Bugfix: file attributes
202
- - Video processing checks for presence of ffmpeg and displays warning if not found
203
- - Removed gender + age detection to speed up processing. Option removed from UI
204
- - Replaced restoreformer with restoreformer++
205
- - Live Cam recoded to run separate from virtual cam and without blocking controls
206
- - Swapping with only 1 target face allows selecting from several input faces
207
-
208
-
209
-
210
- **08.01.2024** v3.5.0
211
-
212
- - Bugfix: wrong access options when creating folders
213
- - New auto rotation of horizontal faces, fixing bad landmark positions (expanded on ![PR 364](https://github.com/C0untFloyd/roop-unleashed/pull/364))
214
- - Simple VR Option for stereo Images/Movies, best used in selected face mode
215
- - Added RestoreFormer Enhancer - https://github.com/wzhouxiff/RestoreFormer
216
- - Bumped up package versions for onnx/Torch etc.
217
-
218
-
219
- **16.10.2023** v3.3.4
220
-
221
- **11.8.2023** v2.7.0
222
-
223
- Initial Gradio Version - old TkInter Version now deprecated
224
-
225
- - Re-added unified padding to face enhancers
226
- - Fixed DMDNet for all resolutions
227
- - Selecting target face now automatically switches swapping mode to selected
228
- - GPU providers are correctly set using the GUI (needs restart currently)
229
- - Local output folder can be opened from page
230
- - Unfinished extras functions disabled for now
231
- - Installer checks out specific commit, allowing to go back to first install
232
- - Updated readme for new gradio version
233
- - Updated Colab
234
-
235
-
236
- # Acknowledgements
237
-
238
- Lots of ideas, code or pre-trained models borrowed from the following projects:
239
-
240
- https://github.com/deepinsight/insightface<br />
241
- https://github.com/s0md3v/roop<br />
242
- https://github.com/AUTOMATIC1111/stable-diffusion-webui<br />
243
- https://github.com/Hillobar/Rope<br />
244
- https://github.com/TencentARC/GFPGAN<br />
245
- https://github.com/kadirnar/codeformer-pip<br />
246
- https://github.com/csxmli2016/DMDNet<br />
247
- https://github.com/glucauze/sd-webui-faceswaplab<br />
248
- https://github.com/ykk648/face_power<br />
249
-
250
- <br />
251
- <br />
252
- Thanks to all developers!
253
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/clip/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .clip import *
 
 
roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
- size 1356917
 
 
 
