diff --git a/roop-unleashed-main