 
roop-unleashed-main/clip/clip.py DELETED
@@ -1,241 +0,0 @@
1
- import hashlib
2
- import os
3
- import urllib
4
- import warnings
5
- from typing import Any, Union, List
6
-
7
- import torch
8
- from PIL import Image
9
- from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
10
- from tqdm import tqdm
11
-
12
- from .model import build_model
13
- from .simple_tokenizer import SimpleTokenizer as _Tokenizer
14
-
15
- try:
16
- from torchvision.transforms import InterpolationMode
17
- BICUBIC = InterpolationMode.BICUBIC
18
- except ImportError:
19
- BICUBIC = Image.BICUBIC
20
-
21
-
22
-
23
- __all__ = ["available_models", "load", "tokenize"]
24
- _tokenizer = _Tokenizer()
25
-
26
- _MODELS = {
27
- "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
28
- "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
29
- "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
30
- "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
31
- "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
32
- "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
33
- "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
34
- "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
35
- "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
36
- }
37
-
38
-
39
- def _download(url: str, root: str):
40
- os.makedirs(root, exist_ok=True)
41
- filename = os.path.basename(url)
42
-
43
- expected_sha256 = url.split("/")[-2]
44
- download_target = os.path.join(root, filename)
45
-
46
- if os.path.exists(download_target) and not os.path.isfile(download_target):
47
- raise RuntimeError(f"{download_target} exists and is not a regular file")
48
-
49
- if os.path.isfile(download_target):
50
- if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
51
- return download_target
52
- else:
53
- warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
54
-
55
- with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
56
- with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
57
- while True:
58
- buffer = source.read(8192)
59
- if not buffer:
60
- break
61
-
62
- output.write(buffer)
63
- loop.update(len(buffer))
64
-
65
- if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
66
- raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
67
-
68
- return download_target
69
-
70
-
71
- def _convert_image_to_rgb(image):
72
- return image.convert("RGB")
73
-
74
-
75
- def _transform(n_px):
76
- return Compose([
77
- Resize(n_px, interpolation=BICUBIC),
78
- CenterCrop(n_px),
79
- _convert_image_to_rgb,
80
- ToTensor(),
81
- Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
82
- ])
83
-
84
-
85
- def available_models() -> List[str]:
86
- """Returns the names of available CLIP models"""
87
- return list(_MODELS.keys())
88
-
89
-
90
- def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
91
- """Load a CLIP model
92
-
93
- Parameters
94
- ----------
95
- name : str
96
- A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
97
-
98
- device : Union[str, torch.device]
99
- The device to put the loaded model
100
-
101
- jit : bool
102
- Whether to load the optimized JIT model or more hackable non-JIT model (default).
103
-
104
- download_root: str
105
- path to download the model files; by default, it uses "~/.cache/clip"
106
-
107
- Returns
108
- -------
109
- model : torch.nn.Module
110
- The CLIP model
111
-
112
- preprocess : Callable[[PIL.Image], torch.Tensor]
113
- A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
114
- """
115
- if name in _MODELS:
116
- model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
117
- elif os.path.isfile(name):
118
- model_path = name
119
- else:
120
- raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
121
-
122
- with open(model_path, 'rb') as opened_file:
123
- try:
124
- # loading JIT archive
125
- model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
126
- state_dict = None
127
- except RuntimeError:
128
- # loading saved state dict
129
- if jit:
130
- warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
131
- jit = False
132
- state_dict = torch.load(opened_file, map_location="cpu")
133
-
134
- if not jit:
135
- model = build_model(state_dict or model.state_dict()).to(device)
136
- if str(device) == "cpu":
137
- model.float()
138
- return model, _transform(model.visual.input_resolution)
139
-
140
- # patch the device names
141
- device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
142
- device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
143
-
144
- def _node_get(node: torch._C.Node, key: str):
145
- """Gets attributes of a node which is polymorphic over return type.
146
-
147
- From https://github.com/pytorch/pytorch/pull/82628
148
- """
149
- sel = node.kindOf(key)
150
- return getattr(node, sel)(key)
151
-
152
- def patch_device(module):
153
- try:
154
- graphs = [module.graph] if hasattr(module, "graph") else []
155
- except RuntimeError:
156
- graphs = []
157
-
158
- if hasattr(module, "forward1"):
159
- graphs.append(module.forward1.graph)
160
-
161
- for graph in graphs:
162
- for node in graph.findAllNodes("prim::Constant"):
163
- if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
164
- node.copyAttributes(device_node)
165
-
166
- model.apply(patch_device)
167
- patch_device(model.encode_image)
168
- patch_device(model.encode_text)
169
-
170
- # patch dtype to float32 on CPU
171
- if str(device) == "cpu":
172
- float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
173
- float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
174
- float_node = float_input.node()
175
-
176
- def patch_float(module):
177
- try:
178
- graphs = [module.graph] if hasattr(module, "graph") else []
179
- except RuntimeError:
180
- graphs = []
181
-
182
- if hasattr(module, "forward1"):
183
- graphs.append(module.forward1.graph)
184
-
185
- for graph in graphs:
186
- for node in graph.findAllNodes("aten::to"):
187
- inputs = list(node.inputs())
188
- for i in [1, 2]: # dtype can be the second or third argument to aten::to()
189
- if _node_get(inputs[i].node(), "value") == 5:
190
- inputs[i].node().copyAttributes(float_node)
191
-
192
- model.apply(patch_float)
193
- patch_float(model.encode_image)
194
- patch_float(model.encode_text)
195
-
196
- model.float()
197
-
198
- return model, _transform(model.input_resolution.item())
199
-
200
-
201
- def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
202
- """
203
- Returns the tokenized representation of given input string(s)
204
-
205
- Parameters
206
- ----------
207
- texts : Union[str, List[str]]
208
- An input string or a list of input strings to tokenize
209
-
210
- context_length : int
211
- The context length to use; all CLIP models use 77 as the context length
212
-
213
- truncate: bool
214
- Whether to truncate the text in case its encoding is longer than the context length
215
-
216
- Returns
217
- -------
218
- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
219
- We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
220
- """
221
- if isinstance(texts, str):
222
- texts = [texts]
223
-
224
- sot_token = _tokenizer.encoder["<|startoftext|>"]
225
- eot_token = _tokenizer.encoder["<|endoftext|>"]
226
- all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
227
- #if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
228
- # result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
229
- #else:
230
- result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
231
-
232
- for i, tokens in enumerate(all_tokens):
233
- if len(tokens) > context_length:
234
- if truncate:
235
- tokens = tokens[:context_length]
236
- tokens[-1] = eot_token
237
- else:
238
- raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
239
- result[i, :len(tokens)] = torch.tensor(tokens)
240
-
241
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/clip/clipseg.py DELETED
@@ -1,538 +0,0 @@
1
- import math
2
- from os.path import basename, dirname, join, isfile
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as nnf
6
- from torch.nn.modules.activation import ReLU
7
-
8
-
9
- def get_prompt_list(prompt):
10
- if prompt == 'plain':
11
- return ['{}']
12
- elif prompt == 'fixed':
13
- return ['a photo of a {}.']
14
- elif prompt == 'shuffle':
15
- return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
16
- elif prompt == 'shuffle+':
17
- return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
18
- 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
19
- 'a bad photo of a {}.', 'a photo of the {}.']
20
- else:
21
- raise ValueError('Invalid value for prompt')
22
-
23
-
24
- def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
25
- """
26
- Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
27
- The mlp and layer norm come from CLIP.
28
- x: input.
29
- b: multihead attention module.
30
- """
31
-
32
- x_ = b.ln_1(x)
33
- q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
34
- tgt_len, bsz, embed_dim = q.size()
35
-
36
- head_dim = embed_dim // b.attn.num_heads
37
- scaling = float(head_dim) ** -0.5
38
-
39
- q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
40
- k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
41
- v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
42
-
43
- q = q * scaling
44
-
45
- attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
46
- if attn_mask is not None:
47
-
48
-
49
- attn_mask_type, attn_mask = attn_mask
50
- n_heads = attn_output_weights.size(0) // attn_mask.size(0)
51
- attn_mask = attn_mask.repeat(n_heads, 1)
52
-
53
- if attn_mask_type == 'cls_token':
54
- # the mask only affects similarities compared to the readout-token.
55
- attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
56
- # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
57
-
58
- if attn_mask_type == 'all':
59
- # print(attn_output_weights.shape, attn_mask[:, None].shape)
60
- attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
61
-
62
-
63
- attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
64
-
65
- attn_output = torch.bmm(attn_output_weights, v)
66
- attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
67
- attn_output = b.attn.out_proj(attn_output)
68
-
69
- x = x + attn_output
70
- x = x + b.mlp(b.ln_2(x))
71
-
72
- if with_aff:
73
- return x, attn_output_weights
74
- else:
75
- return x
76
-
77
-
78
- class CLIPDenseBase(nn.Module):
79
-
80
- def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
81
- super().__init__()
82
-
83
- import clip
84
-
85
- # prec = torch.FloatTensor
86
- self.clip_model, _ = clip.load(version, device='cpu', jit=False)
87
- self.model = self.clip_model.visual
88
-
89
- # if not None, scale conv weights such that we obtain n_tokens.
90
- self.n_tokens = n_tokens
91
-
92
- for p in self.clip_model.parameters():
93
- p.requires_grad_(False)
94
-
95
- # conditional
96
- if reduce_cond is not None:
97
- self.reduce_cond = nn.Linear(512, reduce_cond)
98
- for p in self.reduce_cond.parameters():
99
- p.requires_grad_(False)
100
- else:
101
- self.reduce_cond = None
102
-
103
- self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
104
- self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
105
-
106
- self.reduce = nn.Linear(768, reduce_dim)
107
-
108
- self.prompt_list = get_prompt_list(prompt)
109
-
110
- # precomputed prompts
111
- import pickle
112
- if isfile('precomputed_prompt_vectors.pickle'):
113
- precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
114
- self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
115
- else:
116
- self.precomputed_prompts = dict()
117
-
118
- def rescaled_pos_emb(self, new_size):
119
- assert len(new_size) == 2
120
-
121
- a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
122
- b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
123
- return torch.cat([self.model.positional_embedding[:1], b])
124
-
125
- def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
126
-
127
-
128
- with torch.no_grad():
129
-
130
- inp_size = x_inp.shape[2:]
131
-
132
- if self.n_tokens is not None:
133
- stride2 = x_inp.shape[2] // self.n_tokens
134
- conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
135
- x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
136
- else:
137
- x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
138
-
139
- x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
140
- x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
141
-
142
- x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
143
-
144
- standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
145
-
146
- if x.shape[1] != standard_n_tokens:
147
- new_shape = int(math.sqrt(x.shape[1]-1))
148
- x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
149
- else:
150
- x = x + self.model.positional_embedding.to(x.dtype)
151
-
152
- x = self.model.ln_pre(x)
153
-
154
- x = x.permute(1, 0, 2) # NLD -> LND
155
-
156
- activations, affinities = [], []
157
- for i, res_block in enumerate(self.model.transformer.resblocks):
158
-
159
- if mask is not None:
160
- mask_layer, mask_type, mask_tensor = mask
161
- if mask_layer == i or mask_layer == 'all':
162
- # import ipdb; ipdb.set_trace()
163
- size = int(math.sqrt(x.shape[0] - 1))
164
-
165
- attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
166
-
167
- else:
168
- attn_mask = None
169
- else:
170
- attn_mask = None
171
-
172
- x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
173
-
174
- if i in extract_layers:
175
- affinities += [aff_per_head]
176
-
177
- #if self.n_tokens is not None:
178
- # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
179
- #else:
180
- activations += [x]
181
-
182
- if len(extract_layers) > 0 and i == max(extract_layers) and skip:
183
- print('early skip')
184
- break
185
-
186
- x = x.permute(1, 0, 2) # LND -> NLD
187
- x = self.model.ln_post(x[:, 0, :])
188
-
189
- if self.model.proj is not None:
190
- x = x @ self.model.proj
191
-
192
- return x, activations, affinities
193
-
194
- def sample_prompts(self, words, prompt_list=None):
195
-
196
- prompt_list = prompt_list if prompt_list is not None else self.prompt_list
197
-
198
- prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
199
- prompts = [prompt_list[i] for i in prompt_indices]
200
- return [promt.format(w) for promt, w in zip(prompts, words)]
201
-
202
- def get_cond_vec(self, conditional, batch_size):
203
- # compute conditional from a single string
204
- if conditional is not None and type(conditional) == str:
205
- cond = self.compute_conditional(conditional)
206
- cond = cond.repeat(batch_size, 1)
207
-
208
- # compute conditional from string list/tuple
209
- elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
210
- assert len(conditional) == batch_size
211
- cond = self.compute_conditional(conditional)
212
-
213
- # use conditional directly
214
- elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
215
- cond = conditional
216
-
217
- # compute conditional from image
218
- elif conditional is not None and type(conditional) == torch.Tensor:
219
- with torch.no_grad():
220
- cond, _, _ = self.visual_forward(conditional)
221
- else:
222
- raise ValueError('invalid conditional')
223
- return cond
224
-
225
- def compute_conditional(self, conditional):
226
- import clip
227
-
228
- dev = next(self.parameters()).device
229
-
230
- if type(conditional) in {list, tuple}:
231
- text_tokens = clip.tokenize(conditional).to(dev)
232
- cond = self.clip_model.encode_text(text_tokens)
233
- else:
234
- if conditional in self.precomputed_prompts:
235
- cond = self.precomputed_prompts[conditional].float().to(dev)
236
- else:
237
- text_tokens = clip.tokenize([conditional]).to(dev)
238
- cond = self.clip_model.encode_text(text_tokens)[0]
239
-
240
- if self.shift_vector is not None:
241
- return cond + self.shift_vector
242
- else:
243
- return cond
244
-
245
-
246
- def clip_load_untrained(version):
247
- assert version == 'ViT-B/16'
248
- from clip.model import CLIP
249
- from clip.clip import _MODELS, _download
250
- model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
251
- state_dict = model.state_dict()
252
-
253
- vision_width = state_dict["visual.conv1.weight"].shape[0]
254
- vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
255
- vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
256
- grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
257
- image_resolution = vision_patch_size * grid_size
258
- embed_dim = state_dict["text_projection"].shape[1]
259
- context_length = state_dict["positional_embedding"].shape[0]
260
- vocab_size = state_dict["token_embedding.weight"].shape[0]
261
- transformer_width = state_dict["ln_final.weight"].shape[0]
262
- transformer_heads = transformer_width // 64
263
- transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
264
-
265
- return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
266
- context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
267
-
268
-
269
- class CLIPDensePredT(CLIPDenseBase):
270
-
271
- def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
272
- extra_blocks=0, reduce_cond=None, fix_shift=False,
273
- learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
274
- add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
275
-
276
- super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
277
- # device = 'cpu'
278
-
279
- self.extract_layers = extract_layers
280
- self.cond_layer = cond_layer
281
- self.limit_to_clip_only = limit_to_clip_only
282
- self.process_cond = None
283
- self.rev_activations = rev_activations
284
-
285
- depth = len(extract_layers)
286
-
287
- if add_calibration:
288
- self.calibration_conds = 1
289
-
290
- self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
291
-
292
- self.add_activation1 = True
293
-
294
- self.version = version
295
-
296
- self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
297
-
298
- if fix_shift:
299
- # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
300
- self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
301
- # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
302
- else:
303
- self.shift_vector = None
304
-
305
- if trans_conv is None:
306
- trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
307
- else:
308
- # explicitly define transposed conv kernel size
309
- trans_conv_ks = (trans_conv, trans_conv)
310
-
311
- if not complex_trans_conv:
312
- self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
313
- else:
314
- assert trans_conv_ks[0] == trans_conv_ks[1]
315
-
316
- tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
317
-
318
- self.trans_conv = nn.Sequential(
319
- nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
320
- nn.ReLU(),
321
- nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
322
- nn.ReLU(),
323
- nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
324
- )
325
-
326
- # self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
327
-
328
- assert len(self.extract_layers) == depth
329
-
330
- self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
331
- self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
332
- self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
333
-
334
- # refinement and trans conv
335
-
336
- if learn_trans_conv_only:
337
- for p in self.parameters():
338
- p.requires_grad_(False)
339
-
340
- for p in self.trans_conv.parameters():
341
- p.requires_grad_(True)
342
-
343
- self.prompt_list = get_prompt_list(prompt)
344
-
345
-
346
- def forward(self, inp_image, conditional=None, return_features=False, mask=None):
347
-
348
- assert type(return_features) == bool
349
-
350
- inp_image = inp_image.to(self.model.positional_embedding.device)
351
-
352
- if mask is not None:
353
- raise ValueError('mask not supported')
354
-
355
- # x_inp = normalize(inp_image)
356
- x_inp = inp_image
357
-
358
- bs, dev = inp_image.shape[0], x_inp.device
359
-
360
- cond = self.get_cond_vec(conditional, bs)
361
-
362
- visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
363
-
364
- activation1 = activations[0]
365
- activations = activations[1:]
366
-
367
- _activations = activations[::-1] if not self.rev_activations else activations
368
-
369
- a = None
370
- for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
371
-
372
- if a is not None:
373
- a = reduce(activation) + a
374
- else:
375
- a = reduce(activation)
376
-
377
- if i == self.cond_layer:
378
- if self.reduce_cond is not None:
379
- cond = self.reduce_cond(cond)
380
-
381
- a = self.film_mul(cond) * a + self.film_add(cond)
382
-
383
- a = block(a)
384
-
385
- for block in self.extra_blocks:
386
- a = a + block(a)
387
-
388
- a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
389
-
390
- size = int(math.sqrt(a.shape[2]))
391
-
392
- a = a.view(bs, a.shape[1], size, size)
393
-
394
- a = self.trans_conv(a)
395
-
396
- if self.n_tokens is not None:
397
- a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
398
-
399
- if self.upsample_proj is not None:
400
- a = self.upsample_proj(a)
401
- a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
402
-
403
- if return_features:
404
- return a, visual_q, cond, [activation1] + activations
405
- else:
406
- return a,
407
-
408
-
409
-
410
- class CLIPDensePredTMasked(CLIPDensePredT):
411
-
412
- def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
413
- prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
414
- refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
415
-
416
- super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
417
- n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
418
- fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
419
- limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
420
- n_tokens=n_tokens)
421
-
422
- def visual_forward_masked(self, img_s, seg_s):
423
- return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
424
-
425
- def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
426
-
427
- if seg_s is None:
428
- cond = cond_or_img_s
429
- else:
430
- img_s = cond_or_img_s
431
-
432
- with torch.no_grad():
433
- cond, _, _ = self.visual_forward_masked(img_s, seg_s)
434
-
435
- return super().forward(img_q, cond, return_features=return_features)
436
-
437
-
438
-
439
- class CLIPDenseBaseline(CLIPDenseBase):
440
-
441
- def __init__(self, version='ViT-B/32', cond_layer=0,
442
- extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
443
- reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
444
-
445
- super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
446
- device = 'cpu'
447
-
448
- # self.cond_layer = cond_layer
449
- self.extract_layer = extract_layer
450
- self.limit_to_clip_only = limit_to_clip_only
451
- self.shift_vector = None
452
-
453
- self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
454
-
455
- assert reduce2_dim is not None
456
-
457
- self.reduce2 = nn.Sequential(
458
- nn.Linear(reduce_dim, reduce2_dim),
459
- nn.ReLU(),
460
- nn.Linear(reduce2_dim, reduce_dim)
461
- )
462
-
463
- trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
464
- self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
465
-
466
-
467
- def forward(self, inp_image, conditional=None, return_features=False):
468
-
469
- inp_image = inp_image.to(self.model.positional_embedding.device)
470
-
471
- # x_inp = normalize(inp_image)
472
- x_inp = inp_image
473
-
474
- bs, dev = inp_image.shape[0], x_inp.device
475
-
476
- cond = self.get_cond_vec(conditional, bs)
477
-
478
- visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
479
-
480
- a = activations[0]
481
- a = self.reduce(a)
482
- a = self.film_mul(cond) * a + self.film_add(cond)
483
-
484
- if self.reduce2 is not None:
485
- a = self.reduce2(a)
486
-
487
- # the original model would execute a transformer block here
488
-
489
- a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
490
-
491
- size = int(math.sqrt(a.shape[2]))
492
-
493
- a = a.view(bs, a.shape[1], size, size)
494
- a = self.trans_conv(a)
495
-
496
- if return_features:
497
- return a, visual_q, cond, activations
498
- else:
499
- return a,
500
-
501
-
502
- class CLIPSegMultiLabel(nn.Module):
503
-
504
- def __init__(self, model) -> None:
505
- super().__init__()
506
-
507
- from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
508
-
509
- self.pascal_classes = VOC
510
-
511
- from clip.clipseg import CLIPDensePredT
512
- from general_utils import load_model
513
- # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
514
- self.clipseg = load_model(model, strict=False)
515
-
516
- self.clipseg.eval()
517
-
518
- def forward(self, x):
519
-
520
- bs = x.shape[0]
521
- out = torch.ones(21, bs, 352, 352).to(x.device) * -10
522
-
523
- for class_id, class_name in enumerate(self.pascal_classes):
524
-
525
- fac = 3 if class_name == 'background' else 1
526
-
527
- with torch.no_grad():
528
- pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
529
-
530
- out[class_id] += pred
531
-
532
-
533
- out = out.permute(1, 0, 2, 3)
534
-
535
- return out
536
-
537
- # construct output tensor
538
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/clip/model.py DELETED
@@ -1,436 +0,0 @@
1
- from collections import OrderedDict
2
- from typing import Tuple, Union
3
-
4
- import numpy as np
5
- import torch
6
- import torch.nn.functional as F
7
- from torch import nn
8
-
9
-
10
- class Bottleneck(nn.Module):
11
- expansion = 4
12
-
13
- def __init__(self, inplanes, planes, stride=1):
14
- super().__init__()
15
-
16
- # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
- self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
- self.bn1 = nn.BatchNorm2d(planes)
19
- self.relu1 = nn.ReLU(inplace=True)
20
-
21
- self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
- self.bn2 = nn.BatchNorm2d(planes)
23
- self.relu2 = nn.ReLU(inplace=True)
24
-
25
- self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
-
27
- self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
- self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
- self.relu3 = nn.ReLU(inplace=True)
30
-
31
- self.downsample = None
32
- self.stride = stride
33
-
34
- if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
- # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
- self.downsample = nn.Sequential(OrderedDict([
37
- ("-1", nn.AvgPool2d(stride)),
38
- ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
- ("1", nn.BatchNorm2d(planes * self.expansion))
40
- ]))
41
-
42
- def forward(self, x: torch.Tensor):
43
- identity = x
44
-
45
- out = self.relu1(self.bn1(self.conv1(x)))
46
- out = self.relu2(self.bn2(self.conv2(out)))
47
- out = self.avgpool(out)
48
- out = self.bn3(self.conv3(out))
49
-
50
- if self.downsample is not None:
51
- identity = self.downsample(x)
52
-
53
- out += identity
54
- out = self.relu3(out)
55
- return out
56
-
57
-
58
- class AttentionPool2d(nn.Module):
59
- def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
- super().__init__()
61
- self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
- self.k_proj = nn.Linear(embed_dim, embed_dim)
63
- self.q_proj = nn.Linear(embed_dim, embed_dim)
64
- self.v_proj = nn.Linear(embed_dim, embed_dim)
65
- self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
- self.num_heads = num_heads
67
-
68
- def forward(self, x):
69
- x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
- x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
- x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
- x, _ = F.multi_head_attention_forward(
73
- query=x[:1], key=x, value=x,
74
- embed_dim_to_check=x.shape[-1],
75
- num_heads=self.num_heads,
76
- q_proj_weight=self.q_proj.weight,
77
- k_proj_weight=self.k_proj.weight,
78
- v_proj_weight=self.v_proj.weight,
79
- in_proj_weight=None,
80
- in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
- bias_k=None,
82
- bias_v=None,
83
- add_zero_attn=False,
84
- dropout_p=0,
85
- out_proj_weight=self.c_proj.weight,
86
- out_proj_bias=self.c_proj.bias,
87
- use_separate_proj_weight=True,
88
- training=self.training,
89
- need_weights=False
90
- )
91
- return x.squeeze(0)
92
-
93
-
94
- class ModifiedResNet(nn.Module):
95
- """
96
- A ResNet class that is similar to torchvision's but contains the following changes:
97
- - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
- - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
- - The final pooling layer is a QKV attention instead of an average pool
100
- """
101
-
102
- def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
- super().__init__()
104
- self.output_dim = output_dim
105
- self.input_resolution = input_resolution
106
-
107
- # the 3-layer stem
108
- self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
- self.bn1 = nn.BatchNorm2d(width // 2)
110
- self.relu1 = nn.ReLU(inplace=True)
111
- self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
- self.bn2 = nn.BatchNorm2d(width // 2)
113
- self.relu2 = nn.ReLU(inplace=True)
114
- self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
- self.bn3 = nn.BatchNorm2d(width)
116
- self.relu3 = nn.ReLU(inplace=True)
117
- self.avgpool = nn.AvgPool2d(2)
118
-
119
- # residual layers
120
- self._inplanes = width # this is a *mutable* variable used during construction
121
- self.layer1 = self._make_layer(width, layers[0])
122
- self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
- self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
- self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
-
126
- embed_dim = width * 32 # the ResNet feature dimension
127
- self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
-
129
- def _make_layer(self, planes, blocks, stride=1):
130
- layers = [Bottleneck(self._inplanes, planes, stride)]
131
-
132
- self._inplanes = planes * Bottleneck.expansion
133
- for _ in range(1, blocks):
134
- layers.append(Bottleneck(self._inplanes, planes))
135
-
136
- return nn.Sequential(*layers)
137
-
138
- def forward(self, x):
139
- def stem(x):
140
- x = self.relu1(self.bn1(self.conv1(x)))
141
- x = self.relu2(self.bn2(self.conv2(x)))
142
- x = self.relu3(self.bn3(self.conv3(x)))
143
- x = self.avgpool(x)
144
- return x
145
-
146
- x = x.type(self.conv1.weight.dtype)
147
- x = stem(x)
148
- x = self.layer1(x)
149
- x = self.layer2(x)
150
- x = self.layer3(x)
151
- x = self.layer4(x)
152
- x = self.attnpool(x)
153
-
154
- return x
155
-
156
-
157
- class LayerNorm(nn.LayerNorm):
158
- """Subclass torch's LayerNorm to handle fp16."""
159
-
160
- def forward(self, x: torch.Tensor):
161
- orig_type = x.dtype
162
- ret = super().forward(x.type(torch.float32))
163
- return ret.type(orig_type)
164
-
165
-
166
- class QuickGELU(nn.Module):
167
- def forward(self, x: torch.Tensor):
168
- return x * torch.sigmoid(1.702 * x)
169
-
170
-
171
- class ResidualAttentionBlock(nn.Module):
172
- def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
- super().__init__()
174
-
175
- self.attn = nn.MultiheadAttention(d_model, n_head)
176
- self.ln_1 = LayerNorm(d_model)
177
- self.mlp = nn.Sequential(OrderedDict([
178
- ("c_fc", nn.Linear(d_model, d_model * 4)),
179
- ("gelu", QuickGELU()),
180
- ("c_proj", nn.Linear(d_model * 4, d_model))
181
- ]))
182
- self.ln_2 = LayerNorm(d_model)
183
- self.attn_mask = attn_mask
184
-
185
- def attention(self, x: torch.Tensor):
186
- self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
- return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
-
189
- def forward(self, x: torch.Tensor):
190
- x = x + self.attention(self.ln_1(x))
191
- x = x + self.mlp(self.ln_2(x))
192
- return x
193
-
194
-
195
- class Transformer(nn.Module):
196
- def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
- super().__init__()
198
- self.width = width
199
- self.layers = layers
200
- self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
-
202
- def forward(self, x: torch.Tensor):
203
- return self.resblocks(x)
204
-
205
-
206
- class VisionTransformer(nn.Module):
207
- def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
208
- super().__init__()
209
- self.input_resolution = input_resolution
210
- self.output_dim = output_dim
211
- self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
212
-
213
- scale = width ** -0.5
214
- self.class_embedding = nn.Parameter(scale * torch.randn(width))
215
- self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
216
- self.ln_pre = LayerNorm(width)
217
-
218
- self.transformer = Transformer(width, layers, heads)
219
-
220
- self.ln_post = LayerNorm(width)
221
- self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
222
-
223
- def forward(self, x: torch.Tensor):
224
- x = self.conv1(x) # shape = [*, width, grid, grid]
225
- x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
226
- x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
227
- x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
228
- x = x + self.positional_embedding.to(x.dtype)
229
- x = self.ln_pre(x)
230
-
231
- x = x.permute(1, 0, 2) # NLD -> LND
232
- x = self.transformer(x)
233
- x = x.permute(1, 0, 2) # LND -> NLD
234
-
235
- x = self.ln_post(x[:, 0, :])
236
-
237
- if self.proj is not None:
238
- x = x @ self.proj
239
-
240
- return x
241
-
242
-
243
- class CLIP(nn.Module):
244
- def __init__(self,
245
- embed_dim: int,
246
- # vision
247
- image_resolution: int,
248
- vision_layers: Union[Tuple[int, int, int, int], int],
249
- vision_width: int,
250
- vision_patch_size: int,
251
- # text
252
- context_length: int,
253
- vocab_size: int,
254
- transformer_width: int,
255
- transformer_heads: int,
256
- transformer_layers: int
257
- ):
258
- super().__init__()
259
-
260
- self.context_length = context_length
261
-
262
- if isinstance(vision_layers, (tuple, list)):
263
- vision_heads = vision_width * 32 // 64
264
- self.visual = ModifiedResNet(
265
- layers=vision_layers,
266
- output_dim=embed_dim,
267
- heads=vision_heads,
268
- input_resolution=image_resolution,
269
- width=vision_width
270
- )
271
- else:
272
- vision_heads = vision_width // 64
273
- self.visual = VisionTransformer(
274
- input_resolution=image_resolution,
275
- patch_size=vision_patch_size,
276
- width=vision_width,
277
- layers=vision_layers,
278
- heads=vision_heads,
279
- output_dim=embed_dim
280
- )
281
-
282
- self.transformer = Transformer(
283
- width=transformer_width,
284
- layers=transformer_layers,
285
- heads=transformer_heads,
286
- attn_mask=self.build_attention_mask()
287
- )
288
-
289
- self.vocab_size = vocab_size
290
- self.token_embedding = nn.Embedding(vocab_size, transformer_width)
291
- self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
292
- self.ln_final = LayerNorm(transformer_width)
293
-
294
- self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
295
- self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
296
-
297
- self.initialize_parameters()
298
-
299
- def initialize_parameters(self):
300
- nn.init.normal_(self.token_embedding.weight, std=0.02)
301
- nn.init.normal_(self.positional_embedding, std=0.01)
302
-
303
- if isinstance(self.visual, ModifiedResNet):
304
- if self.visual.attnpool is not None:
305
- std = self.visual.attnpool.c_proj.in_features ** -0.5
306
- nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
307
- nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
308
- nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
309
- nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
310
-
311
- for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
312
- for name, param in resnet_block.named_parameters():
313
- if name.endswith("bn3.weight"):
314
- nn.init.zeros_(param)
315
-
316
- proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
317
- attn_std = self.transformer.width ** -0.5
318
- fc_std = (2 * self.transformer.width) ** -0.5
319
- for block in self.transformer.resblocks:
320
- nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
321
- nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
322
- nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
323
- nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
324
-
325
- if self.text_projection is not None:
326
- nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
327
-
328
- def build_attention_mask(self):
329
- # lazily create causal attention mask, with full attention between the vision tokens
330
- # pytorch uses additive attention mask; fill with -inf
331
- mask = torch.empty(self.context_length, self.context_length)
332
- mask.fill_(float("-inf"))
333
- mask.triu_(1) # zero out the lower diagonal
334
- return mask
335
-
336
- @property
337
- def dtype(self):
338
- return self.visual.conv1.weight.dtype
339
-
340
- def encode_image(self, image):
341
- return self.visual(image.type(self.dtype))
342
-
343
- def encode_text(self, text):
344
- x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
345
-
346
- x = x + self.positional_embedding.type(self.dtype)
347
- x = x.permute(1, 0, 2) # NLD -> LND
348
- x = self.transformer(x)
349
- x = x.permute(1, 0, 2) # LND -> NLD
350
- x = self.ln_final(x).type(self.dtype)
351
-
352
- # x.shape = [batch_size, n_ctx, transformer.width]
353
- # take features from the eot embedding (eot_token is the highest number in each sequence)
354
- x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
355
-
356
- return x
357
-
358
- def forward(self, image, text):
359
- image_features = self.encode_image(image)
360
- text_features = self.encode_text(text)
361
-
362
- # normalized features
363
- image_features = image_features / image_features.norm(dim=1, keepdim=True)
364
- text_features = text_features / text_features.norm(dim=1, keepdim=True)
365
-
366
- # cosine similarity as logits
367
- logit_scale = self.logit_scale.exp()
368
- logits_per_image = logit_scale * image_features @ text_features.t()
369
- logits_per_text = logits_per_image.t()
370
-
371
- # shape = [global_batch_size, global_batch_size]
372
- return logits_per_image, logits_per_text
373
-
374
-
375
- def convert_weights(model: nn.Module):
376
- """Convert applicable model parameters to fp16"""
377
-
378
- def _convert_weights_to_fp16(l):
379
- if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
380
- l.weight.data = l.weight.data.half()
381
- if l.bias is not None:
382
- l.bias.data = l.bias.data.half()
383
-
384
- if isinstance(l, nn.MultiheadAttention):
385
- for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
386
- tensor = getattr(l, attr)
387
- if tensor is not None:
388
- tensor.data = tensor.data.half()
389
-
390
- for name in ["text_projection", "proj"]:
391
- if hasattr(l, name):
392
- attr = getattr(l, name)
393
- if attr is not None:
394
- attr.data = attr.data.half()
395
-
396
- model.apply(_convert_weights_to_fp16)
397
-
398
-
399
- def build_model(state_dict: dict):
400
- vit = "visual.proj" in state_dict
401
-
402
- if vit:
403
- vision_width = state_dict["visual.conv1.weight"].shape[0]
404
- vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
405
- vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
406
- grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
407
- image_resolution = vision_patch_size * grid_size
408
- else:
409
- counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
410
- vision_layers = tuple(counts)
411
- vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
412
- output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
413
- vision_patch_size = None
414
- assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
415
- image_resolution = output_width * 32
416
-
417
- embed_dim = state_dict["text_projection"].shape[1]
418
- context_length = state_dict["positional_embedding"].shape[0]
419
- vocab_size = state_dict["token_embedding.weight"].shape[0]
420
- transformer_width = state_dict["ln_final.weight"].shape[0]
421
- transformer_heads = transformer_width // 64
422
- transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
423
-
424
- model = CLIP(
425
- embed_dim,
426
- image_resolution, vision_layers, vision_width, vision_patch_size,
427
- context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
428
- )
429
-
430
- for key in ["input_resolution", "context_length", "vocab_size"]:
431
- if key in state_dict:
432
- del state_dict[key]
433
-
434
- convert_weights(model)
435
- model.load_state_dict(state_dict)
436
- return model.eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/clip/simple_tokenizer.py DELETED
@@ -1,132 +0,0 @@
1
- import gzip
2
- import html
3
- import os
4
- from functools import lru_cache
5
-
6
- import ftfy
7
- import regex as re
8
-
9
-
10
- @lru_cache()
11
- def default_bpe():
12
- return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
13
-
14
-
15
- @lru_cache()
16
- def bytes_to_unicode():
17
- """
18
- Returns list of utf-8 byte and a corresponding list of unicode strings.
19
- The reversible bpe codes work on unicode strings.
20
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
21
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
22
- This is a signficant percentage of your normal, say, 32K bpe vocab.
23
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
24
- And avoids mapping to whitespace/control characters the bpe code barfs on.
25
- """
26
- bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
27
- cs = bs[:]
28
- n = 0
29
- for b in range(2**8):
30
- if b not in bs:
31
- bs.append(b)
32
- cs.append(2**8+n)
33
- n += 1
34
- cs = [chr(n) for n in cs]
35
- return dict(zip(bs, cs))
36
-
37
-
38
- def get_pairs(word):
39
- """Return set of symbol pairs in a word.
40
- Word is represented as tuple of symbols (symbols being variable-length strings).
41
- """
42
- pairs = set()
43
- prev_char = word[0]
44
- for char in word[1:]:
45
- pairs.add((prev_char, char))
46
- prev_char = char
47
- return pairs
48
-
49
-
50
- def basic_clean(text):
51
- text = ftfy.fix_text(text)
52
- text = html.unescape(html.unescape(text))
53
- return text.strip()
54
-
55
-
56
- def whitespace_clean(text):
57
- text = re.sub(r'\s+', ' ', text)
58
- text = text.strip()
59
- return text
60
-
61
-
62
- class SimpleTokenizer(object):
63
- def __init__(self, bpe_path: str = default_bpe()):
64
- self.byte_encoder = bytes_to_unicode()
65
- self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
66
- merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
67
- merges = merges[1:49152-256-2+1]
68
- merges = [tuple(merge.split()) for merge in merges]
69
- vocab = list(bytes_to_unicode().values())
70
- vocab = vocab + [v+'</w>' for v in vocab]
71
- for merge in merges:
72
- vocab.append(''.join(merge))
73
- vocab.extend(['<|startoftext|>', '<|endoftext|>'])
74
- self.encoder = dict(zip(vocab, range(len(vocab))))
75
- self.decoder = {v: k for k, v in self.encoder.items()}
76
- self.bpe_ranks = dict(zip(merges, range(len(merges))))
77
- self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
78
- self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
79
-
80
- def bpe(self, token):
81
- if token in self.cache:
82
- return self.cache[token]
83
- word = tuple(token[:-1]) + ( token[-1] + '</w>',)
84
- pairs = get_pairs(word)
85
-
86
- if not pairs:
87
- return token+'</w>'
88
-
89
- while True:
90
- bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
91
- if bigram not in self.bpe_ranks:
92
- break
93
- first, second = bigram
94
- new_word = []
95
- i = 0
96
- while i < len(word):
97
- try:
98
- j = word.index(first, i)
99
- new_word.extend(word[i:j])
100
- i = j
101
- except:
102
- new_word.extend(word[i:])
103
- break
104
-
105
- if word[i] == first and i < len(word)-1 and word[i+1] == second:
106
- new_word.append(first+second)
107
- i += 2
108
- else:
109
- new_word.append(word[i])
110
- i += 1
111
- new_word = tuple(new_word)
112
- word = new_word
113
- if len(word) == 1:
114
- break
115
- else:
116
- pairs = get_pairs(word)
117
- word = ' '.join(word)
118
- self.cache[token] = word
119
- return word
120
-
121
- def encode(self, text):
122
- bpe_tokens = []
123
- text = whitespace_clean(basic_clean(text)).lower()
124
- for token in re.findall(self.pat, text):
125
- token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
126
- bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
127
- return bpe_tokens
128
-
129
- def decode(self, tokens):
130
- text = ''.join([self.decoder[token] for token in tokens])
131
- text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
132
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/clip/vitseg.py DELETED
@@ -1,286 +0,0 @@
1
- import math
2
- from posixpath import basename, dirname, join
3
- # import clip
4
- from clip.model import convert_weights
5
- import torch
6
- import json
7
- from torch import nn
8
- from torch.nn import functional as nnf
9
- from torch.nn.modules import activation
10
- from torch.nn.modules.activation import ReLU
11
- from torchvision import transforms
12
-
13
- normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
14
-
15
- from torchvision.models import ResNet
16
-
17
-
18
- def process_prompts(conditional, prompt_list, conditional_map):
19
- # DEPRECATED
20
-
21
- # randomly sample a synonym
22
- words = [conditional_map[int(i)] for i in conditional]
23
- words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
24
- words = [w.replace('_', ' ') for w in words]
25
-
26
- if prompt_list is not None:
27
- prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
28
- prompts = [prompt_list[i] for i in prompt_indices]
29
- else:
30
- prompts = ['a photo of {}'] * (len(words))
31
-
32
- return [promt.format(w) for promt, w in zip(prompts, words)]
33
-
34
-
35
- class VITDenseBase(nn.Module):
36
-
37
- def rescaled_pos_emb(self, new_size):
38
- assert len(new_size) == 2
39
-
40
- a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
41
- b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
42
- return torch.cat([self.model.positional_embedding[:1], b])
43
-
44
- def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
45
-
46
- with torch.no_grad():
47
-
48
- x_inp = nnf.interpolate(x_inp, (384, 384))
49
-
50
- x = self.model.patch_embed(x_inp)
51
- cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
52
- if self.model.dist_token is None:
53
- x = torch.cat((cls_token, x), dim=1)
54
- else:
55
- x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
56
- x = self.model.pos_drop(x + self.model.pos_embed)
57
-
58
- activations = []
59
- for i, block in enumerate(self.model.blocks):
60
- x = block(x)
61
-
62
- if i in extract_layers:
63
- # permute to be compatible with CLIP
64
- activations += [x.permute(1,0,2)]
65
-
66
- x = self.model.norm(x)
67
- x = self.model.head(self.model.pre_logits(x[:, 0]))
68
-
69
- # again for CLIP compatibility
70
- # x = x.permute(1, 0, 2)
71
-
72
- return x, activations, None
73
-
74
- def sample_prompts(self, words, prompt_list=None):
75
-
76
- prompt_list = prompt_list if prompt_list is not None else self.prompt_list
77
-
78
- prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
79
- prompts = [prompt_list[i] for i in prompt_indices]
80
- return [promt.format(w) for promt, w in zip(prompts, words)]
81
-
82
- def get_cond_vec(self, conditional, batch_size):
83
- # compute conditional from a single string
84
- if conditional is not None and type(conditional) == str:
85
- cond = self.compute_conditional(conditional)
86
- cond = cond.repeat(batch_size, 1)
87
-
88
- # compute conditional from string list/tuple
89
- elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
90
- assert len(conditional) == batch_size
91
- cond = self.compute_conditional(conditional)
92
-
93
- # use conditional directly
94
- elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
95
- cond = conditional
96
-
97
- # compute conditional from image
98
- elif conditional is not None and type(conditional) == torch.Tensor:
99
- with torch.no_grad():
100
- cond, _, _ = self.visual_forward(conditional)
101
- else:
102
- raise ValueError('invalid conditional')
103
- return cond
104
-
105
- def compute_conditional(self, conditional):
106
- import clip
107
-
108
- dev = next(self.parameters()).device
109
-
110
- if type(conditional) in {list, tuple}:
111
- text_tokens = clip.tokenize(conditional).to(dev)
112
- cond = self.clip_model.encode_text(text_tokens)
113
- else:
114
- if conditional in self.precomputed_prompts:
115
- cond = self.precomputed_prompts[conditional].float().to(dev)
116
- else:
117
- text_tokens = clip.tokenize([conditional]).to(dev)
118
- cond = self.clip_model.encode_text(text_tokens)[0]
119
-
120
- return cond
121
-
122
-
123
- class VITDensePredT(VITDenseBase):
124
-
125
- def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
126
- depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
127
- learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
128
- add_calibration=False, process_cond=None, not_pretrained=False):
129
- super().__init__()
130
- # device = 'cpu'
131
-
132
- self.extract_layers = extract_layers
133
- self.cond_layer = cond_layer
134
- self.limit_to_clip_only = limit_to_clip_only
135
- self.process_cond = None
136
-
137
- if add_calibration:
138
- self.calibration_conds = 1
139
-
140
- self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
141
-
142
- self.add_activation1 = True
143
-
144
- import timm
145
- self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
146
- self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
147
-
148
- for p in self.model.parameters():
149
- p.requires_grad_(False)
150
-
151
- import clip
152
- self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
153
- # del self.clip_model.visual
154
-
155
-
156
- self.token_shape = (14, 14)
157
-
158
- # conditional
159
- if reduce_cond is not None:
160
- self.reduce_cond = nn.Linear(512, reduce_cond)
161
- for p in self.reduce_cond.parameters():
162
- p.requires_grad_(False)
163
- else:
164
- self.reduce_cond = None
165
-
166
- # self.film = AVAILABLE_BLOCKS['film'](512, 128)
167
- self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
168
- self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
169
-
170
- # DEPRECATED
171
- # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
172
-
173
- assert len(self.extract_layers) == depth
174
-
175
- self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
176
- self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
177
- self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
178
-
179
- trans_conv_ks = (16, 16)
180
- self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
181
-
182
- # refinement and trans conv
183
-
184
- if learn_trans_conv_only:
185
- for p in self.parameters():
186
- p.requires_grad_(False)
187
-
188
- for p in self.trans_conv.parameters():
189
- p.requires_grad_(True)
190
-
191
- if prompt == 'fixed':
192
- self.prompt_list = ['a photo of a {}.']
193
- elif prompt == 'shuffle':
194
- self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
195
- elif prompt == 'shuffle+':
196
- self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
197
- 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
198
- 'a bad photo of a {}.', 'a photo of the {}.']
199
- elif prompt == 'shuffle_clip':
200
- from models.clip_prompts import imagenet_templates
201
- self.prompt_list = imagenet_templates
202
-
203
- if process_cond is not None:
204
- if process_cond == 'clamp' or process_cond[0] == 'clamp':
205
-
206
- val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
207
-
208
- def clamp_vec(x):
209
- return torch.clamp(x, -val, val)
210
-
211
- self.process_cond = clamp_vec
212
-
213
- elif process_cond.endswith('.pth'):
214
-
215
- shift = torch.load(process_cond)
216
- def add_shift(x):
217
- return x + shift.to(x.device)
218
-
219
- self.process_cond = add_shift
220
-
221
- import pickle
222
- precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
223
- self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
224
-
225
-
226
- def forward(self, inp_image, conditional=None, return_features=False, mask=None):
227
-
228
- assert type(return_features) == bool
229
-
230
- # inp_image = inp_image.to(self.model.positional_embedding.device)
231
-
232
- if mask is not None:
233
- raise ValueError('mask not supported')
234
-
235
- # x_inp = normalize(inp_image)
236
- x_inp = inp_image
237
-
238
- bs, dev = inp_image.shape[0], x_inp.device
239
-
240
- inp_image_size = inp_image.shape[2:]
241
-
242
- cond = self.get_cond_vec(conditional, bs)
243
-
244
- visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
245
-
246
- activation1 = activations[0]
247
- activations = activations[1:]
248
-
249
- a = None
250
- for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
251
-
252
- if a is not None:
253
- a = reduce(activation) + a
254
- else:
255
- a = reduce(activation)
256
-
257
- if i == self.cond_layer:
258
- if self.reduce_cond is not None:
259
- cond = self.reduce_cond(cond)
260
-
261
- a = self.film_mul(cond) * a + self.film_add(cond)
262
-
263
- a = block(a)
264
-
265
- for block in self.extra_blocks:
266
- a = a + block(a)
267
-
268
- a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
269
-
270
- size = int(math.sqrt(a.shape[2]))
271
-
272
- a = a.view(bs, a.shape[1], size, size)
273
-
274
- if self.trans_conv is not None:
275
- a = self.trans_conv(a)
276
-
277
- if self.upsample_proj is not None:
278
- a = self.upsample_proj(a)
279
- a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
280
-
281
- a = nnf.interpolate(a, inp_image_size)
282
-
283
- if return_features:
284
- return a, visual_q, cond, [activation1] + activations
285
- else:
286
- return a,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/config_colab.yaml DELETED
@@ -1,14 +0,0 @@
1
- clear_output: true
2
- force_cpu: false
3
- max_threads: 3
4
- memory_limit: 0
5
- output_image_format: png
6
- output_template: '{file}_{time}'
7
- output_video_codec: libx264
8
- output_video_format: mp4
9
- provider: cuda
10
- selected_theme: Default
11
- server_name: ''
12
- server_port: 0
13
- server_share: true
14
- video_quality: 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/docs/screenshot.png DELETED

Git LFS Details

  • SHA256: a86df433a470c2b123dbcc4b3e93b7ba00f261a862e5a5b8c747764dc5d6c147
  • Pointer size: 132 Bytes
  • Size of remote file: 3.55 MB
roop-unleashed-main/installer/installer.py DELETED
@@ -1,87 +0,0 @@
1
- import argparse
2
- import glob
3
- import os
4
- import shutil
5
- import site
6
- import subprocess
7
- import sys
8
-
9
-
10
- script_dir = os.getcwd()
11
-
12
-
13
- def run_cmd(cmd, capture_output=False, env=None):
14
- # Run shell commands
15
- return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
16
-
17
-
18
- def check_env():
19
- # If we have access to conda, we are probably in an environment
20
- conda_not_exist = run_cmd("conda", capture_output=True).returncode
21
- if conda_not_exist:
22
- print("Conda is not installed. Exiting...")
23
- sys.exit()
24
-
25
- # Ensure this is a new environment and not the base environment
26
- if os.environ["CONDA_DEFAULT_ENV"] == "base":
27
- print("Create an environment for this project and activate it. Exiting...")
28
- sys.exit()
29
-
30
-
31
- def install_dependencies():
32
- global MY_PATH
33
-
34
- # Install Git and clone repo
35
- run_cmd("conda install -y -k git")
36
- run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
37
- os.chdir(MY_PATH)
38
- run_cmd("git checkout 5bfafdc97a0c47b46ec83e6530a57399aaad75d7")
39
- # Installs dependencies from requirements.txt
40
- run_cmd("python -m pip install -r requirements.txt")
41
-
42
-
43
-
44
- def update_dependencies():
45
- global MY_PATH
46
-
47
- os.chdir(MY_PATH)
48
- # do a hard reset for to update even if there are local changes
49
- run_cmd("git fetch --all")
50
- run_cmd("git reset --hard origin/main")
51
- run_cmd("git pull")
52
- # Installs/Updates dependencies from all requirements.txt
53
- run_cmd("python -m pip install -r requirements.txt")
54
-
55
-
56
- def start_app():
57
- global MY_PATH
58
-
59
- os.chdir(MY_PATH)
60
- # forward commandline arguments
61
- sys.argv.pop(0)
62
- args = ' '.join(sys.argv)
63
- print("Launching App")
64
- run_cmd(f'python run.py {args}')
65
-
66
-
67
- if __name__ == "__main__":
68
- global MY_PATH
69
-
70
- MY_PATH = "roop-unleashed"
71
-
72
-
73
- # Verifies we are in a conda environment
74
- check_env()
75
-
76
- # If webui has already been installed, skip and run
77
- if not os.path.exists(MY_PATH):
78
- install_dependencies()
79
- else:
80
- # moved update from batch to here, because of batch limitations
81
- updatechoice = input("Check for Updates? [y/n]").lower()
82
- if updatechoice == "y":
83
- update_dependencies()
84
-
85
- # Run the model with webui
86
- os.chdir(script_dir)
87
- start_app()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/installer/macOSinstaller.sh DELETED
@@ -1,73 +0,0 @@
1
- #!/bin/bash
2
-
3
- # This script checks and installs all dependencies which are needed to run roop-unleashed. After that, it clones the repo.
4
- # Execute this easily with /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)
5
-
6
- # Function to check if a command exists
7
- command_exists() {
8
- command -v "$1" >/dev/null 2>&1
9
- }
10
-
11
- echo "Starting check and installation process of dependencies for roop-unleashed"
12
-
13
- # Check if Homebrew is installed
14
- if ! command_exists brew; then
15
- echo "Homebrew is not installed. Starting installation..."
16
- /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
17
- else
18
- echo "Homebrew is already installed."
19
- fi
20
-
21
- # Update Homebrew
22
- echo "Updating Homebrew..."
23
- brew update
24
-
25
- # Check if Python 3.11 is installed
26
- if brew list --versions [email protected] >/dev/null; then
27
- echo "Python 3.11 is already installed."
28
- else
29
- echo "Python 3.11 is not installed. Installing it now..."
30
- brew install [email protected]
31
- fi
32
-
33
- # Check if [email protected] is installed
34
- if brew list --versions [email protected] >/dev/null; then
35
- echo "[email protected] is already installed."
36
- else
37
- echo "[email protected] is not installed. Installing it now..."
38
- brew install [email protected]
39
- fi
40
-
41
- # Check if ffmpeg is installed
42
- if command_exists ffmpeg; then
43
- echo "ffmpeg is already installed."
44
- else
45
- echo "ffmpeg is not installed. Installing it now..."
46
- brew install ffmpeg
47
- fi
48
-
49
- # Check if git is installed
50
- if command_exists git; then
51
- echo "git is already installed."
52
- else
53
- echo "git is not installed. Installing it now..."
54
- brew install git
55
- fi
56
-
57
- # Clone the repository
58
- REPO_URL="https://github.com/C0untFloyd/roop-unleashed.git"
59
- REPO_NAME="roop-unleashed"
60
-
61
- echo "Cloning the repository $REPO_URL..."
62
- git clone $REPO_URL
63
-
64
- # Check if the repository was cloned successfully
65
- if [ -d "$REPO_NAME" ]; then
66
- echo "Repository cloned successfully. Changing into directory $REPO_NAME..."
67
- cd "$REPO_NAME"
68
- else
69
- echo "Failed to clone the repository."
70
- fi
71
-
72
- echo "Check and installation process completed."
73
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/installer/windows_run.bat DELETED
@@ -1,95 +0,0 @@
1
- @echo off
2
-
3
- REM No CLI arguments supported anymore
4
- set COMMANDLINE_ARGS=
5
-
6
- cd /D "%~dp0"
7
-
8
- echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
9
-
10
- set PATH=%PATH%;%SystemRoot%\system32
11
-
12
- @rem config
13
- set INSTALL_DIR=%cd%\installer_files
14
- set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
15
- set INSTALL_ENV_DIR=%cd%\installer_files\env
16
- set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
17
- set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/7.1/ffmpeg-7.1-essentials_build.zip
18
- set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
19
- set INSIGHTFACE_PACKAGE_URL=https://github.com/C0untFloyd/roop-unleashed/releases/download/3.6.6/insightface-0.7.3-cp310-cp310-win_amd64.whl
20
- set INSIGHTFACE_PACKAGE_PATH=%INSTALL_DIR%\insightface-0.7.3-cp310-cp310-win_amd64.whl
21
-
22
- set conda_exists=F
23
- set ffmpeg_exists=F
24
-
25
- @rem figure out whether git and conda needs to be installed
26
- call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
27
- if "%ERRORLEVEL%" EQU "0" set conda_exists=T
28
-
29
- @rem Check if FFmpeg is already in PATH
30
- where ffmpeg >nul 2>&1
31
- if "%ERRORLEVEL%" EQU "0" (
32
- echo FFmpeg is already installed.
33
- set ffmpeg_exists=T
34
- )
35
-
36
- @rem (if necessary) install git and conda into a contained environment
37
-
38
- @rem download conda
39
- if "%conda_exists%" == "F" (
40
- echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
41
- mkdir "%INSTALL_DIR%"
42
- call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
43
- echo Installing Miniconda to %CONDA_ROOT_PREFIX%
44
- start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
45
-
46
- @rem test the conda binary
47
- echo Miniconda version:
48
- call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
49
- )
50
-
51
- @rem create the installer env
52
- if not exist "%INSTALL_ENV_DIR%" (
53
- echo Creating Conda Environment
54
- call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo ERROR: Conda environment creation failed. && goto end )
55
- @rem check if conda environment was actually created
56
- if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
57
- @rem activate installer env
58
- call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
59
- @rem Download insightface package
60
- echo Downloading insightface package from %INSIGHTFACE_PACKAGE_URL% to %INSIGHTFACE_PACKAGE_PATH%
61
- call curl -Lk "%INSIGHTFACE_PACKAGE_URL%" > "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package failed to download. && goto end )
62
- @rem install insightface package using pip
63
- echo Installing insightface package
64
- call pip install "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package installation failed. && goto end )
65
- )
66
-
67
- @rem Download and install FFmpeg if not already installed
68
- if "%ffmpeg_exists%" == "F" (
69
- if not exist "%INSTALL_FFMPEG_DIR%" (
70
- echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
71
- call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
72
- call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
73
- cd "%INSTALL_DIR%"
74
- move ffmpeg-* ffmpeg
75
- setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
76
- echo To use videos, you need to restart roop after this installation.
77
- cd ..
78
- )
79
- ) else (
80
- echo Skipping FFmpeg installation as it is already available.
81
- )
82
-
83
- @rem setup installer env
84
- @rem check if conda environment was actually created
85
- if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
86
- @rem activate installer env
87
- call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
88
- echo Launching roop unleashed
89
- call python installer.py %COMMANDLINE_ARGS%
90
-
91
- echo.
92
- echo Done!
93
-
94
- :end
95
- pause
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/mypy.ini DELETED
@@ -1,7 +0,0 @@
1
- [mypy]
2
- check_untyped_defs = True
3
- disallow_any_generics = True
4
- disallow_untyped_calls = True
5
- disallow_untyped_defs = True
6
- ignore_missing_imports = True
7
- strict_optional = False
 
 
 
 
 
 
 
 
roop-unleashed-main/requirements.txt DELETED
@@ -1,19 +0,0 @@
1
- --extra-index-url https://download.pytorch.org/whl/cu124
2
- numpy==1.26.4
3
- gradio==5.9.1
4
- opencv-python-headless==4.10.0.84
5
- onnx==1.16.1
6
- insightface==0.7.3
7
- albucore==0.0.16
8
- psutil==5.9.6
9
- torch==2.5.1+cu124; sys_platform != 'darwin'
10
- torch==2.5.1; sys_platform == 'darwin'
11
- torchvision==0.20.1+cu124; sys_platform != 'darwin'
12
- torchvision==0.20.1; sys_platform == 'darwin'
13
- onnxruntime==1.20.1; sys_platform == 'darwin' and platform_machine != 'arm64'
14
- onnxruntime-silicon==1.20.1; sys_platform == 'darwin' and platform_machine == 'arm64'
15
- onnxruntime-gpu==1.20.1; sys_platform != 'darwin'
16
- tqdm==4.66.4
17
- ftfy
18
- regex
19
- pyvirtualcam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop-unleashed.ipynb DELETED
@@ -1,166 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "G9BdiCppV6AS"
7
- },
8
- "source": [
9
- "# Colab for roop-unleashed - Gradio version\n",
10
- "https://github.com/C0untFloyd/roop-unleashed\n"
11
- ]
12
- },
13
- {
14
- "cell_type": "markdown",
15
- "metadata": {
16
- "id": "CanIXgLJgaOj"
17
- },
18
- "source": [
19
- "Install CUDA 12.6 on Google Cloud Compute\n",
20
- "(currently unnecessary because the latest 12.x should be already installed)"
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": null,
26
- "metadata": {
27
- "id": "96GE4UgYg3Ej"
28
- },
29
- "outputs": [],
30
- "source": [
31
- "# don't run this cell if you know that there is at least Cuda 12.4 installed\n",
32
- "!apt-get -y update\n",
33
- "!apt-get -y install cuda-toolkit-12-6\n",
34
- "import os\n",
35
- "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12/lib64\"\n",
36
- "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12.6/lib64\""
37
- ]
38
- },
39
- {
40
- "cell_type": "markdown",
41
- "metadata": {
42
- "id": "0ZYRNb0AWLLW"
43
- },
44
- "source": [
45
- "Installing & preparing requirements"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": null,
51
- "metadata": {
52
- "id": "t1yPuhdySqCq"
53
- },
54
- "outputs": [],
55
- "source": [
56
- "!git clone https://github.com/C0untFloyd/roop-unleashed.git\n",
57
- "%cd roop-unleashed\n",
58
- "!mv config_colab.yaml config.yaml\n",
59
- "!pip install -r requirements.txt"
60
- ]
61
- },
62
- {
63
- "cell_type": "markdown",
64
- "metadata": {
65
- "id": "u_4JQiSlV9Fi"
66
- },
67
- "source": [
68
- "Running roop-unleashed with default config"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "metadata": {
75
- "id": "Is6U2huqSzLE"
76
- },
77
- "outputs": [],
78
- "source": [
79
- "!python run.py"
80
- ]
81
- },
82
- {
83
- "cell_type": "markdown",
84
- "metadata": {
85
- "id": "UdQ1VHdI8lCf"
86
- },
87
- "source": [
88
- "### Download generated images folder\n",
89
- "(only needed if you want to zip the generated output)"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": null,
95
- "metadata": {
96
- "colab": {
97
- "base_uri": "https://localhost:8080/",
98
- "height": 17
99
- },
100
- "id": "oYjWveAmw10X",
101
- "outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e"
102
- },
103
- "outputs": [
104
- {
105
- "data": {
106
- "application/javascript": "\n async function download(id, filename, size) {\n if (!google.colab.kernel.accessAllowed) {\n return;\n }\n const div = document.createElement('div');\n const label = document.createElement('label');\n label.textContent = `Downloading \"${filename}\": `;\n div.appendChild(label);\n const progress = document.createElement('progress');\n progress.max = size;\n div.appendChild(progress);\n document.body.appendChild(div);\n\n const buffers = [];\n let downloaded = 0;\n\n const channel = await google.colab.kernel.comms.open(id);\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n\n for await (const message of channel.messages) {\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n if (message.buffers) {\n for (const buffer of message.buffers) {\n buffers.push(buffer);\n downloaded += buffer.byteLength;\n progress.value = downloaded;\n }\n }\n }\n const blob = new Blob(buffers, {type: 'application/binary'});\n const a = document.createElement('a');\n a.href = window.URL.createObjectURL(blob);\n a.download = filename;\n div.appendChild(a);\n a.click();\n div.remove();\n }\n ",
107
- "text/plain": [
108
- "<IPython.core.display.Javascript object>"
109
- ]
110
- },
111
- "metadata": {},
112
- "output_type": "display_data"
113
- },
114
- {
115
- "data": {
116
- "application/javascript": "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)",
117
- "text/plain": [
118
- "<IPython.core.display.Javascript object>"
119
- ]
120
- },
121
- "metadata": {},
122
- "output_type": "display_data"
123
- }
124
- ],
125
- "source": [
126
- "import shutil\n",
127
- "import os\n",
128
- "from google.colab import files\n",
129
- "\n",
130
- "def zip_directory(directory_path, zip_path):\n",
131
- " shutil.make_archive(zip_path, 'zip', directory_path)\n",
132
- "\n",
133
- "# Set the directory path you want to download\n",
134
- "directory_path = '/content/roop-unleashed/output'\n",
135
- "\n",
136
- "# Set the zip file name\n",
137
- "zip_filename = 'fake_output.zip'\n",
138
- "\n",
139
- "# Zip the directory\n",
140
- "zip_directory(directory_path, zip_filename)\n",
141
- "\n",
142
- "# Download the zip file\n",
143
- "files.download(zip_filename+'.zip')\n"
144
- ]
145
- }
146
- ],
147
- "metadata": {
148
- "accelerator": "GPU",
149
- "colab": {
150
- "collapsed_sections": [
151
- "UdQ1VHdI8lCf"
152
- ],
153
- "gpuType": "T4",
154
- "provenance": []
155
- },
156
- "kernelspec": {
157
- "display_name": "Python 3",
158
- "name": "python3"
159
- },
160
- "language_info": {
161
- "name": "python"
162
- }
163
- },
164
- "nbformat": 4,
165
- "nbformat_minor": 0
166
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/FaceSet.py DELETED
@@ -1,20 +0,0 @@
1
- import numpy as np
2
-
3
- class FaceSet:
4
- faces = []
5
- ref_images = []
6
- embedding_average = 'None'
7
- embeddings_backup = None
8
-
9
- def __init__(self):
10
- self.faces = []
11
- self.ref_images = []
12
- self.embeddings_backup = None
13
-
14
- def AverageEmbeddings(self):
15
- if len(self.faces) > 1 and self.embeddings_backup is None:
16
- self.embeddings_backup = self.faces[0]['embedding']
17
- embeddings = [face.embedding for face in self.faces]
18
-
19
- self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
20
- # try median too?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/ProcessEntry.py DELETED
@@ -1,7 +0,0 @@
1
- class ProcessEntry:
2
- def __init__(self, filename: str, start: int, end: int, fps: float):
3
- self.filename = filename
4
- self.finalname = None
5
- self.startframe = start
6
- self.endframe = end
7
- self.fps = fps
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/ProcessMgr.py DELETED
@@ -1,911 +0,0 @@
1
- import os
2
- import cv2
3
- import numpy as np
4
- import psutil
5
-
6
- from roop.ProcessOptions import ProcessOptions
7
-
8
- from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
9
- from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array
10
- import roop.vr_util as vr
11
-
12
- from typing import Any, List, Callable
13
- from roop.typing import Frame, Face
14
- from concurrent.futures import ThreadPoolExecutor, as_completed
15
- from threading import Thread, Lock
16
- from queue import Queue
17
- from tqdm import tqdm
18
- from roop.ffmpeg_writer import FFMPEG_VideoWriter
19
- from roop.StreamWriter import StreamWriter
20
- import roop.globals
21
-
22
-
23
-
24
- # Poor man's enum to be able to compare to int
25
- class eNoFaceAction():
26
- USE_ORIGINAL_FRAME = 0
27
- RETRY_ROTATED = 1
28
- SKIP_FRAME = 2
29
- SKIP_FRAME_IF_DISSIMILAR = 3,
30
- USE_LAST_SWAPPED = 4
31
-
32
-
33
-
34
- def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
35
- queue: Queue[str] = Queue()
36
- for frame_path in temp_frame_paths:
37
- queue.put(frame_path)
38
- return queue
39
-
40
-
41
- def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
42
- queues = []
43
- for _ in range(queue_per_future):
44
- if not queue.empty():
45
- queues.append(queue.get())
46
- return queues
47
-
48
-
49
-
50
- class ProcessMgr():
51
- input_face_datas = []
52
- target_face_datas = []
53
-
54
- imagemask = None
55
-
56
- processors = []
57
- options : ProcessOptions = None
58
-
59
- num_threads = 1
60
- current_index = 0
61
- processing_threads = 1
62
- buffer_wait_time = 0.1
63
-
64
- lock = Lock()
65
-
66
- frames_queue = None
67
- processed_queue = None
68
-
69
- videowriter= None
70
- streamwriter = None
71
-
72
- progress_gradio = None
73
- total_frames = 0
74
-
75
- num_frames_no_face = 0
76
- last_swapped_frame = None
77
-
78
- output_to_file = None
79
- output_to_cam = None
80
-
81
-
82
- plugins = {
83
- 'faceswap' : 'FaceSwapInsightFace',
84
- 'mask_clip2seg' : 'Mask_Clip2Seg',
85
- 'mask_xseg' : 'Mask_XSeg',
86
- 'codeformer' : 'Enhance_CodeFormer',
87
- 'gfpgan' : 'Enhance_GFPGAN',
88
- 'dmdnet' : 'Enhance_DMDNet',
89
- 'gpen' : 'Enhance_GPEN',
90
- 'restoreformer++' : 'Enhance_RestoreFormerPPlus',
91
- 'colorizer' : 'Frame_Colorizer',
92
- 'filter_generic' : 'Frame_Filter',
93
- 'removebg' : 'Frame_Masking',
94
- 'upscale' : 'Frame_Upscale'
95
- }
96
-
97
- def __init__(self, progress):
98
- if progress is not None:
99
- self.progress_gradio = progress
100
-
101
- def reuseOldProcessor(self, name:str):
102
- for p in self.processors:
103
- if p.processorname == name:
104
- return p
105
-
106
- return None
107
-
108
-
109
- def initialize(self, input_faces, target_faces, options):
110
- self.input_face_datas = input_faces
111
- self.target_face_datas = target_faces
112
- self.num_frames_no_face = 0
113
- self.last_swapped_frame = None
114
- self.options = options
115
- devicename = get_device()
116
-
117
- roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
118
- if options.swap_mode == "all_female" or options.swap_mode == "all_male":
119
- roop.globals.g_desired_face_analysis.append("genderage")
120
- elif options.swap_mode == "all_random":
121
- # don't modify original list
122
- self.input_face_datas = input_faces.copy()
123
- shuffle_array(self.input_face_datas)
124
-
125
-
126
- for p in self.processors:
127
- newp = next((x for x in options.processors.keys() if x == p.processorname), None)
128
- if newp is None:
129
- p.Release()
130
- del p
131
-
132
- newprocessors = []
133
- for key, extoption in options.processors.items():
134
- p = self.reuseOldProcessor(key)
135
- if p is None:
136
- classname = self.plugins[key]
137
- module = 'roop.processors.' + classname
138
- p = str_to_class(module, classname)
139
- if p is not None:
140
- extoption.update({"devicename": devicename})
141
- if p.type == "swap":
142
- if self.options.swap_modelname == "InSwapper 128":
143
- extoption.update({"modelname": "inswapper_128.onnx"})
144
- elif self.options.swap_modelname == "ReSwapper 128":
145
- extoption.update({"modelname": "reswapper_128.onnx"})
146
- elif self.options.swap_modelname == "ReSwapper 256":
147
- extoption.update({"modelname": "reswapper_256.onnx"})
148
-
149
- p.Initialize(extoption)
150
- newprocessors.append(p)
151
- else:
152
- print(f"Not using {module}")
153
- self.processors = newprocessors
154
-
155
-
156
-
157
- if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
158
- self.options.imagemask = self.options.imagemask.get("layers")[0]
159
- # Get rid of alpha
160
- self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
161
- if np.any(self.options.imagemask):
162
- mo = self.input_face_datas[0].faces[0].mask_offsets
163
- self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
164
- self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
165
- self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
166
- else:
167
- self.options.imagemask = None
168
-
169
- self.options.frame_processing = False
170
- for p in self.processors:
171
- if p.type.startswith("frame_"):
172
- self.options.frame_processing = True
173
-
174
-
175
-
176
-
177
-
178
-
179
- def run_batch(self, source_files, target_files, threads:int = 1):
180
- progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
181
- self.total_frames = len(source_files)
182
- self.num_threads = threads
183
- with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
184
- with ThreadPoolExecutor(max_workers=threads) as executor:
185
- futures = []
186
- queue = create_queue(source_files)
187
- queue_per_future = max(len(source_files) // threads, 1)
188
- while not queue.empty():
189
- future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
190
- futures.append(future)
191
- for future in as_completed(futures):
192
- future.result()
193
-
194
-
195
- def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
196
- for f in current_files:
197
- if not roop.globals.processing:
198
- return
199
-
200
- # Decode the byte array into an OpenCV image
201
- temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
202
- if temp_frame is not None:
203
- if self.options.frame_processing:
204
- for p in self.processors:
205
- frame = p.Run(temp_frame)
206
- resimg = frame
207
- else:
208
- resimg = self.process_frame(temp_frame)
209
- if resimg is not None:
210
- i = source_files.index(f)
211
- # Also let numpy write the file to support utf-8/16 filenames
212
- cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
213
- if update:
214
- update()
215
-
216
-
217
-
218
- def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
219
- num_frame = 0
220
- total_num = frame_end - frame_start
221
- if frame_start > 0:
222
- cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
223
-
224
- while True and roop.globals.processing:
225
- ret, frame = cap.read()
226
- if not ret:
227
- break
228
-
229
- self.frames_queue[num_frame % num_threads].put(frame, block=True)
230
- num_frame += 1
231
- if num_frame == total_num:
232
- break
233
-
234
- for i in range(num_threads):
235
- self.frames_queue[i].put(None)
236
-
237
-
238
-
239
- def process_videoframes(self, threadindex, progress) -> None:
240
- while True:
241
- frame = self.frames_queue[threadindex].get()
242
- if frame is None:
243
- self.processing_threads -= 1
244
- self.processed_queue[threadindex].put((False, None))
245
- return
246
- else:
247
- if self.options.frame_processing:
248
- for p in self.processors:
249
- frame = p.Run(frame)
250
- resimg = frame
251
- else:
252
- resimg = self.process_frame(frame)
253
- self.processed_queue[threadindex].put((True, resimg))
254
- del frame
255
- progress()
256
-
257
-
258
- def write_frames_thread(self):
259
- nextindex = 0
260
- num_producers = self.num_threads
261
-
262
- while True:
263
- process, frame = self.processed_queue[nextindex % self.num_threads].get()
264
- nextindex += 1
265
- if frame is not None:
266
- if self.output_to_file:
267
- self.videowriter.write_frame(frame)
268
- if self.output_to_cam:
269
- self.streamwriter.WriteToStream(frame)
270
- del frame
271
- elif process == False:
272
- num_producers -= 1
273
- if num_producers < 1:
274
- return
275
-
276
-
277
-
278
- def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
279
- if len(self.processors) < 1:
280
- print("No processor defined!")
281
- return
282
-
283
- cap = cv2.VideoCapture(source_video)
284
- # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
285
- frame_count = (frame_end - frame_start) + 1
286
- width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
287
- height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
288
-
289
- processed_resolution = None
290
- for p in self.processors:
291
- if hasattr(p, 'getProcessedResolution'):
292
- processed_resolution = p.getProcessedResolution(width, height)
293
- print(f"Processed resolution: {processed_resolution}")
294
- if processed_resolution is not None:
295
- width = processed_resolution[0]
296
- height = processed_resolution[1]
297
-
298
-
299
- self.total_frames = frame_count
300
- self.num_threads = threads
301
-
302
- self.processing_threads = self.num_threads
303
- self.frames_queue = []
304
- self.processed_queue = []
305
- for _ in range(threads):
306
- self.frames_queue.append(Queue(1))
307
- self.processed_queue.append(Queue(1))
308
-
309
- self.output_to_file = output_method != "Virtual Camera"
310
- self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"
311
-
312
- if self.output_to_file:
313
- self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
314
- if self.output_to_cam:
315
- self.streamwriter = StreamWriter((width, height), int(fps))
316
-
317
- readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
318
- readthread.start()
319
-
320
- writethread = Thread(target=self.write_frames_thread)
321
- writethread.start()
322
-
323
- progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
324
- with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
325
- with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
326
- futures = []
327
-
328
- for threadindex in range(threads):
329
- future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
330
- futures.append(future)
331
-
332
- for future in as_completed(futures):
333
- future.result()
334
- # wait for the task to complete
335
- readthread.join()
336
- writethread.join()
337
- cap.release()
338
- if self.output_to_file:
339
- self.videowriter.close()
340
- if self.output_to_cam:
341
- self.streamwriter.Close()
342
-
343
- self.frames_queue.clear()
344
- self.processed_queue.clear()
345
-
346
-
347
-
348
-
349
- def update_progress(self, progress: Any = None) -> None:
350
- process = psutil.Process(os.getpid())
351
- memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
352
- progress.set_postfix({
353
- 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
354
- 'execution_threads': self.num_threads
355
- })
356
- progress.update(1)
357
- if self.progress_gradio is not None:
358
- self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
359
-
360
-
361
-
362
- def process_frame(self, frame:Frame):
363
- if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
364
- return frame
365
- temp_frame = frame.copy()
366
- num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
367
- if num_swapped > 0:
368
- if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
369
- if len(self.input_face_datas) > num_swapped:
370
- return None
371
- self.num_frames_no_face = 0
372
- self.last_swapped_frame = temp_frame.copy()
373
- return temp_frame
374
- if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
375
- if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
376
- self.num_frames_no_face += 1
377
- return self.last_swapped_frame.copy()
378
- return frame
379
-
380
- elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
381
- return frame
382
- if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
383
- #This only works with in-mem processing, as it simply skips the frame.
384
- #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
385
- #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
386
- #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
387
- return None
388
- else:
389
- return self.retry_rotated(frame)
390
-
391
- def retry_rotated(self, frame):
392
- copyframe = frame.copy()
393
- copyframe = rotate_clockwise(copyframe)
394
- temp_frame = copyframe.copy()
395
- num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
396
- if num_swapped > 0:
397
- return rotate_anticlockwise(temp_frame)
398
-
399
- copyframe = frame.copy()
400
- copyframe = rotate_anticlockwise(copyframe)
401
- temp_frame = copyframe.copy()
402
- num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
403
- if num_swapped > 0:
404
- return rotate_clockwise(temp_frame)
405
- del copyframe
406
- return frame
407
-
408
-
409
-
410
- def swap_faces(self, frame, temp_frame):
411
- num_faces_found = 0
412
-
413
- if self.options.swap_mode == "first":
414
- face = get_first_face(frame)
415
-
416
- if face is None:
417
- return num_faces_found, frame
418
-
419
- num_faces_found += 1
420
- temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
421
- del face
422
-
423
- else:
424
- faces = get_all_faces(frame)
425
- if faces is None:
426
- return num_faces_found, frame
427
-
428
- if self.options.swap_mode == "all":
429
- for face in faces:
430
- num_faces_found += 1
431
- temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
432
-
433
- elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random":
434
- for i,face in enumerate(faces):
435
- num_faces_found += 1
436
- if i < len(self.input_face_datas):
437
- temp_frame = self.process_face(i, face, temp_frame)
438
- else:
439
- break
440
-
441
- elif self.options.swap_mode == "selected":
442
- num_targetfaces = len(self.target_face_datas)
443
- use_index = num_targetfaces == 1
444
- for i,tf in enumerate(self.target_face_datas):
445
- for face in faces:
446
- if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
447
- if i < len(self.input_face_datas):
448
- if use_index:
449
- temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
450
- else:
451
- temp_frame = self.process_face(i, face, temp_frame)
452
- num_faces_found += 1
453
- if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
454
- break
455
- elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
456
- gender = 'F' if self.options.swap_mode == "all_female" else 'M'
457
- for face in faces:
458
- if face.sex == gender:
459
- num_faces_found += 1
460
- temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
461
-
462
- # might be slower but way more clean to release everything here
463
- for face in faces:
464
- del face
465
- faces.clear()
466
-
467
-
468
-
469
- if roop.globals.vr_mode and num_faces_found % 2 > 0:
470
- # stereo image, there has to be an even number of faces
471
- num_faces_found = 0
472
- return num_faces_found, frame
473
- if num_faces_found == 0:
474
- return num_faces_found, frame
475
-
476
- #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
477
-
478
- if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
479
- temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
480
- return num_faces_found, temp_frame
481
-
482
-
483
- def rotation_action(self, original_face:Face, frame:Frame):
484
- (height, width) = frame.shape[:2]
485
-
486
- bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
487
- bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
488
- horizontal_face = bounding_box_width > bounding_box_height
489
-
490
- center_x = width // 2.0
491
- start_x = original_face.bbox[0]
492
- end_x = original_face.bbox[2]
493
- bbox_center_x = start_x + (bounding_box_width // 2.0)
494
-
495
- # need to leverage the array of landmarks as decribed here:
496
- # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
497
- # basically, we should be able to check for the relative position of eyes and nose
498
- # then use that to determine which way the face is actually facing when in a horizontal position
499
- # and use that to determine the correct rotation_action
500
-
501
- forehead_x = original_face.landmark_2d_106[72][0]
502
- chin_x = original_face.landmark_2d_106[0][0]
503
-
504
- if horizontal_face:
505
- if chin_x < forehead_x:
506
- # this is someone lying down with their face like this (:
507
- return "rotate_anticlockwise"
508
- elif forehead_x < chin_x:
509
- # this is someone lying down with their face like this :)
510
- return "rotate_clockwise"
511
- if bbox_center_x >= center_x:
512
- # this is someone lying down with their face in the right hand side of the frame
513
- return "rotate_anticlockwise"
514
- if bbox_center_x < center_x:
515
- # this is someone lying down with their face in the left hand side of the frame
516
- return "rotate_clockwise"
517
-
518
- return None
519
-
520
-
521
- def auto_rotate_frame(self, original_face, frame:Frame):
522
- target_face = original_face
523
- original_frame = frame
524
-
525
- rotation_action = self.rotation_action(original_face, frame)
526
-
527
- if rotation_action == "rotate_anticlockwise":
528
- #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
529
- frame = rotate_anticlockwise(frame)
530
- elif rotation_action == "rotate_clockwise":
531
- #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
532
- frame = rotate_clockwise(frame)
533
-
534
- return target_face, frame, rotation_action
535
-
536
-
537
- def auto_unrotate_frame(self, frame:Frame, rotation_action):
538
- if rotation_action == "rotate_anticlockwise":
539
- return rotate_clockwise(frame)
540
- elif rotation_action == "rotate_clockwise":
541
- return rotate_anticlockwise(frame)
542
-
543
- return frame
544
-
545
-
546
-
547
- def process_face(self,face_index, target_face:Face, frame:Frame):
548
- from roop.face_util import align_crop
549
-
550
- enhanced_frame = None
551
- if(len(self.input_face_datas) > 0):
552
- inputface = self.input_face_datas[face_index].faces[0]
553
- else:
554
- inputface = None
555
-
556
- rotation_action = None
557
- if roop.globals.autorotate_faces:
558
- # check for sideways rotation of face
559
- rotation_action = self.rotation_action(target_face, frame)
560
- if rotation_action is not None:
561
- (startX, startY, endX, endY) = target_face["bbox"].astype("int")
562
- width = endX - startX
563
- height = endY - startY
564
- offs = int(max(width,height) * 0.25)
565
- rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
566
- if rotation_action == "rotate_anticlockwise":
567
- rotcutframe = rotate_anticlockwise(rotcutframe)
568
- elif rotation_action == "rotate_clockwise":
569
- rotcutframe = rotate_clockwise(rotcutframe)
570
- # rotate image and re-detect face to correct wonky landmarks
571
- rotface = get_first_face(rotcutframe)
572
- if rotface is None:
573
- rotation_action = None
574
- else:
575
- saved_frame = frame.copy()
576
- frame = rotcutframe
577
- target_face = rotface
578
-
579
-
580
-
581
- # if roop.globals.vr_mode:
582
- # bbox = target_face.bbox
583
- # [orig_width, orig_height, _] = frame.shape
584
-
585
- # # Convert bounding box to ints
586
- # x1, y1, x2, y2 = map(int, bbox)
587
-
588
- # # Determine the center of the bounding box
589
- # x_center = (x1 + x2) / 2
590
- # y_center = (y1 + y2) / 2
591
-
592
- # # Normalize coordinates to range [-1, 1]
593
- # x_center_normalized = x_center / (orig_width / 2) - 1
594
- # y_center_normalized = y_center / (orig_width / 2) - 1
595
-
596
- # # Convert normalized coordinates to spherical (theta, phi)
597
- # theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
598
- # phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
599
-
600
- # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
601
-
602
-
603
- """ Code ported/adapted from Facefusion which borrowed the idea from Rope:
604
- Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
605
- the desired output resolution. This works around the current resolution limitations without using enhancers.
606
- """
607
- model_output_size = self.options.swap_output_size
608
- subsample_size = max(self.options.subsample_size, model_output_size)
609
- subsample_total = subsample_size // model_output_size
610
- aligned_img, M = align_crop(frame, target_face.kps, subsample_size)
611
-
612
- fake_frame = aligned_img
613
- target_face.matrix = M
614
-
615
- for p in self.processors:
616
- if p.type == 'swap':
617
- swap_result_frames = []
618
- subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
619
- for sliced_frame in subsample_frames:
620
- for _ in range(0,self.options.num_swap_steps):
621
- sliced_frame = self.prepare_crop_frame(sliced_frame)
622
- sliced_frame = p.Run(inputface, target_face, sliced_frame)
623
- sliced_frame = self.normalize_swap_frame(sliced_frame)
624
- swap_result_frames.append(sliced_frame)
625
- fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
626
- fake_frame = fake_frame.astype(np.uint8)
627
- scale_factor = 0.0
628
- elif p.type == 'mask':
629
- fake_frame = self.process_mask(p, aligned_img, fake_frame)
630
- else:
631
- enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
632
-
633
- upscale = 512
634
- orig_width = fake_frame.shape[1]
635
- if orig_width != upscale:
636
- fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
637
- mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
638
-
639
-
640
- if enhanced_frame is None:
641
- scale_factor = int(upscale / orig_width)
642
- result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
643
- else:
644
- result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
645
-
646
- # Restore mouth before unrotating
647
- if self.options.restore_original_mouth:
648
- mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
649
- result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)
650
-
651
- if rotation_action is not None:
652
- fake_frame = self.auto_unrotate_frame(result, rotation_action)
653
- result = self.paste_simple(fake_frame, saved_frame, startX, startY)
654
-
655
- return result
656
-
657
-
658
-
659
-
660
- def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
661
- if start_x < 0:
662
- start_x = 0
663
- if start_y < 0:
664
- start_y = 0
665
- if end_x > frame.shape[1]:
666
- end_x = frame.shape[1]
667
- if end_y > frame.shape[0]:
668
- end_y = frame.shape[0]
669
- return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
670
-
671
- def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
672
- end_x = start_x + src.shape[1]
673
- end_y = start_y + src.shape[0]
674
-
675
- start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
676
- dest[start_y:end_y, start_x:end_x] = src
677
- return dest
678
-
679
- def simple_blend_with_mask(self, image1, image2, mask):
680
- # Blend the images
681
- blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
682
- return blended_image.astype(np.uint8)
683
-
684
-
685
- def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
686
- M_scale = M * scale_factor
687
- IM = cv2.invertAffineTransform(M_scale)
688
-
689
- face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
690
- # Generate white square sized as a upsk_face
691
- img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
692
-
693
- w = img_matte.shape[1]
694
- h = img_matte.shape[0]
695
-
696
- top = int(mask_offsets[0] * h)
697
- bottom = int(h - (mask_offsets[1] * h))
698
- left = int(mask_offsets[2] * w)
699
- right = int(w - (mask_offsets[3] * w))
700
- img_matte[top:bottom,left:right] = 255
701
-
702
- # Transform white square back to target_img
703
- img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
704
- ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
705
- img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
706
-
707
- img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
708
- #Normalize images to float values and reshape
709
- img_matte = img_matte.astype(np.float32)/255
710
- face_matte = face_matte.astype(np.float32)/255
711
- img_matte = np.minimum(face_matte, img_matte)
712
- if self.options.show_face_area_overlay:
713
- # Additional steps for green overlay
714
- green_overlay = np.zeros_like(target_img)
715
- green_color = [0, 255, 0] # RGB for green
716
- for i in range(3): # Apply green color where img_matte is not zero
717
- green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
718
- img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
719
- paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
720
- if upsk_face is not fake_face:
721
- fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
722
- paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
723
-
724
- # Re-assemble image
725
- paste_face = img_matte * paste_face
726
- paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
727
- if self.options.show_face_area_overlay:
728
- # Overlay the green overlay on the final image
729
- paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
730
- return paste_face.astype(np.uint8)
731
-
732
-
733
- def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
734
- # Detect the affine transformed white area
735
- mask_h_inds, mask_w_inds = np.where(img_matte==255)
736
- # Calculate the size (and diagonal size) of transformed white area width and height boundaries
737
- mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
738
- mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
739
- mask_size = int(np.sqrt(mask_h*mask_w))
740
- # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
741
- # k = max(mask_size//12, 8)
742
- k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
743
- kernel = np.ones((k,k),np.uint8)
744
- img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
745
- #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
746
- # k = max(mask_size//24, 4)
747
- k = max(mask_size//blur_amount, blur_amount//5)
748
- kernel_size = (k, k)
749
- blur_size = tuple(2*i+1 for i in kernel_size)
750
- return cv2.GaussianBlur(img_matte, blur_size, 0)
751
-
752
-
753
- def prepare_crop_frame(self, swap_frame):
754
- model_type = 'inswapper'
755
- model_mean = [0.0, 0.0, 0.0]
756
- model_standard_deviation = [1.0, 1.0, 1.0]
757
-
758
- if model_type == 'ghost':
759
- swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
760
- else:
761
- swap_frame = swap_frame[:, :, ::-1] / 255.0
762
- swap_frame = (swap_frame - model_mean) / model_standard_deviation
763
- swap_frame = swap_frame.transpose(2, 0, 1)
764
- swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
765
- return swap_frame
766
-
767
-
768
- def normalize_swap_frame(self, swap_frame):
769
- model_type = 'inswapper'
770
- swap_frame = swap_frame.transpose(1, 2, 0)
771
-
772
- if model_type == 'ghost':
773
- swap_frame = (swap_frame * 127.5 + 127.5).round()
774
- else:
775
- swap_frame = (swap_frame * 255.0).round()
776
- swap_frame = swap_frame[:, :, ::-1]
777
- return swap_frame
778
-
779
- def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
780
- subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
781
- subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
782
- return subsample_frame
783
-
784
-
785
- def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
786
- final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
787
- final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
788
- return final_frame
789
-
790
- def process_mask(self, processor, frame:Frame, target:Frame):
791
- img_mask = processor.Run(frame, self.options.masking_text)
792
- img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
793
- img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
794
-
795
- if self.options.show_face_masking:
796
- result = (1 - img_mask) * frame.astype(np.float32)
797
- return np.uint8(result)
798
-
799
-
800
- target = target.astype(np.float32)
801
- result = (1-img_mask) * target
802
- result += img_mask * frame.astype(np.float32)
803
- return np.uint8(result)
804
-
805
-
806
- # Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
807
-
808
- def create_mouth_mask(self, face: Face, frame: Frame):
809
- mouth_cutout = None
810
-
811
- landmarks = face.landmark_2d_106
812
- if landmarks is not None:
813
- # Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
814
- mouth_points = landmarks[52:71].astype(np.int32)
815
-
816
- # Add padding to mouth area
817
- min_x, min_y = np.min(mouth_points, axis=0)
818
- max_x, max_y = np.max(mouth_points, axis=0)
819
- min_x = max(0, min_x - (15*6))
820
- min_y = max(0, min_y - 22)
821
- max_x = min(frame.shape[1], max_x + (15*6))
822
- max_y = min(frame.shape[0], max_y + (90*6))
823
-
824
- # Extract the mouth area from the frame using the calculated bounding box
825
- mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
826
-
827
- return mouth_cutout, (min_x, min_y, max_x, max_y)
828
-
829
-
830
-
831
- def create_feathered_mask(self, shape, feather_amount=30):
832
- mask = np.zeros(shape[:2], dtype=np.float32)
833
- center = (shape[1] // 2, shape[0] // 2)
834
- cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount),
835
- 0, 0, 360, 1, -1)
836
- mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
837
- return mask / np.max(mask)
838
-
839
- def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
840
- min_x, min_y, max_x, max_y = mouth_box
841
- box_width = max_x - min_x
842
- box_height = max_y - min_y
843
-
844
-
845
- # Resize the mouth cutout to match the mouth box size
846
- if mouth_cutout is None or box_width is None or box_height is None:
847
- return frame
848
- try:
849
- resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
850
-
851
- # Extract the region of interest (ROI) from the target frame
852
- roi = frame[min_y:max_y, min_x:max_x]
853
-
854
- # Ensure the ROI and resized_mouth_cutout have the same shape
855
- if roi.shape != resized_mouth_cutout.shape:
856
- resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
857
-
858
- # Apply color transfer from ROI to mouth cutout
859
- color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
860
-
861
- # Create a feathered mask with increased feather amount
862
- feather_amount = min(30, box_width // 15, box_height // 15)
863
- mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
864
-
865
- # Blend the color-corrected mouth cutout with the ROI using the feathered mask
866
- mask = mask[:,:,np.newaxis] # Add channel dimension to mask
867
- blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
868
-
869
- # Place the blended result back into the frame
870
- frame[min_y:max_y, min_x:max_x] = blended
871
- except Exception as e:
872
- print(f'Error {e}')
873
- pass
874
-
875
- return frame
876
-
877
- def apply_color_transfer(self, source, target):
878
- """
879
- Apply color transfer from target to source image
880
- """
881
- source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
882
- target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
883
-
884
- source_mean, source_std = cv2.meanStdDev(source)
885
- target_mean, target_std = cv2.meanStdDev(target)
886
-
887
- # Reshape mean and std to be broadcastable
888
- source_mean = source_mean.reshape(1, 1, 3)
889
- source_std = source_std.reshape(1, 1, 3)
890
- target_mean = target_mean.reshape(1, 1, 3)
891
- target_std = target_std.reshape(1, 1, 3)
892
-
893
- # Perform the color transfer
894
- source = (source - source_mean) * (target_std / source_std) + target_mean
895
- return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
896
-
897
-
898
-
899
- def unload_models():
900
- pass
901
-
902
-
903
- def release_resources(self):
904
- for p in self.processors:
905
- p.Release()
906
- self.processors.clear()
907
- if self.videowriter is not None:
908
- self.videowriter.close()
909
- if self.streamwriter is not None:
910
- self.streamwriter.Close()
911
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/ProcessOptions.py DELETED
@@ -1,18 +0,0 @@
1
- class ProcessOptions:
2
-
3
- def __init__(self, swap_model, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, subsample_size, show_face_area, restore_original_mouth, show_mask=False):
4
- self.swap_modelname = swap_model
5
- self.swap_output_size = int(swap_model.split()[-1])
6
- self.processors = processordefines
7
- self.face_distance_threshold = face_distance
8
- self.blend_ratio = blend_ratio
9
- self.swap_mode = swap_mode
10
- self.selected_index = selected_index
11
- self.masking_text = masking_text
12
- self.imagemask = imagemask
13
- self.num_swap_steps = num_steps
14
- self.show_face_area_overlay = show_face_area
15
- self.show_face_masking = show_mask
16
- self.subsample_size = subsample_size
17
- self.restore_original_mouth = restore_original_mouth
18
- self.max_num_reuse_frame = 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/StreamWriter.py DELETED
@@ -1,60 +0,0 @@
1
- import threading
2
- import time
3
- import pyvirtualcam
4
-
5
-
6
- class StreamWriter():
7
- FPS = 30
8
- VCam = None
9
- Active = False
10
- THREAD_LOCK_STREAM = threading.Lock()
11
- time_last_process = None
12
- timespan_min = 0.0
13
-
14
- def __enter__(self):
15
- return self
16
-
17
- def __exit__(self, exc_type, exc_value, traceback):
18
- self.Close()
19
-
20
- def __init__(self, size, fps):
21
- self.time_last_process = time.perf_counter()
22
- self.FPS = fps
23
- self.timespan_min = 1.0 / fps
24
- print('Detecting virtual cam devices')
25
- self.VCam = pyvirtualcam.Camera(width=size[0], height=size[1], fps=fps, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
26
- if self.VCam is None:
27
- print("No virtual camera found!")
28
- return
29
- print(f'Using virtual camera: {self.VCam.device}')
30
- print(f'Using {self.VCam.native_fmt}')
31
- self.Active = True
32
-
33
-
34
- def LimitFrames(self):
35
- while True:
36
- current_time = time.perf_counter()
37
- time_passed = current_time - self.time_last_process
38
- if time_passed >= self.timespan_min:
39
- break
40
-
41
- # First version used a queue and threading. Surprisingly this
42
- # totally simple, blocking version is 10 times faster!
43
- def WriteToStream(self, frame):
44
- if self.VCam is None:
45
- return
46
- with self.THREAD_LOCK_STREAM:
47
- self.LimitFrames()
48
- self.VCam.send(frame)
49
- self.time_last_process = time.perf_counter()
50
-
51
-
52
- def Close(self):
53
- self.Active = False
54
- if self.VCam is None:
55
- self.VCam.close()
56
- self.VCam = None
57
-
58
-
59
-
60
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/__init__.py DELETED
File without changes
roop-unleashed-main/roop/capturer.py DELETED
@@ -1,46 +0,0 @@
1
- from typing import Optional
2
- import cv2
3
- import numpy as np
4
-
5
- from roop.typing import Frame
6
-
7
- current_video_path = None
8
- current_frame_total = 0
9
- current_capture = None
10
-
11
- def get_image_frame(filename: str):
12
- try:
13
- return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
14
- except:
15
- print(f"Exception reading {filename}")
16
- return None
17
-
18
-
19
- def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]:
20
- global current_video_path, current_capture, current_frame_total
21
-
22
- if video_path != current_video_path:
23
- release_video()
24
- current_capture = cv2.VideoCapture(video_path)
25
- current_video_path = video_path
26
- current_frame_total = current_capture.get(cv2.CAP_PROP_FRAME_COUNT)
27
-
28
- current_capture.set(cv2.CAP_PROP_POS_FRAMES, min(current_frame_total, frame_number - 1))
29
- has_frame, frame = current_capture.read()
30
- if has_frame:
31
- return frame
32
- return None
33
-
34
- def release_video():
35
- global current_capture
36
-
37
- if current_capture is not None:
38
- current_capture.release()
39
- current_capture = None
40
-
41
-
42
- def get_video_frame_total(video_path: str) -> int:
43
- capture = cv2.VideoCapture(video_path)
44
- video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
45
- capture.release()
46
- return video_frame_total
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/core.py DELETED
@@ -1,406 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- import os
4
- import sys
5
- import shutil
6
- # single thread doubles cuda performance - needs to be set before torch import
7
- if any(arg.startswith('--execution-provider') for arg in sys.argv):
8
- os.environ['OMP_NUM_THREADS'] = '1'
9
-
10
- import warnings
11
- from typing import List
12
- import platform
13
- import signal
14
- import torch
15
- import onnxruntime
16
- import pathlib
17
- import argparse
18
-
19
- from time import time
20
-
21
- import roop.globals
22
- import roop.metadata
23
- import roop.utilities as util
24
- import roop.util_ffmpeg as ffmpeg
25
- import ui.main as main
26
- from settings import Settings
27
- from roop.face_util import extract_face_images
28
- from roop.ProcessEntry import ProcessEntry
29
- from roop.ProcessMgr import ProcessMgr
30
- from roop.ProcessOptions import ProcessOptions
31
- from roop.capturer import get_video_frame_total, release_video
32
-
33
-
34
- clip_text = None
35
-
36
- call_display_ui = None
37
-
38
- process_mgr = None
39
-
40
-
41
- if 'ROCMExecutionProvider' in roop.globals.execution_providers:
42
- del torch
43
-
44
- warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
45
- warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
46
-
47
-
48
- def parse_args() -> None:
49
- signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
50
- roop.globals.headless = False
51
-
52
- program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
53
- program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False)
54
- program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0)
55
- roop.globals.startup_args = program.parse_args()
56
- # Always enable all processors when using GUI
57
- roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
58
-
59
-
60
- def encode_execution_providers(execution_providers: List[str]) -> List[str]:
61
- return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
62
-
63
-
64
- def decode_execution_providers(execution_providers: List[str]) -> List[str]:
65
- list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
66
- if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
67
-
68
- try:
69
- for i in range(len(list_providers)):
70
- if list_providers[i] == 'CUDAExecutionProvider':
71
- list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id})
72
- torch.cuda.set_device(roop.globals.cuda_device_id)
73
- break
74
- except:
75
- pass
76
-
77
- return list_providers
78
-
79
-
80
-
81
- def suggest_max_memory() -> int:
82
- if platform.system().lower() == 'darwin':
83
- return 4
84
- return 16
85
-
86
-
87
- def suggest_execution_providers() -> List[str]:
88
- return encode_execution_providers(onnxruntime.get_available_providers())
89
-
90
-
91
- def suggest_execution_threads() -> int:
92
- if 'DmlExecutionProvider' in roop.globals.execution_providers:
93
- return 1
94
- if 'ROCMExecutionProvider' in roop.globals.execution_providers:
95
- return 1
96
- return 8
97
-
98
-
99
- def limit_resources() -> None:
100
- # limit memory usage
101
- if roop.globals.max_memory:
102
- memory = roop.globals.max_memory * 1024 ** 3
103
- if platform.system().lower() == 'darwin':
104
- memory = roop.globals.max_memory * 1024 ** 6
105
- if platform.system().lower() == 'windows':
106
- import ctypes
107
- kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
108
- kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
109
- else:
110
- import resource
111
- resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
112
-
113
-
114
-
115
- def release_resources() -> None:
116
- import gc
117
- global process_mgr
118
-
119
- if process_mgr is not None:
120
- process_mgr.release_resources()
121
- process_mgr = None
122
-
123
- gc.collect()
124
- # if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
125
- # with torch.cuda.device('cuda'):
126
- # torch.cuda.empty_cache()
127
- # torch.cuda.ipc_collect()
128
-
129
-
130
- def pre_check() -> bool:
131
- if sys.version_info < (3, 9):
132
- update_status('Python version is not supported - please upgrade to 3.9 or higher.')
133
- return False
134
-
135
- download_directory_path = util.resolve_relative_path('../models')
136
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
137
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_128.onnx'])
138
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_256.onnx'])
139
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
140
- util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
141
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx'])
142
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx'])
143
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx'])
144
- download_directory_path = util.resolve_relative_path('../models/CLIP')
145
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
146
- download_directory_path = util.resolve_relative_path('../models/CodeFormer')
147
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
148
- download_directory_path = util.resolve_relative_path('../models/Frame')
149
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx'])
150
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx'])
151
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx'])
152
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx'])
153
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx'])
154
- util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx'])
155
-
156
- if not shutil.which('ffmpeg'):
157
- update_status('ffmpeg is not installed.')
158
- return True
159
-
160
- def set_display_ui(function):
161
- global call_display_ui
162
-
163
- call_display_ui = function
164
-
165
-
166
- def update_status(message: str) -> None:
167
- global call_display_ui
168
-
169
- print(message)
170
- if call_display_ui is not None:
171
- call_display_ui(message)
172
-
173
-
174
-
175
-
176
- def start() -> None:
177
- if roop.globals.headless:
178
- print('Headless mode currently unsupported - starting UI!')
179
- # faces = extract_face_images(roop.globals.source_path, (False, 0))
180
- # roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
181
- # faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
182
- # roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
183
- # if 'face_enhancer' in roop.globals.frame_processors:
184
- # roop.globals.selected_enhancer = 'GFPGAN'
185
-
186
- batch_process_regular(None, False, None)
187
-
188
-
189
- def get_processing_plugins(masking_engine):
190
- processors = { "faceswap": {}}
191
- if masking_engine is not None:
192
- processors.update({masking_engine: {}})
193
-
194
- if roop.globals.selected_enhancer == 'GFPGAN':
195
- processors.update({"gfpgan": {}})
196
- elif roop.globals.selected_enhancer == 'Codeformer':
197
- processors.update({"codeformer": {}})
198
- elif roop.globals.selected_enhancer == 'DMDNet':
199
- processors.update({"dmdnet": {}})
200
- elif roop.globals.selected_enhancer == 'GPEN':
201
- processors.update({"gpen": {}})
202
- elif roop.globals.selected_enhancer == 'Restoreformer++':
203
- processors.update({"restoreformer++": {}})
204
- return processors
205
-
206
-
207
- def live_swap(frame, options):
208
- global process_mgr
209
-
210
- if frame is None:
211
- return frame
212
-
213
- if process_mgr is None:
214
- process_mgr = ProcessMgr(None)
215
-
216
- # if len(roop.globals.INPUT_FACESETS) <= selected_index:
217
- # selected_index = 0
218
- process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
219
- newframe = process_mgr.process_frame(frame)
220
- if newframe is None:
221
- return frame
222
- return newframe
223
-
224
-
225
- def batch_process_regular(swap_model, output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None:
226
- global clip_text, process_mgr
227
-
228
- release_resources()
229
- limit_resources()
230
- if process_mgr is None:
231
- process_mgr = ProcessMgr(progress)
232
- mask = imagemask["layers"][0] if imagemask is not None else None
233
- if len(roop.globals.INPUT_FACESETS) <= selected_index:
234
- selected_index = 0
235
- options = ProcessOptions(swap_model, get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
236
- roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps,
237
- roop.globals.subsample_size, False, restore_original_mouth)
238
- process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
239
- batch_process(output_method, files, use_new_method)
240
- return
241
-
242
- def batch_process_with_options(files:list[ProcessEntry], options, progress):
243
- global clip_text, process_mgr
244
-
245
- release_resources()
246
- limit_resources()
247
- if process_mgr is None:
248
- process_mgr = ProcessMgr(progress)
249
- process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
250
- roop.globals.keep_frames = False
251
- roop.globals.wait_after_extraction = False
252
- roop.globals.skip_audio = False
253
- batch_process("Files", files, True)
254
-
255
-
256
-
257
- def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None:
258
- global clip_text, process_mgr
259
-
260
- roop.globals.processing = True
261
-
262
- # limit threads for some providers
263
- max_threads = suggest_execution_threads()
264
- if max_threads == 1:
265
- roop.globals.execution_threads = 1
266
-
267
- imagefiles:list[ProcessEntry] = []
268
- videofiles:list[ProcessEntry] = []
269
-
270
- update_status('Sorting videos/images')
271
-
272
-
273
- for index, f in enumerate(files):
274
- fullname = f.filename
275
- if util.has_image_extension(fullname):
276
- destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
277
- destination = util.replace_template(destination, index=index)
278
- pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
279
- f.finalname = destination
280
- imagefiles.append(f)
281
-
282
- elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
283
- destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
284
- f.finalname = destination
285
- videofiles.append(f)
286
-
287
-
288
-
289
- if(len(imagefiles) > 0):
290
- update_status('Processing image(s)')
291
- origimages = []
292
- fakeimages = []
293
- for f in imagefiles:
294
- origimages.append(f.filename)
295
- fakeimages.append(f.finalname)
296
-
297
- process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
298
- origimages.clear()
299
- fakeimages.clear()
300
-
301
- if(len(videofiles) > 0):
302
- for index,v in enumerate(videofiles):
303
- if not roop.globals.processing:
304
- end_processing('Processing stopped!')
305
- return
306
- fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
307
- if v.endframe == 0:
308
- v.endframe = get_video_frame_total(v.filename)
309
-
310
- is_streaming_only = output_method == "Virtual Camera"
311
- if is_streaming_only == False:
312
- update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
313
-
314
- start_processing = time()
315
- if is_streaming_only == False and roop.globals.keep_frames or not use_new_method:
316
- util.create_temp(v.filename)
317
- update_status('Extracting frames...')
318
- ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
319
- if not roop.globals.processing:
320
- end_processing('Processing stopped!')
321
- return
322
-
323
- temp_frame_paths = util.get_temp_frame_paths(v.filename)
324
- process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
325
- if not roop.globals.processing:
326
- end_processing('Processing stopped!')
327
- return
328
- if roop.globals.wait_after_extraction:
329
- extract_path = os.path.dirname(temp_frame_paths[0])
330
- util.open_folder(extract_path)
331
- input("Press any key to continue...")
332
- print("Resorting frames to create video")
333
- util.sort_rename_frames(extract_path)
334
-
335
- ffmpeg.create_video(v.filename, v.finalname, fps)
336
- if not roop.globals.keep_frames:
337
- util.delete_temp_frames(temp_frame_paths[0])
338
- else:
339
- if util.has_extension(v.filename, ['gif']):
340
- skip_audio = True
341
- else:
342
- skip_audio = roop.globals.skip_audio
343
- process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads)
344
-
345
- if not roop.globals.processing:
346
- end_processing('Processing stopped!')
347
- return
348
-
349
- video_file_name = v.finalname
350
- if os.path.isfile(video_file_name):
351
- destination = ''
352
- if util.has_extension(v.filename, ['gif']):
353
- gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
354
- destination = util.replace_template(gifname, index=index)
355
- pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
356
-
357
- update_status('Creating final GIF')
358
- ffmpeg.create_gif_from_video(video_file_name, destination)
359
- if os.path.isfile(destination):
360
- os.remove(video_file_name)
361
- else:
362
- skip_audio = roop.globals.skip_audio
363
- destination = util.replace_template(video_file_name, index=index)
364
- pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
365
-
366
- if not skip_audio:
367
- ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
368
- if os.path.isfile(destination):
369
- os.remove(video_file_name)
370
- else:
371
- shutil.move(video_file_name, destination)
372
-
373
- elif is_streaming_only == False:
374
- update_status(f'Failed processing {os.path.basename(v.finalname)}!')
375
- elapsed_time = time() - start_processing
376
- average_fps = (v.endframe - v.startframe) / elapsed_time
377
- update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s')
378
- end_processing('Finished')
379
-
380
-
381
- def end_processing(msg:str):
382
- update_status(msg)
383
- roop.globals.target_folder_path = None
384
- release_resources()
385
-
386
-
387
- def destroy() -> None:
388
- if roop.globals.target_path:
389
- util.clean_temp(roop.globals.target_path)
390
- release_resources()
391
- sys.exit()
392
-
393
-
394
- def run() -> None:
395
- parse_args()
396
- if not pre_check():
397
- return
398
- roop.globals.CFG = Settings('config.yaml')
399
- roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id
400
- roop.globals.execution_threads = roop.globals.CFG.max_threads
401
- roop.globals.video_encoder = roop.globals.CFG.output_video_codec
402
- roop.globals.video_quality = roop.globals.CFG.video_quality
403
- roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
404
- if roop.globals.startup_args.server_share:
405
- roop.globals.CFG.server_share = True
406
- main.run()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/face_util.py DELETED
@@ -1,338 +0,0 @@
1
- import threading
2
- from typing import Any
3
- import insightface
4
-
5
- import roop.globals
6
- from roop.typing import Frame, Face
7
-
8
- import cv2
9
- import numpy as np
10
- from skimage import transform as trans
11
- from roop.capturer import get_video_frame
12
- from roop.utilities import resolve_relative_path, conditional_thread_semaphore
13
-
14
- FACE_ANALYSER = None
15
- #THREAD_LOCK_ANALYSER = threading.Lock()
16
- #THREAD_LOCK_SWAPPER = threading.Lock()
17
- FACE_SWAPPER = None
18
-
19
-
20
- def get_face_analyser() -> Any:
21
- global FACE_ANALYSER
22
-
23
- with conditional_thread_semaphore():
24
- if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis:
25
- model_path = resolve_relative_path('..')
26
- # removed genderage
27
- allowed_modules = roop.globals.g_desired_face_analysis
28
- roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis
29
- if roop.globals.CFG.force_cpu:
30
- print("Forcing CPU for Face Analysis")
31
- FACE_ANALYSER = insightface.app.FaceAnalysis(
32
- name="buffalo_l",
33
- root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules
34
- )
35
- else:
36
- FACE_ANALYSER = insightface.app.FaceAnalysis(
37
- name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules
38
- )
39
- FACE_ANALYSER.prepare(
40
- ctx_id=0,
41
- det_size=(640, 640) if roop.globals.default_det_size else (320, 320),
42
- )
43
- return FACE_ANALYSER
44
-
45
-
46
- def get_first_face(frame: Frame) -> Any:
47
- try:
48
- faces = get_face_analyser().get(frame)
49
- return min(faces, key=lambda x: x.bbox[0])
50
- # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
51
- except:
52
- return None
53
-
54
-
55
- def get_all_faces(frame: Frame) -> Any:
56
- try:
57
- faces = get_face_analyser().get(frame)
58
- return sorted(faces, key=lambda x: x.bbox[0])
59
- except:
60
- return None
61
-
62
-
63
- def extract_face_images(source_filename, video_info, extra_padding=-1.0):
64
- face_data = []
65
- source_image = None
66
-
67
- if video_info[0]:
68
- frame = get_video_frame(source_filename, video_info[1])
69
- if frame is not None:
70
- source_image = frame
71
- else:
72
- return face_data
73
- else:
74
- source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR)
75
-
76
- faces = get_all_faces(source_image)
77
- if faces is None:
78
- return face_data
79
-
80
- i = 0
81
- for face in faces:
82
- (startX, startY, endX, endY) = face["bbox"].astype("int")
83
- startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
84
- if extra_padding > 0.0:
85
- if source_image.shape[:2] == (512, 512):
86
- i += 1
87
- face_data.append([face, source_image])
88
- continue
89
-
90
- found = False
91
- for i in range(1, 3):
92
- (startX, startY, endX, endY) = face["bbox"].astype("int")
93
- startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
94
- cutout_padding = extra_padding
95
- # top needs extra room for detection
96
- padding = int((endY - startY) * cutout_padding)
97
- oldY = startY
98
- startY -= padding
99
-
100
- factor = 0.25 if i == 1 else 0.5
101
- cutout_padding = factor
102
- padding = int((endY - oldY) * cutout_padding)
103
- endY += padding
104
- padding = int((endX - startX) * cutout_padding)
105
- startX -= padding
106
- endX += padding
107
- startX, endX, startY, endY = clamp_cut_values(
108
- startX, endX, startY, endY, source_image
109
- )
110
- face_temp = source_image[startY:endY, startX:endX]
111
- face_temp = resize_image_keep_content(face_temp)
112
- testfaces = get_all_faces(face_temp)
113
- if testfaces is not None and len(testfaces) > 0:
114
- i += 1
115
- face_data.append([testfaces[0], face_temp])
116
- found = True
117
- break
118
-
119
- if not found:
120
- print("No face found after resizing, this shouldn't happen!")
121
- continue
122
-
123
- face_temp = source_image[startY:endY, startX:endX]
124
- if face_temp.size < 1:
125
- continue
126
-
127
- i += 1
128
- face_data.append([face, face_temp])
129
- return face_data
130
-
131
-
132
- def clamp_cut_values(startX, endX, startY, endY, image):
133
- if startX < 0:
134
- startX = 0
135
- if endX > image.shape[1]:
136
- endX = image.shape[1]
137
- if startY < 0:
138
- startY = 0
139
- if endY > image.shape[0]:
140
- endY = image.shape[0]
141
- return startX, endX, startY, endY
142
-
143
-
144
-
145
- def face_offset_top(face: Face, offset):
146
- face["bbox"][1] += offset
147
- face["bbox"][3] += offset
148
- lm106 = face.landmark_2d_106
149
- add = np.full_like(lm106, [0, offset])
150
- face["landmark_2d_106"] = lm106 + add
151
- return face
152
-
153
-
154
- def resize_image_keep_content(image, new_width=512, new_height=512):
155
- dim = None
156
- (h, w) = image.shape[:2]
157
- if h > w:
158
- r = new_height / float(h)
159
- dim = (int(w * r), new_height)
160
- else:
161
- # Calculate the ratio of the width and construct the dimensions
162
- r = new_width / float(w)
163
- dim = (new_width, int(h * r))
164
- image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
165
- (h, w) = image.shape[:2]
166
- if h == new_height and w == new_width:
167
- return image
168
- resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype)
169
- offs = (new_width - w) if h == new_height else (new_height - h)
170
- startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
171
- offs = int(offs // 2)
172
-
173
- if h == new_height:
174
- resize_img[0:new_height, startoffs : new_width - offs] = image
175
- else:
176
- resize_img[startoffs : new_height - offs, 0:new_width] = image
177
- return resize_img
178
-
179
-
180
- def rotate_image_90(image, rotate=True):
181
- if rotate:
182
- return np.rot90(image)
183
- else:
184
- return np.rot90(image, 1, (1, 0))
185
-
186
-
187
- def rotate_anticlockwise(frame):
188
- return rotate_image_90(frame)
189
-
190
-
191
- def rotate_clockwise(frame):
192
- return rotate_image_90(frame, False)
193
-
194
-
195
- def rotate_image_180(image):
196
- return np.flip(image, 0)
197
-
198
-
199
- # alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
200
-
201
- arcface_dst = np.array(
202
- [
203
- [38.2946, 51.6963],
204
- [73.5318, 51.5014],
205
- [56.0252, 71.7366],
206
- [41.5493, 92.3655],
207
- [70.7299, 92.2041],
208
- ],
209
- dtype=np.float32,
210
- )
211
-
212
-
213
- """ def estimate_norm(lmk, image_size=112):
214
- assert lmk.shape == (5, 2)
215
- if image_size % 112 == 0:
216
- ratio = float(image_size) / 112.0
217
- diff_x = 0
218
- elif image_size % 128 == 0:
219
- ratio = float(image_size) / 128.0
220
- diff_x = 8.0 * ratio
221
- elif image_size % 512 == 0:
222
- ratio = float(image_size) / 512.0
223
- diff_x = 32.0 * ratio
224
-
225
- dst = arcface_dst * ratio
226
- dst[:, 0] += diff_x
227
- tform = trans.SimilarityTransform()
228
- tform.estimate(lmk, dst)
229
- M = tform.params[0:2, :]
230
- return M
231
- """
232
-
233
- def estimate_norm(lmk, image_size=112):
234
- if image_size%112==0:
235
- ratio = float(image_size)/112.0
236
- diff_x = 0
237
- else:
238
- ratio = float(image_size)/128.0
239
- diff_x = 8.0*ratio
240
- dst = arcface_dst * ratio
241
- dst[:,0] += diff_x
242
-
243
- if image_size == 160:
244
- dst[:,0] += 0.1
245
- dst[:,1] += 0.1
246
- elif image_size == 256:
247
- dst[:,0] += 0.5
248
- dst[:,1] += 0.5
249
- elif image_size == 320:
250
- dst[:,0] += 0.75
251
- dst[:,1] += 0.75
252
- elif image_size == 512:
253
- dst[:,0] += 1.5
254
- dst[:,1] += 1.5
255
-
256
- tform = trans.SimilarityTransform()
257
- tform.estimate(lmk, dst)
258
- M = tform.params[0:2, :]
259
- return M
260
-
261
-
262
-
263
- # aligned, M = norm_crop2(f[1], face.kps, 512)
264
- def align_crop(img, landmark, image_size=112, mode="arcface"):
265
- M = estimate_norm(landmark, image_size)
266
- warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
267
- return warped, M
268
-
269
-
270
- def square_crop(im, S):
271
- if im.shape[0] > im.shape[1]:
272
- height = S
273
- width = int(float(im.shape[1]) / im.shape[0] * S)
274
- scale = float(S) / im.shape[0]
275
- else:
276
- width = S
277
- height = int(float(im.shape[0]) / im.shape[1] * S)
278
- scale = float(S) / im.shape[1]
279
- resized_im = cv2.resize(im, (width, height))
280
- det_im = np.zeros((S, S, 3), dtype=np.uint8)
281
- det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
282
- return det_im, scale
283
-
284
-
285
- def transform(data, center, output_size, scale, rotation):
286
- scale_ratio = scale
287
- rot = float(rotation) * np.pi / 180.0
288
- # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
289
- t1 = trans.SimilarityTransform(scale=scale_ratio)
290
- cx = center[0] * scale_ratio
291
- cy = center[1] * scale_ratio
292
- t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
293
- t3 = trans.SimilarityTransform(rotation=rot)
294
- t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
295
- t = t1 + t2 + t3 + t4
296
- M = t.params[0:2]
297
- cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
298
- return cropped, M
299
-
300
-
301
- def trans_points2d(pts, M):
302
- new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
303
- for i in range(pts.shape[0]):
304
- pt = pts[i]
305
- new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
306
- new_pt = np.dot(M, new_pt)
307
- # print('new_pt', new_pt.shape, new_pt)
308
- new_pts[i] = new_pt[0:2]
309
-
310
- return new_pts
311
-
312
-
313
- def trans_points3d(pts, M):
314
- scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
315
- # print(scale)
316
- new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
317
- for i in range(pts.shape[0]):
318
- pt = pts[i]
319
- new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
320
- new_pt = np.dot(M, new_pt)
321
- # print('new_pt', new_pt.shape, new_pt)
322
- new_pts[i][0:2] = new_pt[0:2]
323
- new_pts[i][2] = pts[i][2] * scale
324
-
325
- return new_pts
326
-
327
-
328
- def trans_points(pts, M):
329
- if pts.shape[1] == 2:
330
- return trans_points2d(pts, M)
331
- else:
332
- return trans_points3d(pts, M)
333
-
334
- def create_blank_image(width, height):
335
- img = np.zeros((height, width, 4), dtype=np.uint8)
336
- img[:] = [0,0,0,0]
337
- return img
338
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/ffmpeg_writer.py DELETED
@@ -1,218 +0,0 @@
1
- """
2
- FFMPEG_Writer - write set of frames to video file
3
-
4
- original from
5
- https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py
6
-
7
- removed unnecessary dependencies
8
-
9
- The MIT License (MIT)
10
-
11
- Copyright (c) 2015 Zulko
12
- Copyright (c) 2023 Janvarev Vladislav
13
- """
14
-
15
- import os
16
- import subprocess as sp
17
-
18
- PIPE = -1
19
- STDOUT = -2
20
- DEVNULL = -3
21
-
22
- FFMPEG_BINARY = "ffmpeg"
23
-
24
- class FFMPEG_VideoWriter:
25
- """ A class for FFMPEG-based video writing.
26
-
27
- A class to write videos using ffmpeg. ffmpeg will write in a large
28
- choice of formats.
29
-
30
- Parameters
31
- -----------
32
-
33
- filename
34
- Any filename like 'video.mp4' etc. but if you want to avoid
35
- complications it is recommended to use the generic extension
36
- '.avi' for all your videos.
37
-
38
- size
39
- Size (width,height) of the output video in pixels.
40
-
41
- fps
42
- Frames per second in the output video file.
43
-
44
- codec
45
- FFMPEG codec. It seems that in terms of quality the hierarchy is
46
- 'rawvideo' = 'png' > 'mpeg4' > 'libx264'
47
- 'png' manages the same lossless quality as 'rawvideo' but yields
48
- smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list
49
- of accepted codecs.
50
-
51
- Note for default 'libx264': by default the pixel format yuv420p
52
- is used. If the video dimensions are not both even (e.g. 720x405)
53
- another pixel format is used, and this can cause problem in some
54
- video readers.
55
-
56
- audiofile
57
- Optional: The name of an audio file that will be incorporated
58
- to the video.
59
-
60
- preset
61
- Sets the time that FFMPEG will take to compress the video. The slower,
62
- the better the compression rate. Possibilities are: ultrafast,superfast,
63
- veryfast, faster, fast, medium (default), slow, slower, veryslow,
64
- placebo.
65
-
66
- bitrate
67
- Only relevant for codecs which accept a bitrate. "5000k" offers
68
- nice results in general.
69
-
70
- """
71
-
72
- def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None,
73
- preset="medium", bitrate=None,
74
- logfile=None, threads=None, ffmpeg_params=None):
75
-
76
- if logfile is None:
77
- logfile = sp.PIPE
78
-
79
- self.filename = filename
80
- self.codec = codec
81
- self.ext = self.filename.split(".")[-1]
82
- w = size[0] - 1 if size[0] % 2 != 0 else size[0]
83
- h = size[1] - 1 if size[1] % 2 != 0 else size[1]
84
-
85
-
86
- # order is important
87
- cmd = [
88
- FFMPEG_BINARY,
89
- '-hide_banner',
90
- '-hwaccel', 'auto',
91
- '-y',
92
- '-loglevel', 'error' if logfile == sp.PIPE else 'info',
93
- '-f', 'rawvideo',
94
- '-vcodec', 'rawvideo',
95
- '-s', '%dx%d' % (size[0], size[1]),
96
- #'-pix_fmt', 'rgba' if withmask else 'rgb24',
97
- '-pix_fmt', 'bgr24',
98
- '-r', str(fps),
99
- '-an', '-i', '-'
100
- ]
101
-
102
- if audiofile is not None:
103
- cmd.extend([
104
- '-i', audiofile,
105
- '-acodec', 'copy'
106
- ])
107
-
108
- cmd.extend([
109
- '-vcodec', codec,
110
- '-crf', str(crf)
111
- #'-preset', preset,
112
- ])
113
- if ffmpeg_params is not None:
114
- cmd.extend(ffmpeg_params)
115
- if bitrate is not None:
116
- cmd.extend([
117
- '-b', bitrate
118
- ])
119
-
120
- # scale to a resolution divisible by 2 if not even
121
- cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1'])
122
-
123
- if threads is not None:
124
- cmd.extend(["-threads", str(threads)])
125
-
126
- cmd.extend([
127
- '-pix_fmt', 'yuv420p',
128
-
129
- ])
130
- cmd.extend([
131
- filename
132
- ])
133
-
134
- test = str(cmd)
135
- print(test)
136
-
137
- popen_params = {"stdout": DEVNULL,
138
- "stderr": logfile,
139
- "stdin": sp.PIPE}
140
-
141
- # This was added so that no extra unwanted window opens on windows
142
- # when the child process is created
143
- if os.name == "nt":
144
- popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW
145
-
146
- self.proc = sp.Popen(cmd, **popen_params)
147
-
148
-
149
- def write_frame(self, img_array):
150
- """ Writes one frame in the file."""
151
- try:
152
- #if PY3:
153
- self.proc.stdin.write(img_array.tobytes())
154
- # else:
155
- # self.proc.stdin.write(img_array.tostring())
156
- except IOError as err:
157
- _, ffmpeg_error = self.proc.communicate()
158
- error = (str(err) + ("\n\nroop unleashed error: FFMPEG encountered "
159
- "the following error while writing file %s:"
160
- "\n\n %s" % (self.filename, str(ffmpeg_error))))
161
-
162
- if b"Unknown encoder" in ffmpeg_error:
163
-
164
- error = error+("\n\nThe video export "
165
- "failed because FFMPEG didn't find the specified "
166
- "codec for video encoding (%s). Please install "
167
- "this codec or change the codec when calling "
168
- "write_videofile. For instance:\n"
169
- " >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec)
170
-
171
- elif b"incorrect codec parameters ?" in ffmpeg_error:
172
-
173
- error = error+("\n\nThe video export "
174
- "failed, possibly because the codec specified for "
175
- "the video (%s) is not compatible with the given "
176
- "extension (%s). Please specify a valid 'codec' "
177
- "argument in write_videofile. This would be 'libx264' "
178
- "or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. "
179
- "Another possible reason is that the audio codec was not "
180
- "compatible with the video codec. For instance the video "
181
- "extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a"
182
- "video codec."
183
- )%(self.codec, self.ext)
184
-
185
- elif b"encoder setup failed" in ffmpeg_error:
186
-
187
- error = error+("\n\nThe video export "
188
- "failed, possibly because the bitrate you specified "
189
- "was too high or too low for the video codec.")
190
-
191
- elif b"Invalid encoder type" in ffmpeg_error:
192
-
193
- error = error + ("\n\nThe video export failed because the codec "
194
- "or file extension you provided is not a video")
195
-
196
-
197
- raise IOError(error)
198
-
199
- def close(self):
200
- if self.proc:
201
- self.proc.stdin.close()
202
- if self.proc.stderr is not None:
203
- self.proc.stderr.close()
204
- self.proc.wait()
205
-
206
- self.proc = None
207
-
208
- # Support the Context Manager protocol, to ensure that resources are cleaned up.
209
-
210
- def __enter__(self):
211
- return self
212
-
213
- def __exit__(self, exc_type, exc_value, traceback):
214
- self.close()
215
-
216
-
217
-
218
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/globals.py DELETED
@@ -1,56 +0,0 @@
1
- from settings import Settings
2
- from typing import List
3
-
4
- source_path = None
5
- target_path = None
6
- output_path = None
7
- target_folder_path = None
8
- startup_args = None
9
-
10
- cuda_device_id = 0
11
- frame_processors: List[str] = []
12
- keep_fps = None
13
- keep_frames = None
14
- autorotate_faces = None
15
- vr_mode = None
16
- skip_audio = None
17
- wait_after_extraction = None
18
- many_faces = None
19
- use_batch = None
20
- source_face_index = 0
21
- target_face_index = 0
22
- face_position = None
23
- video_encoder = None
24
- video_quality = None
25
- max_memory = None
26
- execution_providers: List[str] = []
27
- execution_threads = None
28
- headless = None
29
- log_level = 'error'
30
- selected_enhancer = None
31
- subsample_size = 128
32
- face_swap_mode = None
33
- blend_ratio = 0.5
34
- distance_threshold = 0.65
35
- default_det_size = True
36
-
37
- no_face_action = 0
38
-
39
- processing = False
40
-
41
- g_current_face_analysis = None
42
- g_desired_face_analysis = None
43
-
44
- FACE_ENHANCER = None
45
-
46
- INPUT_FACESETS = []
47
- TARGET_FACES = []
48
-
49
-
50
- IMAGE_CHAIN_PROCESSOR = None
51
- VIDEO_CHAIN_PROCESSOR = None
52
- BATCH_IMAGE_CHAIN_PROCESSOR = None
53
-
54
- CFG: Settings = None
55
-
56
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/metadata.py DELETED
@@ -1,2 +0,0 @@
1
- name = 'roop unleashed'
2
- version = '4.4.0'
 
 
 
roop-unleashed-main/roop/processors/Enhance_CodeFormer.py DELETED
@@ -1,71 +0,0 @@
1
- from typing import Any, List, Callable
2
- import cv2
3
- import numpy as np
4
- import onnxruntime
5
- import roop.globals
6
-
7
- from roop.typing import Face, Frame, FaceSet
8
- from roop.utilities import resolve_relative_path
9
-
10
- class Enhance_CodeFormer():
11
- model_codeformer = None
12
-
13
- plugin_options:dict = None
14
-
15
- processorname = 'codeformer'
16
- type = 'enhance'
17
-
18
-
19
- def Initialize(self, plugin_options:dict):
20
- if self.plugin_options is not None:
21
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
22
- self.Release()
23
-
24
- self.plugin_options = plugin_options
25
- if self.model_codeformer is None:
26
- # replace Mac mps with cpu for the moment
27
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
28
- model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx')
29
- self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
30
- self.model_inputs = self.model_codeformer.get_inputs()
31
- model_outputs = self.model_codeformer.get_outputs()
32
- self.io_binding = self.model_codeformer.io_binding()
33
- self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5]))
34
- self.io_binding.bind_output(model_outputs[0].name, self.devicename)
35
-
36
-
37
- def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
38
- input_size = temp_frame.shape[1]
39
- # preprocess
40
- temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
41
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
42
- temp_frame = temp_frame.astype('float32') / 255.0
43
- temp_frame = (temp_frame - 0.5) / 0.5
44
- temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
45
-
46
- self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32))
47
- self.model_codeformer.run_with_iobinding(self.io_binding)
48
- ort_outs = self.io_binding.copy_outputs_to_cpu()
49
- result = ort_outs[0][0]
50
- del ort_outs
51
-
52
- # post-process
53
- result = result.transpose((1, 2, 0))
54
-
55
- un_min = -1.0
56
- un_max = 1.0
57
- result = np.clip(result, un_min, un_max)
58
- result = (result - un_min) / (un_max - un_min)
59
-
60
- result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
61
- result = (result * 255.0).round()
62
- scale_factor = int(result.shape[1] / input_size)
63
- return result.astype(np.uint8), scale_factor
64
-
65
-
66
- def Release(self):
67
- del self.model_codeformer
68
- self.model_codeformer = None
69
- del self.io_binding
70
- self.io_binding = None
71
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Enhance_DMDNet.py DELETED
@@ -1,898 +0,0 @@
1
- from typing import Any, List, Callable
2
- import cv2
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- import torch.nn.utils.spectral_norm as SpectralNorm
8
- import threading
9
- from torchvision.ops import roi_align
10
-
11
- from math import sqrt
12
-
13
- from torchvision.transforms.functional import normalize
14
-
15
- from roop.typing import Face, Frame, FaceSet
16
-
17
-
18
- THREAD_LOCK_DMDNET = threading.Lock()
19
-
20
-
21
- class Enhance_DMDNet():
22
- plugin_options:dict = None
23
- model_dmdnet = None
24
- torchdevice = None
25
-
26
- processorname = 'dmdnet'
27
- type = 'enhance'
28
-
29
-
30
- def Initialize(self, plugin_options:dict):
31
- if self.plugin_options is not None:
32
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
33
- self.Release()
34
-
35
- self.plugin_options = plugin_options
36
- if self.model_dmdnet is None:
37
- self.model_dmdnet = self.create(self.plugin_options["devicename"])
38
-
39
-
40
- # temp_frame already cropped+aligned, bbox not
41
- def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
42
- input_size = temp_frame.shape[1]
43
-
44
- result = self.enhance_face(source_faceset, temp_frame, target_face)
45
- scale_factor = int(result.shape[1] / input_size)
46
- return result.astype(np.uint8), scale_factor
47
-
48
-
49
- def Release(self):
50
- self.model_gfpgan = None
51
-
52
-
53
- # https://stackoverflow.com/a/67174339
54
- def landmarks106_to_68(self, pt106):
55
- map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17,
56
- 43,48,49,51,50,
57
- 102,103,104,105,101,
58
- 72,73,74,86,78,79,80,85,84,
59
- 35,41,42,39,37,36,
60
- 89,95,96,93,91,90,
61
- 52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54
62
- ]
63
-
64
- pt68 = []
65
- for i in range(68):
66
- index = map106to68[i]
67
- pt68.append(pt106[index])
68
- return pt68
69
-
70
-
71
-
72
-
73
- def check_bbox(self, imgs, boxes):
74
- boxes = boxes.view(-1, 4, 4)
75
- colors = [(0, 255, 0), (0, 255, 0), (255, 255, 0), (255, 0, 0)]
76
- i = 0
77
- for img, box in zip(imgs, boxes):
78
- img = (img + 1)/2 * 255
79
- img2 = img.permute(1, 2, 0).float().cpu().flip(2).numpy().copy()
80
- for idx, point in enumerate(box):
81
- cv2.rectangle(img2, (int(point[0]), int(point[1])), (int(point[2]), int(point[3])), color=colors[idx], thickness=2)
82
- cv2.imwrite('dmdnet_{:02d}.png'.format(i), img2)
83
- i += 1
84
-
85
-
86
- def trans_points2d(self, pts, M):
87
- new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
88
- for i in range(pts.shape[0]):
89
- pt = pts[i]
90
- new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
91
- new_pt = np.dot(M, new_pt)
92
- new_pts[i] = new_pt[0:2]
93
-
94
- return new_pts
95
-
96
-
97
- def enhance_face(self, ref_faceset: FaceSet, temp_frame, face: Face):
98
- # preprocess
99
- start_x, start_y, end_x, end_y = map(int, face['bbox'])
100
- lm106 = face.landmark_2d_106
101
- lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
102
-
103
- if temp_frame.shape[0] != 512 or temp_frame.shape[1] != 512:
104
- # scale to 512x512
105
- scale_factor = 512 / temp_frame.shape[1]
106
-
107
- M = face.matrix * scale_factor
108
-
109
- lq_landmarks = self.trans_points2d(lq_landmarks, M)
110
- temp_frame = cv2.resize(temp_frame, (512,512), interpolation = cv2.INTER_AREA)
111
-
112
- if temp_frame.ndim == 2:
113
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
114
- # else:
115
- # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
116
-
117
- lq = read_img_tensor(temp_frame)
118
-
119
- LQLocs = get_component_location(lq_landmarks)
120
- # self.check_bbox(lq, LQLocs.unsqueeze(0))
121
-
122
- # specific, change 1000 to 1 to activate
123
- if len(ref_faceset.faces) > 1:
124
- SpecificImgs = []
125
- SpecificLocs = []
126
- for i,face in enumerate(ref_faceset.faces):
127
- lm106 = face.landmark_2d_106
128
- lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
129
- ref_image = ref_faceset.ref_images[i]
130
- if ref_image.shape[0] != 512 or ref_image.shape[1] != 512:
131
- # scale to 512x512
132
- scale_factor = 512 / ref_image.shape[1]
133
-
134
- M = face.matrix * scale_factor
135
-
136
- lq_landmarks = self.trans_points2d(lq_landmarks, M)
137
- ref_image = cv2.resize(ref_image, (512,512), interpolation = cv2.INTER_AREA)
138
-
139
- if ref_image.ndim == 2:
140
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
141
- # else:
142
- # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
143
-
144
- ref_tensor = read_img_tensor(ref_image)
145
- ref_locs = get_component_location(lq_landmarks)
146
- # self.check_bbox(ref_tensor, ref_locs.unsqueeze(0))
147
-
148
- SpecificImgs.append(ref_tensor)
149
- SpecificLocs.append(ref_locs.unsqueeze(0))
150
-
151
- SpecificImgs = torch.cat(SpecificImgs, dim=0)
152
- SpecificLocs = torch.cat(SpecificLocs, dim=0)
153
- # check_bbox(SpecificImgs, SpecificLocs)
154
- SpMem256, SpMem128, SpMem64 = self.model_dmdnet.generate_specific_dictionary(sp_imgs = SpecificImgs.to(self.torchdevice), sp_locs = SpecificLocs)
155
- SpMem256Para = {}
156
- SpMem128Para = {}
157
- SpMem64Para = {}
158
- for k, v in SpMem256.items():
159
- SpMem256Para[k] = v
160
- for k, v in SpMem128.items():
161
- SpMem128Para[k] = v
162
- for k, v in SpMem64.items():
163
- SpMem64Para[k] = v
164
- else:
165
- # generic
166
- SpMem256Para, SpMem128Para, SpMem64Para = None, None, None
167
-
168
- with torch.no_grad():
169
- with THREAD_LOCK_DMDNET:
170
- try:
171
- GenericResult, SpecificResult = self.model_dmdnet(lq = lq.to(self.torchdevice), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para)
172
- except Exception as e:
173
- print(f'Error {e} there may be something wrong with the detected component locations.')
174
- return temp_frame
175
-
176
- if SpecificResult is not None:
177
- save_specific = SpecificResult * 0.5 + 0.5
178
- save_specific = save_specific.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
179
- save_specific = np.clip(save_specific.float().cpu().numpy(), 0, 1) * 255.0
180
- temp_frame = save_specific.astype("uint8")
181
- if False:
182
- save_generic = GenericResult * 0.5 + 0.5
183
- save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
184
- save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
185
- check_lq = lq * 0.5 + 0.5
186
- check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
187
- check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0
188
- cv2.imwrite('dmdnet_comparison.png', cv2.cvtColor(np.hstack((check_lq, save_generic, save_specific)),cv2.COLOR_RGB2BGR))
189
- else:
190
- save_generic = GenericResult * 0.5 + 0.5
191
- save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
192
- save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
193
- temp_frame = save_generic.astype("uint8")
194
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) # RGB
195
- return temp_frame
196
-
197
-
198
-
199
- def create(self, devicename):
200
- self.torchdevice = torch.device(devicename)
201
- model_dmdnet = DMDNet().to(self.torchdevice)
202
- weights = torch.load('./models/DMDNet.pth')
203
- model_dmdnet.load_state_dict(weights, strict=True)
204
-
205
- model_dmdnet.eval()
206
- num_params = 0
207
- for param in model_dmdnet.parameters():
208
- num_params += param.numel()
209
- return model_dmdnet
210
-
211
- # print('{:>8s} : {}'.format('Using device', device))
212
- # print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6))
213
-
214
-
215
-
216
- def read_img_tensor(Img=None): #rgb -1~1
217
- Img = Img.transpose((2, 0, 1))/255.0
218
- Img = torch.from_numpy(Img).float()
219
- normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True)
220
- ImgTensor = Img.unsqueeze(0)
221
- return ImgTensor
222
-
223
-
224
- def get_component_location(Landmarks, re_read=False):
225
- if re_read:
226
- ReadLandmark = []
227
- with open(Landmarks,'r') as f:
228
- for line in f:
229
- tmp = [float(i) for i in line.split(' ') if i != '\n']
230
- ReadLandmark.append(tmp)
231
- ReadLandmark = np.array(ReadLandmark) #
232
- Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2
233
- Map_LE_B = list(np.hstack((range(17,22), range(36,42))))
234
- Map_RE_B = list(np.hstack((range(22,27), range(42,48))))
235
- Map_LE = list(range(36,42))
236
- Map_RE = list(range(42,48))
237
- Map_NO = list(range(29,36))
238
- Map_MO = list(range(48,68))
239
-
240
- Landmarks[Landmarks>504]=504
241
- Landmarks[Landmarks<8]=8
242
-
243
- #left eye
244
- Mean_LE = np.mean(Landmarks[Map_LE],0)
245
- L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1])
246
- L_LE1 = L_LE1 * 1.3
247
- L_LE2 = L_LE1 / 1.9
248
- L_LE_xy = L_LE1 + L_LE2
249
- L_LE_lt = [L_LE_xy/2, L_LE1]
250
- L_LE_rb = [L_LE_xy/2, L_LE2]
251
- Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int)
252
-
253
- #right eye
254
- Mean_RE = np.mean(Landmarks[Map_RE],0)
255
- L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1])
256
- L_RE1 = L_RE1 * 1.3
257
- L_RE2 = L_RE1 / 1.9
258
- L_RE_xy = L_RE1 + L_RE2
259
- L_RE_lt = [L_RE_xy/2, L_RE1]
260
- L_RE_rb = [L_RE_xy/2, L_RE2]
261
- Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int)
262
-
263
- #nose
264
- Mean_NO = np.mean(Landmarks[Map_NO],0)
265
- L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25
266
- L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1
267
- L_NO_xy = L_NO1 * 2
268
- L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2]
269
- L_NO_rb = [L_NO_xy/2, L_NO2]
270
- Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int)
271
-
272
- #mouth
273
- Mean_MO = np.mean(Landmarks[Map_MO],0)
274
- L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1
275
- MO_O = Mean_MO - L_MO + 1
276
- MO_T = Mean_MO + L_MO
277
- MO_T[MO_T>510]=510
278
- Location_MO = np.hstack((MO_O, MO_T)).astype(int)
279
- return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0)
280
-
281
-
282
-
283
-
284
- def calc_mean_std_4D(feat, eps=1e-5):
285
- # eps is a small value added to the variance to avoid divide-by-zero.
286
- size = feat.size()
287
- assert (len(size) == 4)
288
- N, C = size[:2]
289
- feat_var = feat.view(N, C, -1).var(dim=2) + eps
290
- feat_std = feat_var.sqrt().view(N, C, 1, 1)
291
- feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
292
- return feat_mean, feat_std
293
-
294
- def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
295
- size = content_feat.size()
296
- style_mean, style_std = calc_mean_std_4D(style_feat)
297
- content_mean, content_std = calc_mean_std_4D(content_feat)
298
- normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
299
- return normalized_feat * style_std.expand(size) + style_mean.expand(size)
300
-
301
-
302
- def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
303
- return nn.Sequential(
304
- SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
305
- nn.LeakyReLU(0.2),
306
- SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
307
- )
308
-
309
-
310
- class MSDilateBlock(nn.Module):
311
- def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
312
- super(MSDilateBlock, self).__init__()
313
- self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
314
- self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
315
- self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
316
- self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
317
- self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
318
- def forward(self, x):
319
- conv1 = self.conv1(x)
320
- conv2 = self.conv2(x)
321
- conv3 = self.conv3(x)
322
- conv4 = self.conv4(x)
323
- cat = torch.cat([conv1, conv2, conv3, conv4], 1)
324
- out = self.convi(cat) + x
325
- return out
326
-
327
-
328
- class AdaptiveInstanceNorm(nn.Module):
329
- def __init__(self, in_channel):
330
- super().__init__()
331
- self.norm = nn.InstanceNorm2d(in_channel)
332
-
333
- def forward(self, input, style):
334
- style_mean, style_std = calc_mean_std_4D(style)
335
- out = self.norm(input)
336
- size = input.size()
337
- out = style_std.expand(size) * out + style_mean.expand(size)
338
- return out
339
-
340
- class NoiseInjection(nn.Module):
341
- def __init__(self, channel):
342
- super().__init__()
343
- self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
344
- def forward(self, image, noise):
345
- if noise is None:
346
- b, c, h, w = image.shape
347
- noise = image.new_empty(b, 1, h, w).normal_()
348
- return image + self.weight * noise
349
-
350
- class StyledUpBlock(nn.Module):
351
- def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False):
352
- super().__init__()
353
-
354
- self.noise_inject = noise_inject
355
- if upsample:
356
- self.conv1 = nn.Sequential(
357
- nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
358
- SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
359
- nn.LeakyReLU(0.2),
360
- )
361
- else:
362
- self.conv1 = nn.Sequential(
363
- SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
364
- nn.LeakyReLU(0.2),
365
- SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
366
- )
367
- self.convup = nn.Sequential(
368
- nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
369
- SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
370
- nn.LeakyReLU(0.2),
371
- SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
372
- )
373
- if self.noise_inject:
374
- self.noise1 = NoiseInjection(out_channel)
375
-
376
- self.lrelu1 = nn.LeakyReLU(0.2)
377
-
378
- self.ScaleModel1 = nn.Sequential(
379
- SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
380
- nn.LeakyReLU(0.2),
381
- SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
382
- )
383
- self.ShiftModel1 = nn.Sequential(
384
- SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
385
- nn.LeakyReLU(0.2),
386
- SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
387
- )
388
-
389
- def forward(self, input, style):
390
- out = self.conv1(input)
391
- out = self.lrelu1(out)
392
- Shift1 = self.ShiftModel1(style)
393
- Scale1 = self.ScaleModel1(style)
394
- out = out * Scale1 + Shift1
395
- if self.noise_inject:
396
- out = self.noise1(out, noise=None)
397
- outup = self.convup(out)
398
- return outup
399
-
400
-
401
- ####################################################################
402
- ###############Face Dictionary Generator
403
- ####################################################################
404
- def AttentionBlock(in_channel):
405
- return nn.Sequential(
406
- SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
407
- nn.LeakyReLU(0.2),
408
- SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
409
- )
410
-
411
- class DilateResBlock(nn.Module):
412
- def __init__(self, dim, dilation=[5,3] ):
413
- super(DilateResBlock, self).__init__()
414
- self.Res = nn.Sequential(
415
- SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])),
416
- nn.LeakyReLU(0.2),
417
- SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])),
418
- )
419
- def forward(self, x):
420
- out = x + self.Res(x)
421
- return out
422
-
423
-
424
- class KeyValue(nn.Module):
425
- def __init__(self, indim, keydim, valdim):
426
- super(KeyValue, self).__init__()
427
- self.Key = nn.Sequential(
428
- SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
429
- nn.LeakyReLU(0.2),
430
- SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
431
- )
432
- self.Value = nn.Sequential(
433
- SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
434
- nn.LeakyReLU(0.2),
435
- SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
436
- )
437
- def forward(self, x):
438
- return self.Key(x), self.Value(x)
439
-
440
- class MaskAttention(nn.Module):
441
- def __init__(self, indim):
442
- super(MaskAttention, self).__init__()
443
- self.conv1 = nn.Sequential(
444
- SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
445
- nn.LeakyReLU(0.2),
446
- SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
447
- )
448
- self.conv2 = nn.Sequential(
449
- SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
450
- nn.LeakyReLU(0.2),
451
- SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
452
- )
453
- self.conv3 = nn.Sequential(
454
- SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
455
- nn.LeakyReLU(0.2),
456
- SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
457
- )
458
- self.convCat = nn.Sequential(
459
- SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
460
- nn.LeakyReLU(0.2),
461
- SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
462
- )
463
- def forward(self, x, y, z):
464
- c1 = self.conv1(x)
465
- c2 = self.conv2(y)
466
- c3 = self.conv3(z)
467
- return self.convCat(torch.cat([c1,c2,c3], dim=1))
468
-
469
- class Query(nn.Module):
470
- def __init__(self, indim, quedim):
471
- super(Query, self).__init__()
472
- self.Query = nn.Sequential(
473
- SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
474
- nn.LeakyReLU(0.2),
475
- SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
476
- )
477
- def forward(self, x):
478
- return self.Query(x)
479
-
480
- def roi_align_self(input, location, target_size):
481
- test = (target_size.item(),target_size.item())
482
- return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],test,mode='bilinear',align_corners=False) for i in range(input.size(0))],0)
483
-
484
- class FeatureExtractor(nn.Module):
485
- def __init__(self, ngf = 64, key_scale = 4):#
486
- super().__init__()
487
-
488
- self.key_scale = 4
489
- self.part_sizes = np.array([80,80,50,110]) #
490
- self.feature_sizes = np.array([256,128,64]) #
491
-
492
- self.conv1 = nn.Sequential(
493
- SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)),
494
- nn.LeakyReLU(0.2),
495
- SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
496
- )
497
- self.conv2 = nn.Sequential(
498
- SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
499
- nn.LeakyReLU(0.2),
500
- SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1))
501
- )
502
- self.res1 = DilateResBlock(ngf, [5,3])
503
- self.res2 = DilateResBlock(ngf, [5,3])
504
-
505
-
506
- self.conv3 = nn.Sequential(
507
- SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)),
508
- nn.LeakyReLU(0.2),
509
- SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
510
- )
511
- self.conv4 = nn.Sequential(
512
- SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
513
- nn.LeakyReLU(0.2),
514
- SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1))
515
- )
516
- self.res3 = DilateResBlock(ngf*2, [3,1])
517
- self.res4 = DilateResBlock(ngf*2, [3,1])
518
-
519
- self.conv5 = nn.Sequential(
520
- SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)),
521
- nn.LeakyReLU(0.2),
522
- SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
523
- )
524
- self.conv6 = nn.Sequential(
525
- SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
526
- nn.LeakyReLU(0.2),
527
- SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1))
528
- )
529
- self.res5 = DilateResBlock(ngf*4, [1,1])
530
- self.res6 = DilateResBlock(ngf*4, [1,1])
531
-
532
- self.LE_256_Q = Query(ngf, ngf // self.key_scale)
533
- self.RE_256_Q = Query(ngf, ngf // self.key_scale)
534
- self.MO_256_Q = Query(ngf, ngf // self.key_scale)
535
- self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
536
- self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
537
- self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
538
- self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
539
- self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
540
- self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
541
-
542
-
543
- def forward(self, img, locs):
544
- le_location = locs[:,0,:].int().cpu().numpy()
545
- re_location = locs[:,1,:].int().cpu().numpy()
546
- no_location = locs[:,2,:].int().cpu().numpy()
547
- mo_location = locs[:,3,:].int().cpu().numpy()
548
-
549
-
550
- f1_0 = self.conv1(img)
551
- f1_1 = self.res1(f1_0)
552
- f2_0 = self.conv2(f1_1)
553
- f2_1 = self.res2(f2_0)
554
-
555
- f3_0 = self.conv3(f2_1)
556
- f3_1 = self.res3(f3_0)
557
- f4_0 = self.conv4(f3_1)
558
- f4_1 = self.res4(f4_0)
559
-
560
- f5_0 = self.conv5(f4_1)
561
- f5_1 = self.res5(f5_0)
562
- f6_0 = self.conv6(f5_1)
563
- f6_1 = self.res6(f6_0)
564
-
565
-
566
- ####ROI Align
567
- le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2)
568
- re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2)
569
- mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2)
570
-
571
- le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4)
572
- re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4)
573
- mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4)
574
-
575
- le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8)
576
- re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8)
577
- mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8)
578
-
579
-
580
- le_256_q = self.LE_256_Q(le_part_256)
581
- re_256_q = self.RE_256_Q(re_part_256)
582
- mo_256_q = self.MO_256_Q(mo_part_256)
583
-
584
- le_128_q = self.LE_128_Q(le_part_128)
585
- re_128_q = self.RE_128_Q(re_part_128)
586
- mo_128_q = self.MO_128_Q(mo_part_128)
587
-
588
- le_64_q = self.LE_64_Q(le_part_64)
589
- re_64_q = self.RE_64_Q(re_part_64)
590
- mo_64_q = self.MO_64_Q(mo_part_64)
591
-
592
- return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\
593
- 'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \
594
- 'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \
595
- 'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \
596
- 'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\
597
- 'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\
598
- 'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q}
599
-
600
-
601
- class DMDNet(nn.Module):
602
- def __init__(self, ngf = 64, banks_num = 128):
603
- super().__init__()
604
- self.part_sizes = np.array([80,80,50,110]) # size for 512
605
- self.feature_sizes = np.array([256,128,64]) # size for 512
606
-
607
- self.banks_num = banks_num
608
- self.key_scale = 4
609
-
610
- self.E_lq = FeatureExtractor(key_scale = self.key_scale)
611
- self.E_hq = FeatureExtractor(key_scale = self.key_scale)
612
-
613
- self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
614
- self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
615
- self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
616
-
617
- self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
618
- self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
619
- self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
620
-
621
- self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
622
- self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
623
- self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
624
-
625
-
626
- self.LE_256_Attention = AttentionBlock(64)
627
- self.RE_256_Attention = AttentionBlock(64)
628
- self.MO_256_Attention = AttentionBlock(64)
629
-
630
- self.LE_128_Attention = AttentionBlock(128)
631
- self.RE_128_Attention = AttentionBlock(128)
632
- self.MO_128_Attention = AttentionBlock(128)
633
-
634
- self.LE_64_Attention = AttentionBlock(256)
635
- self.RE_64_Attention = AttentionBlock(256)
636
- self.MO_64_Attention = AttentionBlock(256)
637
-
638
- self.LE_256_Mask = MaskAttention(64)
639
- self.RE_256_Mask = MaskAttention(64)
640
- self.MO_256_Mask = MaskAttention(64)
641
-
642
- self.LE_128_Mask = MaskAttention(128)
643
- self.RE_128_Mask = MaskAttention(128)
644
- self.MO_128_Mask = MaskAttention(128)
645
-
646
- self.LE_64_Mask = MaskAttention(256)
647
- self.RE_64_Mask = MaskAttention(256)
648
- self.MO_64_Mask = MaskAttention(256)
649
-
650
- self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1])
651
-
652
- self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) #
653
- self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) #
654
- self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) #
655
- self.up4 = nn.Sequential(
656
- SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
657
- nn.LeakyReLU(0.2),
658
- UpResBlock(ngf),
659
- UpResBlock(ngf),
660
- SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
661
- nn.Tanh()
662
- )
663
-
664
- # define generic memory, revise register_buffer to register_parameter for backward update
665
- self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40))
666
- self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40))
667
- self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55))
668
- self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40))
669
- self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40))
670
- self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55))
671
-
672
-
673
- self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20))
674
- self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20))
675
- self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27))
676
- self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20))
677
- self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20))
678
- self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27))
679
-
680
- self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10))
681
- self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10))
682
- self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13))
683
- self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10))
684
- self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10))
685
- self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13))
686
-
687
-
688
- def readMem(self, k, v, q):
689
- sim = F.conv2d(q, k)
690
- score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128
691
- sb,sn,sw,sh = score.size()
692
- s_m = score.view(sb, -1).unsqueeze(1)#2*1*M
693
- vb,vn,vw,vh = v.size()
694
- v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h)
695
- mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh)
696
- max_inds = torch.argmax(score, dim=1).squeeze()
697
- return mem_out, max_inds
698
-
699
-
700
- def memorize(self, img, locs):
701
- fs = self.E_hq(img, locs)
702
- LE256_key, LE256_value = self.LE_256_KV(fs['le256'])
703
- RE256_key, RE256_value = self.RE_256_KV(fs['re256'])
704
- MO256_key, MO256_value = self.MO_256_KV(fs['mo256'])
705
-
706
- LE128_key, LE128_value = self.LE_128_KV(fs['le128'])
707
- RE128_key, RE128_value = self.RE_128_KV(fs['re128'])
708
- MO128_key, MO128_value = self.MO_128_KV(fs['mo128'])
709
-
710
- LE64_key, LE64_value = self.LE_64_KV(fs['le64'])
711
- RE64_key, RE64_value = self.RE_64_KV(fs['re64'])
712
- MO64_key, MO64_value = self.MO_64_KV(fs['mo64'])
713
-
714
- Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value}
715
- Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value}
716
- Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value}
717
-
718
- FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']}
719
- FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']}
720
- FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']}
721
-
722
- return Mem256, Mem128, Mem64
723
-
724
- def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None):
725
- le_256_q = fs_in['le_256_q']
726
- re_256_q = fs_in['re_256_q']
727
- mo_256_q = fs_in['mo_256_q']
728
-
729
- le_128_q = fs_in['le_128_q']
730
- re_128_q = fs_in['re_128_q']
731
- mo_128_q = fs_in['mo_128_q']
732
-
733
- le_64_q = fs_in['le_64_q']
734
- re_64_q = fs_in['re_64_q']
735
- mo_64_q = fs_in['mo_64_q']
736
-
737
-
738
- ####for 256
739
- le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q)
740
- re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q)
741
- mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q)
742
-
743
- le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q)
744
- re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q)
745
- mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q)
746
-
747
- le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q)
748
- re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q)
749
- mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q)
750
-
751
- if sp_256 is not None and sp_128 is not None and sp_64 is not None:
752
- le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q)
753
- re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q)
754
- mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q)
755
- le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g)
756
- le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g
757
- re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g)
758
- re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g
759
- mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g)
760
- mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g
761
-
762
- le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q)
763
- re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q)
764
- mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q)
765
- le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g)
766
- le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g
767
- re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g)
768
- re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g
769
- mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g)
770
- mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g
771
-
772
- le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q)
773
- re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q)
774
- mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q)
775
- le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g)
776
- le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g
777
- re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g)
778
- re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g
779
- mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g)
780
- mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g
781
- else:
782
- le_256_mem = le_256_mem_g
783
- re_256_mem = re_256_mem_g
784
- mo_256_mem = mo_256_mem_g
785
- le_128_mem = le_128_mem_g
786
- re_128_mem = re_128_mem_g
787
- mo_128_mem = mo_128_mem_g
788
- le_64_mem = le_64_mem_g
789
- re_64_mem = re_64_mem_g
790
- mo_64_mem = mo_64_mem_g
791
-
792
- le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256'])
793
- re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256'])
794
- mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256'])
795
-
796
- ####for 128
797
- le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128'])
798
- re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128'])
799
- mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128'])
800
-
801
- ####for 64
802
- le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64'])
803
- re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64'])
804
- mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64'])
805
-
806
-
807
- EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm}
808
- EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm}
809
- EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm}
810
- Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds}
811
- Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds}
812
- Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds}
813
- return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64
814
-
815
- def reconstruct(self, fs_in, locs, memstar):
816
- le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm']
817
- le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm']
818
- le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm']
819
-
820
- le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256']
821
- re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256']
822
- mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256']
823
-
824
- le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128']
825
- re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128']
826
- mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128']
827
-
828
- le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64']
829
- re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64']
830
- mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64']
831
-
832
-
833
- le_location = locs[:,0,:]
834
- re_location = locs[:,1,:]
835
- mo_location = locs[:,3,:]
836
-
837
- # Somehow with latest Torch it doesn't like numpy wrappers anymore
838
-
839
- # le_location = le_location.cpu().int().numpy()
840
- # re_location = re_location.cpu().int().numpy()
841
- # mo_location = mo_location.cpu().int().numpy()
842
- le_location = le_location.cpu().int()
843
- re_location = re_location.cpu().int()
844
- mo_location = mo_location.cpu().int()
845
-
846
- up_in_256 = fs_in['f256'].clone()# * 0
847
- up_in_128 = fs_in['f128'].clone()# * 0
848
- up_in_64 = fs_in['f64'].clone()# * 0
849
-
850
- for i in range(fs_in['f256'].size(0)):
851
- up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False)
852
- up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False)
853
- up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False)
854
-
855
- up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False)
856
- up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False)
857
- up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False)
858
-
859
- up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False)
860
- up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False)
861
- up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False)
862
-
863
- ms_in_64 = self.MSDilate(fs_in['f64'].clone())
864
- fea_up1 = self.up1(ms_in_64, up_in_64)
865
- fea_up2 = self.up2(fea_up1, up_in_128) #
866
- fea_up3 = self.up3(fea_up2, up_in_256) #
867
- output = self.up4(fea_up3) #
868
- return output
869
-
870
- def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None):
871
- return self.memorize(sp_imgs, sp_locs)
872
-
873
- def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None):
874
- try:
875
- fs_in = self.E_lq(lq, loc) # low quality images
876
- except Exception as e:
877
- print(e)
878
-
879
- GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in)
880
- GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64])
881
- if sp_256 is not None and sp_128 is not None and sp_64 is not None:
882
- GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64)
883
- GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64])
884
- else:
885
- GSOut = None
886
- return GeOut, GSOut
887
-
888
- class UpResBlock(nn.Module):
889
- def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
890
- super(UpResBlock, self).__init__()
891
- self.Model = nn.Sequential(
892
- SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
893
- nn.LeakyReLU(0.2),
894
- SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
895
- )
896
- def forward(self, x):
897
- out = x + self.Model(x)
898
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Enhance_GFPGAN.py DELETED
@@ -1,73 +0,0 @@
1
- from typing import Any, List, Callable
2
- import cv2
3
- import numpy as np
4
- import onnxruntime
5
- import roop.globals
6
-
7
- from roop.typing import Face, Frame, FaceSet
8
- from roop.utilities import resolve_relative_path
9
-
10
- class Enhance_GFPGAN():
11
- plugin_options:dict = None
12
-
13
- model_gfpgan = None
14
- name = None
15
- devicename = None
16
-
17
- processorname = 'gfpgan'
18
- type = 'enhance'
19
-
20
-
21
- def Initialize(self, plugin_options:dict):
22
- if self.plugin_options is not None:
23
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
24
- self.Release()
25
-
26
- self.plugin_options = plugin_options
27
- if self.model_gfpgan is None:
28
- model_path = resolve_relative_path('../models/GFPGANv1.4.onnx')
29
- self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
30
- # replace Mac mps with cpu for the moment
31
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
32
-
33
- self.name = self.model_gfpgan.get_inputs()[0].name
34
-
35
- def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
36
- # preprocess
37
- input_size = temp_frame.shape[1]
38
- temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
39
-
40
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
41
- temp_frame = temp_frame.astype('float32') / 255.0
42
- temp_frame = (temp_frame - 0.5) / 0.5
43
- temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
44
-
45
- io_binding = self.model_gfpgan.io_binding()
46
- io_binding.bind_cpu_input("input", temp_frame)
47
- io_binding.bind_output("1288", self.devicename)
48
- self.model_gfpgan.run_with_iobinding(io_binding)
49
- ort_outs = io_binding.copy_outputs_to_cpu()
50
- result = ort_outs[0][0]
51
-
52
- # post-process
53
- result = np.clip(result, -1, 1)
54
- result = (result + 1) / 2
55
- result = result.transpose(1, 2, 0) * 255.0
56
- result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
57
- scale_factor = int(result.shape[1] / input_size)
58
- return result.astype(np.uint8), scale_factor
59
-
60
-
61
- def Release(self):
62
- self.model_gfpgan = None
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Enhance_GPEN.py DELETED
@@ -1,63 +0,0 @@
1
- from typing import Any, List, Callable
2
- import cv2
3
- import numpy as np
4
- import onnxruntime
5
- import roop.globals
6
-
7
- from roop.typing import Face, Frame, FaceSet
8
- from roop.utilities import resolve_relative_path
9
-
10
-
11
- class Enhance_GPEN():
12
- plugin_options:dict = None
13
-
14
- model_gpen = None
15
- name = None
16
- devicename = None
17
-
18
- processorname = 'gpen'
19
- type = 'enhance'
20
-
21
-
22
- def Initialize(self, plugin_options:dict):
23
- if self.plugin_options is not None:
24
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
- self.Release()
26
-
27
- self.plugin_options = plugin_options
28
- if self.model_gpen is None:
29
- model_path = resolve_relative_path('../models/GPEN-BFR-512.onnx')
30
- self.model_gpen = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
- # replace Mac mps with cpu for the moment
32
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
33
-
34
- self.name = self.model_gpen.get_inputs()[0].name
35
-
36
- def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
37
- # preprocess
38
- input_size = temp_frame.shape[1]
39
- temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
40
-
41
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
42
- temp_frame = temp_frame.astype('float32') / 255.0
43
- temp_frame = (temp_frame - 0.5) / 0.5
44
- temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
45
-
46
- io_binding = self.model_gpen.io_binding()
47
- io_binding.bind_cpu_input("input", temp_frame)
48
- io_binding.bind_output("output", self.devicename)
49
- self.model_gpen.run_with_iobinding(io_binding)
50
- ort_outs = io_binding.copy_outputs_to_cpu()
51
- result = ort_outs[0][0]
52
-
53
- # post-process
54
- result = np.clip(result, -1, 1)
55
- result = (result + 1) / 2
56
- result = result.transpose(1, 2, 0) * 255.0
57
- result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
58
- scale_factor = int(result.shape[1] / input_size)
59
- return result.astype(np.uint8), scale_factor
60
-
61
-
62
- def Release(self):
63
- self.model_gpen = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Enhance_RestoreFormerPPlus.py DELETED
@@ -1,64 +0,0 @@
1
- from typing import Any, List, Callable
2
- import cv2
3
- import numpy as np
4
- import onnxruntime
5
- import roop.globals
6
-
7
- from roop.typing import Face, Frame, FaceSet
8
- from roop.utilities import resolve_relative_path
9
-
10
- class Enhance_RestoreFormerPPlus():
11
- plugin_options:dict = None
12
- model_restoreformerpplus = None
13
- devicename = None
14
- name = None
15
-
16
- processorname = 'restoreformer++'
17
- type = 'enhance'
18
-
19
-
20
- def Initialize(self, plugin_options:dict):
21
- if self.plugin_options is not None:
22
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
23
- self.Release()
24
-
25
- self.plugin_options = plugin_options
26
- if self.model_restoreformerpplus is None:
27
- # replace Mac mps with cpu for the moment
28
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
29
- model_path = resolve_relative_path('../models/restoreformer_plus_plus.onnx')
30
- self.model_restoreformerpplus = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
- self.model_inputs = self.model_restoreformerpplus.get_inputs()
32
- model_outputs = self.model_restoreformerpplus.get_outputs()
33
- self.io_binding = self.model_restoreformerpplus.io_binding()
34
- self.io_binding.bind_output(model_outputs[0].name, self.devicename)
35
-
36
- def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
37
- # preprocess
38
- input_size = temp_frame.shape[1]
39
- temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
40
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
41
- temp_frame = temp_frame.astype('float32') / 255.0
42
- temp_frame = (temp_frame - 0.5) / 0.5
43
- temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
44
-
45
- self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) # .astype(np.float32)
46
- self.model_restoreformerpplus.run_with_iobinding(self.io_binding)
47
- ort_outs = self.io_binding.copy_outputs_to_cpu()
48
- result = ort_outs[0][0]
49
- del ort_outs
50
-
51
- result = np.clip(result, -1, 1)
52
- result = (result + 1) / 2
53
- result = result.transpose(1, 2, 0) * 255.0
54
- result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
55
- scale_factor = int(result.shape[1] / input_size)
56
- return result.astype(np.uint8), scale_factor
57
-
58
-
59
- def Release(self):
60
- del self.model_restoreformerpplus
61
- self.model_restoreformerpplus = None
62
- del self.io_binding
63
- self.io_binding = None
64
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/FaceSwapInsightFace.py DELETED
@@ -1,60 +0,0 @@
1
- import roop.globals
2
- import numpy as np
3
- import onnx
4
- import onnxruntime
5
-
6
- from roop.typing import Face, Frame
7
- from roop.utilities import resolve_relative_path
8
-
9
-
10
-
11
- class FaceSwapInsightFace():
12
- plugin_options:dict = None
13
- model_swap_insightface = None
14
-
15
- processorname = 'faceswap'
16
- type = 'swap'
17
-
18
-
19
- def Initialize(self, plugin_options:dict):
20
- if self.plugin_options is not None:
21
- if self.plugin_options["devicename"] != plugin_options["devicename"] or self.plugin_options["modelname"] != plugin_options["modelname"]:
22
- self.Release()
23
-
24
- self.plugin_options = plugin_options
25
- if self.model_swap_insightface is None:
26
- model_path = resolve_relative_path('../models/' + self.plugin_options["modelname"])
27
- graph = onnx.load(model_path).graph
28
- self.emap = onnx.numpy_helper.to_array(graph.initializer[-1])
29
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
30
- self.input_mean = 0.0
31
- self.input_std = 255.0
32
- #cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'}
33
- sess_options = onnxruntime.SessionOptions()
34
- sess_options.enable_cpu_mem_arena = False
35
- self.model_swap_insightface = onnxruntime.InferenceSession(model_path, sess_options, providers=roop.globals.execution_providers)
36
-
37
-
38
-
39
- def Run(self, source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
40
- latent = source_face.normed_embedding.reshape((1,-1))
41
- latent = np.dot(latent, self.emap)
42
- latent /= np.linalg.norm(latent)
43
- io_binding = self.model_swap_insightface.io_binding()
44
- io_binding.bind_cpu_input("target", temp_frame)
45
- io_binding.bind_cpu_input("source", latent)
46
- io_binding.bind_output("output", self.devicename)
47
- self.model_swap_insightface.run_with_iobinding(io_binding)
48
- ort_outs = io_binding.copy_outputs_to_cpu()[0]
49
- return ort_outs[0]
50
-
51
-
52
- def Release(self):
53
- del self.model_swap_insightface
54
- self.model_swap_insightface = None
55
-
56
-
57
-
58
-
59
-
60
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Frame_Colorizer.py DELETED
@@ -1,70 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import onnxruntime
4
- import roop.globals
5
-
6
- from roop.utilities import resolve_relative_path
7
- from roop.typing import Frame
8
-
9
- class Frame_Colorizer():
10
- plugin_options:dict = None
11
- model_colorizer = None
12
- devicename = None
13
- prev_type = None
14
-
15
- processorname = 'deoldify'
16
- type = 'frame_colorizer'
17
-
18
-
19
- def Initialize(self, plugin_options:dict):
20
- if self.plugin_options is not None:
21
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
22
- self.Release()
23
-
24
- self.plugin_options = plugin_options
25
- if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
26
- self.Release()
27
- self.prev_type = self.plugin_options["subtype"]
28
- if self.model_colorizer is None:
29
- # replace Mac mps with cpu for the moment
30
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
31
- if self.prev_type == "deoldify_artistic":
32
- model_path = resolve_relative_path('../models/Frame/deoldify_artistic.onnx')
33
- elif self.prev_type == "deoldify_stable":
34
- model_path = resolve_relative_path('../models/Frame/deoldify_stable.onnx')
35
-
36
- onnxruntime.set_default_logger_severity(3)
37
- self.model_colorizer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
38
- self.model_inputs = self.model_colorizer.get_inputs()
39
- model_outputs = self.model_colorizer.get_outputs()
40
- self.io_binding = self.model_colorizer.io_binding()
41
- self.io_binding.bind_output(model_outputs[0].name, self.devicename)
42
-
43
- def Run(self, input_frame: Frame) -> Frame:
44
- temp_frame = cv2.cvtColor(input_frame, cv2.COLOR_BGR2GRAY)
45
- temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB)
46
- temp_frame = cv2.resize(temp_frame, (256, 256))
47
- temp_frame = temp_frame.transpose((2, 0, 1))
48
- temp_frame = np.expand_dims(temp_frame, axis=0).astype(np.float32)
49
- self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
50
- self.model_colorizer.run_with_iobinding(self.io_binding)
51
- ort_outs = self.io_binding.copy_outputs_to_cpu()
52
- result = ort_outs[0][0]
53
- del ort_outs
54
- colorized_frame = result.transpose(1, 2, 0)
55
- colorized_frame = cv2.resize(colorized_frame, (input_frame.shape[1], input_frame.shape[0]))
56
- temp_blue_channel, _, _ = cv2.split(input_frame)
57
- colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2RGB).astype(np.uint8)
58
- colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2LAB)
59
- _, color_green_channel, color_red_channel = cv2.split(colorized_frame)
60
- colorized_frame = cv2.merge((temp_blue_channel, color_green_channel, color_red_channel))
61
- colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_LAB2BGR)
62
- return colorized_frame.astype(np.uint8)
63
-
64
-
65
- def Release(self):
66
- del self.model_colorizer
67
- self.model_colorizer = None
68
- del self.io_binding
69
- self.io_binding = None
70
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Frame_Filter.py DELETED
@@ -1,105 +0,0 @@
1
- import cv2
2
- import numpy as np
3
-
4
- from roop.typing import Frame
5
-
6
- class Frame_Filter():
7
- processorname = 'generic_filter'
8
- type = 'frame_processor'
9
-
10
- plugin_options:dict = None
11
-
12
- c64_palette = np.array([
13
- [0, 0, 0],
14
- [255, 255, 255],
15
- [0x81, 0x33, 0x38],
16
- [0x75, 0xce, 0xc8],
17
- [0x8e, 0x3c, 0x97],
18
- [0x56, 0xac, 0x4d],
19
- [0x2e, 0x2c, 0x9b],
20
- [0xed, 0xf1, 0x71],
21
- [0x8e, 0x50, 0x29],
22
- [0x55, 0x38, 0x00],
23
- [0xc4, 0x6c, 0x71],
24
- [0x4a, 0x4a, 0x4a],
25
- [0x7b, 0x7b, 0x7b],
26
- [0xa9, 0xff, 0x9f],
27
- [0x70, 0x6d, 0xeb],
28
- [0xb2, 0xb2, 0xb2]
29
- ])
30
-
31
-
32
- def RenderC64Screen(self, image):
33
- # Simply round the color values to the nearest color in the palette
34
- image = cv2.resize(image,(320,200))
35
- palette = self.c64_palette / 255.0 # Normalize palette
36
- img_normalized = image / 255.0 # Normalize image
37
-
38
- # Calculate the index in the palette that is closest to each pixel in the image
39
- indices = np.sqrt(((img_normalized[:, :, None, :] - palette[None, None, :, :]) ** 2).sum(axis=3)).argmin(axis=2)
40
- # Map the image to the palette colors
41
- mapped_image = palette[indices]
42
- return (mapped_image * 255).astype(np.uint8) # Denormalize and return the image
43
-
44
-
45
- def RenderDetailEnhance(self, image):
46
- return cv2.detailEnhance(image)
47
-
48
- def RenderStylize(self, image):
49
- return cv2.stylization(image)
50
-
51
- def RenderPencilSketch(self, image):
52
- imgray, imout = cv2.pencilSketch(image, sigma_s=60, sigma_r=0.07, shade_factor=0.05)
53
- return imout
54
-
55
- def RenderCartoon(self, image):
56
- numDownSamples = 2 # number of downscaling steps
57
- numBilateralFilters = 7 # number of bilateral filtering steps
58
-
59
- img_color = image
60
- for _ in range(numDownSamples):
61
- img_color = cv2.pyrDown(img_color)
62
- for _ in range(numBilateralFilters):
63
- img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
64
- for _ in range(numDownSamples):
65
- img_color = cv2.pyrUp(img_color)
66
- img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
67
- img_blur = cv2.medianBlur(img_gray, 7)
68
- img_edge = cv2.adaptiveThreshold(img_blur, 255,
69
- cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
70
- img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
71
- if img_color.shape != image.shape:
72
- img_color = cv2.resize(img_color, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
73
- if img_color.shape != img_edge.shape:
74
- img_edge = cv2.resize(img_edge, (img_color.shape[1], img_color.shape[0]), interpolation=cv2.INTER_LINEAR)
75
- return cv2.bitwise_and(img_color, img_edge)
76
-
77
-
78
- def Initialize(self, plugin_options:dict):
79
- if self.plugin_options is not None:
80
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
81
- self.Release()
82
- self.plugin_options = plugin_options
83
-
84
- def Run(self, temp_frame: Frame) -> Frame:
85
- subtype = self.plugin_options["subtype"]
86
- if subtype == "stylize":
87
- return self.RenderStylize(temp_frame).astype(np.uint8)
88
- if subtype == "detailenhance":
89
- return self.RenderDetailEnhance(temp_frame).astype(np.uint8)
90
- if subtype == "pencil":
91
- return self.RenderPencilSketch(temp_frame).astype(np.uint8)
92
- if subtype == "cartoon":
93
- return self.RenderCartoon(temp_frame).astype(np.uint8)
94
- if subtype == "C64":
95
- return self.RenderC64Screen(temp_frame).astype(np.uint8)
96
-
97
-
98
- def Release(self):
99
- pass
100
-
101
- def getProcessedResolution(self, width, height):
102
- if self.plugin_options["subtype"] == "C64":
103
- return (320,200)
104
- return None
105
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Frame_Masking.py DELETED
@@ -1,71 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import onnxruntime
4
- import roop.globals
5
-
6
- from roop.utilities import resolve_relative_path
7
- from roop.typing import Frame
8
-
9
- class Frame_Masking():
10
- plugin_options:dict = None
11
- model_masking = None
12
- devicename = None
13
- name = None
14
-
15
- processorname = 'removebg'
16
- type = 'frame_masking'
17
-
18
-
19
- def Initialize(self, plugin_options:dict):
20
- if self.plugin_options is not None:
21
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
22
- self.Release()
23
-
24
- self.plugin_options = plugin_options
25
- if self.model_masking is None:
26
- # replace Mac mps with cpu for the moment
27
- self.devicename = self.plugin_options["devicename"]
28
- self.devicename = self.devicename.replace('mps', 'cpu')
29
- model_path = resolve_relative_path('../models/Frame/isnet-general-use.onnx')
30
- self.model_masking = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
- self.model_inputs = self.model_masking.get_inputs()
32
- model_outputs = self.model_masking.get_outputs()
33
- self.io_binding = self.model_masking.io_binding()
34
- self.io_binding.bind_output(model_outputs[0].name, self.devicename)
35
-
36
- def Run(self, temp_frame: Frame) -> Frame:
37
- # Pre process:Resize, BGR->RGB, float32 cast
38
- input_image = cv2.resize(temp_frame, (1024, 1024))
39
- input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
40
- mean = [0.5, 0.5, 0.5]
41
- std = [1.0, 1.0, 1.0]
42
- input_image = (input_image / 255.0 - mean) / std
43
- input_image = input_image.transpose(2, 0, 1)
44
- input_image = np.expand_dims(input_image, axis=0)
45
- input_image = input_image.astype('float32')
46
-
47
- self.io_binding.bind_cpu_input(self.model_inputs[0].name, input_image)
48
- self.model_masking.run_with_iobinding(self.io_binding)
49
- ort_outs = self.io_binding.copy_outputs_to_cpu()
50
- result = ort_outs[0][0]
51
- del ort_outs
52
- # Post process:squeeze, Sigmoid, Normarize, uint8 cast
53
- mask = np.squeeze(result[0])
54
- min_value = np.min(mask)
55
- max_value = np.max(mask)
56
- mask = (mask - min_value) / (max_value - min_value)
57
- #mask = np.where(mask < score_th, 0, 1)
58
- #mask *= 255
59
- mask = cv2.resize(mask, (temp_frame.shape[1], temp_frame.shape[0]), interpolation=cv2.INTER_LINEAR)
60
- mask = np.reshape(mask, [mask.shape[0],mask.shape[1],1])
61
- result = mask * temp_frame.astype(np.float32)
62
- return result.astype(np.uint8)
63
-
64
-
65
-
66
- def Release(self):
67
- del self.model_masking
68
- self.model_masking = None
69
- del self.io_binding
70
- self.io_binding = None
71
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Frame_Upscale.py DELETED
@@ -1,129 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import onnxruntime
4
- import roop.globals
5
-
6
- from roop.utilities import resolve_relative_path, conditional_thread_semaphore
7
- from roop.typing import Frame
8
-
9
-
10
- class Frame_Upscale():
11
- plugin_options:dict = None
12
- model_upscale = None
13
- devicename = None
14
- prev_type = None
15
-
16
- processorname = 'upscale'
17
- type = 'frame_enhancer'
18
-
19
-
20
- def Initialize(self, plugin_options:dict):
21
- if self.plugin_options is not None:
22
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
23
- self.Release()
24
-
25
- self.plugin_options = plugin_options
26
- if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
27
- self.Release()
28
- self.prev_type = self.plugin_options["subtype"]
29
- if self.model_upscale is None:
30
- # replace Mac mps with cpu for the moment
31
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
32
- if self.prev_type == "esrganx4":
33
- model_path = resolve_relative_path('../models/Frame/real_esrgan_x4.onnx')
34
- self.scale = 4
35
- elif self.prev_type == "esrganx2":
36
- model_path = resolve_relative_path('../models/Frame/real_esrgan_x2.onnx')
37
- self.scale = 2
38
- elif self.prev_type == "lsdirx4":
39
- model_path = resolve_relative_path('../models/Frame/lsdir_x4.onnx')
40
- self.scale = 4
41
- onnxruntime.set_default_logger_severity(3)
42
- self.model_upscale = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
43
- self.model_inputs = self.model_upscale.get_inputs()
44
- model_outputs = self.model_upscale.get_outputs()
45
- self.io_binding = self.model_upscale.io_binding()
46
- self.io_binding.bind_output(model_outputs[0].name, self.devicename)
47
-
48
- def getProcessedResolution(self, width, height):
49
- return (width * self.scale, height * self.scale)
50
-
51
- # borrowed from facefusion -> https://github.com/facefusion/facefusion
52
- def prepare_tile_frame(self, tile_frame : Frame) -> Frame:
53
- tile_frame = np.expand_dims(tile_frame[:, :, ::-1], axis = 0)
54
- tile_frame = tile_frame.transpose(0, 3, 1, 2)
55
- tile_frame = tile_frame.astype(np.float32) / 255
56
- return tile_frame
57
-
58
-
59
- def normalize_tile_frame(self, tile_frame : Frame) -> Frame:
60
- tile_frame = tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255
61
- tile_frame = tile_frame.clip(0, 255).astype(np.uint8)[:, :, ::-1]
62
- return tile_frame
63
-
64
- def create_tile_frames(self, input_frame : Frame, size):
65
- input_frame = np.pad(input_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
66
- tile_width = size[0] - 2 * size[2]
67
- pad_size_bottom = size[2] + tile_width - input_frame.shape[0] % tile_width
68
- pad_size_right = size[2] + tile_width - input_frame.shape[1] % tile_width
69
- pad_vision_frame = np.pad(input_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0)))
70
- pad_height, pad_width = pad_vision_frame.shape[:2]
71
- row_range = range(size[2], pad_height - size[2], tile_width)
72
- col_range = range(size[2], pad_width - size[2], tile_width)
73
- tile_frames = []
74
-
75
- for row_frame in row_range:
76
- top = row_frame - size[2]
77
- bottom = row_frame + size[2] + tile_width
78
- for column_vision_frame in col_range:
79
- left = column_vision_frame - size[2]
80
- right = column_vision_frame + size[2] + tile_width
81
- tile_frames.append(pad_vision_frame[top:bottom, left:right, :])
82
- return tile_frames, pad_width, pad_height
83
-
84
-
85
- def merge_tile_frames(self, tile_frames, temp_width : int, temp_height : int, pad_width : int, pad_height : int, size) -> Frame:
86
- merge_frame = np.zeros((pad_height, pad_width, 3)).astype(np.uint8)
87
- tile_width = tile_frames[0].shape[1] - 2 * size[2]
88
- tiles_per_row = min(pad_width // tile_width, len(tile_frames))
89
-
90
- for index, tile_frame in enumerate(tile_frames):
91
- tile_frame = tile_frame[size[2]:-size[2], size[2]:-size[2]]
92
- row_index = index // tiles_per_row
93
- col_index = index % tiles_per_row
94
- top = row_index * tile_frame.shape[0]
95
- bottom = top + tile_frame.shape[0]
96
- left = col_index * tile_frame.shape[1]
97
- right = left + tile_frame.shape[1]
98
- merge_frame[top:bottom, left:right, :] = tile_frame
99
- merge_frame = merge_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :]
100
- return merge_frame
101
-
102
-
103
- def Run(self, temp_frame: Frame) -> Frame:
104
- size = (128, 8, 2)
105
- temp_height, temp_width = temp_frame.shape[:2]
106
- upscale_tile_frames, pad_width, pad_height = self.create_tile_frames(temp_frame, size)
107
-
108
- for index, tile_frame in enumerate(upscale_tile_frames):
109
- tile_frame = self.prepare_tile_frame(tile_frame)
110
- with conditional_thread_semaphore():
111
- self.io_binding.bind_cpu_input(self.model_inputs[0].name, tile_frame)
112
- self.model_upscale.run_with_iobinding(self.io_binding)
113
- ort_outs = self.io_binding.copy_outputs_to_cpu()
114
- result = ort_outs[0]
115
- upscale_tile_frames[index] = self.normalize_tile_frame(result)
116
- final_frame = self.merge_tile_frames(upscale_tile_frames, temp_width * self.scale
117
- , temp_height * self.scale
118
- , pad_width * self.scale, pad_height * self.scale
119
- , (size[0] * self.scale, size[1] * self.scale, size[2] * self.scale))
120
- return final_frame.astype(np.uint8)
121
-
122
-
123
-
124
- def Release(self):
125
- del self.model_upscale
126
- self.model_upscale = None
127
- del self.io_binding
128
- self.io_binding = None
129
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Mask_Clip2Seg.py DELETED
@@ -1,94 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import torch
4
- import threading
5
- from torchvision import transforms
6
- from clip.clipseg import CLIPDensePredT
7
- import numpy as np
8
-
9
- from roop.typing import Frame
10
-
11
- THREAD_LOCK_CLIP = threading.Lock()
12
-
13
-
14
- class Mask_Clip2Seg():
15
- plugin_options:dict = None
16
- model_clip = None
17
-
18
- processorname = 'clip2seg'
19
- type = 'mask'
20
-
21
-
22
- def Initialize(self, plugin_options:dict):
23
- if self.plugin_options is not None:
24
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
- self.Release()
26
-
27
- self.plugin_options = plugin_options
28
- if self.model_clip is None:
29
- self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
30
- self.model_clip.eval();
31
- self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False)
32
-
33
- device = torch.device(self.plugin_options["devicename"])
34
- self.model_clip.to(device)
35
-
36
-
37
- def Run(self, img1, keywords:str) -> Frame:
38
- if keywords is None or len(keywords) < 1 or img1 is None:
39
- return img1
40
-
41
- source_image_small = cv2.resize(img1, (256,256))
42
-
43
- img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32)
44
- mask_border = 1
45
- l = 0
46
- t = 0
47
- r = 1
48
- b = 1
49
-
50
- mask_blur = 5
51
- clip_blur = 5
52
-
53
- img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)),
54
- (256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1)
55
- img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0)
56
- img_mask /= 255
57
-
58
-
59
- input_image = source_image_small
60
-
61
- transform = transforms.Compose([
62
- transforms.ToTensor(),
63
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
64
- transforms.Resize((256, 256)),
65
- ])
66
- img = transform(input_image).unsqueeze(0)
67
-
68
- thresh = 0.5
69
- prompts = keywords.split(',')
70
- with THREAD_LOCK_CLIP:
71
- with torch.no_grad():
72
- preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0]
73
- clip_mask = torch.sigmoid(preds[0][0])
74
- for i in range(len(prompts)-1):
75
- clip_mask += torch.sigmoid(preds[i+1][0])
76
-
77
- clip_mask = clip_mask.data.cpu().numpy()
78
- np.clip(clip_mask, 0, 1)
79
-
80
- clip_mask[clip_mask>thresh] = 1.0
81
- clip_mask[clip_mask<=thresh] = 0.0
82
- kernel = np.ones((5, 5), np.float32)
83
- clip_mask = cv2.dilate(clip_mask, kernel, iterations=1)
84
- clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0)
85
-
86
- img_mask *= clip_mask
87
- img_mask[img_mask<0.0] = 0.0
88
- return img_mask
89
-
90
-
91
-
92
- def Release(self):
93
- self.model_clip = None
94
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/Mask_XSeg.py DELETED
@@ -1,58 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- import onnxruntime
4
- import roop.globals
5
-
6
- from roop.typing import Frame
7
- from roop.utilities import resolve_relative_path, conditional_thread_semaphore
8
-
9
-
10
-
11
- class Mask_XSeg():
12
- plugin_options:dict = None
13
-
14
- model_xseg = None
15
-
16
- processorname = 'mask_xseg'
17
- type = 'mask'
18
-
19
-
20
- def Initialize(self, plugin_options:dict):
21
- if self.plugin_options is not None:
22
- if self.plugin_options["devicename"] != plugin_options["devicename"]:
23
- self.Release()
24
-
25
- self.plugin_options = plugin_options
26
- if self.model_xseg is None:
27
- model_path = resolve_relative_path('../models/xseg.onnx')
28
- onnxruntime.set_default_logger_severity(3)
29
- self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
30
- self.model_inputs = self.model_xseg.get_inputs()
31
- self.model_outputs = self.model_xseg.get_outputs()
32
-
33
- # replace Mac mps with cpu for the moment
34
- self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
35
-
36
-
37
- def Run(self, img1, keywords:str) -> Frame:
38
- temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC)
39
- temp_frame = temp_frame.astype('float32') / 255.0
40
- temp_frame = temp_frame[None, ...]
41
- io_binding = self.model_xseg.io_binding()
42
- io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
43
- io_binding.bind_output(self.model_outputs[0].name, self.devicename)
44
- self.model_xseg.run_with_iobinding(io_binding)
45
- ort_outs = io_binding.copy_outputs_to_cpu()
46
- result = ort_outs[0][0]
47
- result = np.clip(result, 0, 1.0)
48
- result[result < 0.1] = 0
49
- # invert values to mask areas to keep
50
- result = 1.0 - result
51
- return result
52
-
53
-
54
- def Release(self):
55
- del self.model_xseg
56
- self.model_xseg = None
57
-
58
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/processors/__init__.py DELETED
File without changes
roop-unleashed-main/roop/template_parser.py DELETED
@@ -1,23 +0,0 @@
1
- import re
2
- from datetime import datetime
3
-
4
- template_functions = {
5
- "timestamp": lambda data: str(int(datetime.now().timestamp())),
6
- "i": lambda data: data.get("index", False),
7
- "file": lambda data: data.get("file", False),
8
- "date": lambda data: datetime.now().strftime("%Y-%m-%d"),
9
- "time": lambda data: datetime.now().strftime("%H-%M-%S"),
10
- }
11
-
12
-
13
- def parse(text: str, data: dict):
14
- pattern = r"\{([^}]+)\}"
15
-
16
- matches = re.findall(pattern, text)
17
-
18
- for match in matches:
19
- replacement = template_functions[match](data)
20
- if replacement is not False:
21
- text = text.replace(f"{{{match}}}", replacement)
22
-
23
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/typing.py DELETED
@@ -1,9 +0,0 @@
1
- from typing import Any
2
-
3
- from insightface.app.common import Face
4
- from roop.FaceSet import FaceSet
5
- import numpy
6
-
7
- Face = Face
8
- FaceSet = FaceSet
9
- Frame = numpy.ndarray[Any, Any]
 
 
 
 
 
 
 
 
 
 
roop-unleashed-main/roop/util_ffmpeg.py DELETED
@@ -1,130 +0,0 @@
1
-
2
- import os
3
- import subprocess
4
- import roop.globals
5
- import roop.utilities as util
6
-
7
- from typing import List, Any
8
-
9
- def run_ffmpeg(args: List[str]) -> bool:
10
- commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-y', '-loglevel', roop.globals.log_level]
11
- commands.extend(args)
12
- print ("Running ffmpeg")
13
- try:
14
- subprocess.check_output(commands, stderr=subprocess.STDOUT)
15
- return True
16
- except Exception as e:
17
- print("Running ffmpeg failed! Commandline:")
18
- print (" ".join(commands))
19
- return False
20
-
21
-
22
-
23
- def cut_video(original_video: str, cut_video: str, start_frame: int, end_frame: int, reencode: bool):
24
- fps = util.detect_fps(original_video)
25
- start_time = start_frame / fps
26
- num_frames = end_frame - start_frame
27
-
28
- if reencode:
29
- run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-c:v', roop.globals.video_encoder, '-c:a', 'aac', '-frames:v', str(num_frames), cut_video])
30
- else:
31
- run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-frames:v', str(num_frames), '-c:v' ,'copy','-c:a' ,'copy', cut_video])
32
-
33
- def join_videos(videos: List[str], dest_filename: str, simple: bool):
34
- if simple:
35
- txtfilename = util.resolve_relative_path('../temp')
36
- txtfilename = os.path.join(txtfilename, 'joinvids.txt')
37
- with open(txtfilename, "w", encoding="utf-8") as f:
38
- for v in videos:
39
- v = v.replace('\\', '/')
40
- f.write(f"file {v}\n")
41
- commands = ['-f', 'concat', '-safe', '0', '-i', f'{txtfilename}', '-vcodec', 'copy', f'{dest_filename}']
42
- run_ffmpeg(commands)
43
-
44
- else:
45
- inputs = []
46
- filter = ''
47
- for i,v in enumerate(videos):
48
- inputs.append('-i')
49
- inputs.append(v)
50
- filter += f'[{i}:v:0][{i}:a:0]'
51
- run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
52
-
53
- # filter += f'[{i}:v:0][{i}:a:0]'
54
- # run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
55
-
56
-
57
-
58
- def extract_frames(target_path : str, trim_frame_start, trim_frame_end, fps : float) -> bool:
59
- util.create_temp(target_path)
60
- temp_directory_path = util.get_temp_directory_path(target_path)
61
- commands = ['-i', target_path, '-q:v', '1', '-pix_fmt', 'rgb24', ]
62
- if trim_frame_start is not None and trim_frame_end is not None:
63
- commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
64
- commands.extend(['-vsync', '0', os.path.join(temp_directory_path, '%06d.' + roop.globals.CFG.output_image_format)])
65
- return run_ffmpeg(commands)
66
-
67
-
68
- def create_video(target_path: str, dest_filename: str, fps: float = 24.0, temp_directory_path: str = None) -> None:
69
- if temp_directory_path is None:
70
- temp_directory_path = util.get_temp_directory_path(target_path)
71
- run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, f'%06d.{roop.globals.CFG.output_image_format}'), '-c:v', roop.globals.video_encoder, '-crf', str(roop.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', dest_filename])
72
- return dest_filename
73
-
74
-
75
- def create_gif_from_video(video_path: str, gif_path):
76
- from roop.capturer import get_video_frame, release_video
77
-
78
- fps = util.detect_fps(video_path)
79
- frame = get_video_frame(video_path)
80
- release_video()
81
-
82
- scalex = frame.shape[0]
83
- scaley = frame.shape[1]
84
-
85
- if scalex >= scaley:
86
- scaley = -1
87
- else:
88
- scalex = -1
89
-
90
- run_ffmpeg(['-i', video_path, '-vf', f'fps={fps},scale={int(scalex)}:{int(scaley)}:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse', '-loop', '0', gif_path])
91
-
92
-
93
-
94
- def create_video_from_gif(gif_path: str, output_path):
95
- fps = util.detect_fps(gif_path)
96
- filter = """scale='trunc(in_w/2)*2':'trunc(in_h/2)*2',format=yuv420p,fps=10"""
97
- run_ffmpeg(['-i', gif_path, '-vf', f'"{filter}"', '-movflags', '+faststart', '-shortest', output_path])
98
-
99
-
100
- def repair_video(original_video: str, final_video : str):
101
- run_ffmpeg(['-i', original_video, '-movflags', 'faststart', '-acodec', 'copy', '-vcodec', 'copy', final_video])
102
-
103
-
104
- def restore_audio(intermediate_video: str, original_video: str, trim_frame_start, trim_frame_end, final_video : str) -> None:
105
- fps = util.detect_fps(original_video)
106
- commands = [ '-i', intermediate_video ]
107
- if trim_frame_start is None and trim_frame_end is None:
108
- commands.extend([ '-c:a', 'copy' ])
109
- else:
110
- # if trim_frame_start is not None:
111
- # start_time = trim_frame_start / fps
112
- # commands.extend([ '-ss', format(start_time, ".2f")])
113
- # else:
114
- # commands.extend([ '-ss', '0' ])
115
- # if trim_frame_end is not None:
116
- # end_time = trim_frame_end / fps
117
- # commands.extend([ '-to', format(end_time, ".2f")])
118
- # commands.extend([ '-c:a', 'aac' ])
119
- if trim_frame_start is not None:
120
- start_time = trim_frame_start / fps
121
- commands.extend([ '-ss', format(start_time, ".2f")])
122
- else:
123
- commands.extend([ '-ss', '0' ])
124
- if trim_frame_end is not None:
125
- end_time = trim_frame_end / fps
126
- commands.extend([ '-to', format(end_time, ".2f")])
127
- commands.extend([ '-i', original_video, "-c", "copy" ])
128
-
129
- commands.extend([ '-map', '0:v:0', '-map', '1:a:0?', '-shortest', final_video ])
130
- run_ffmpeg(commands)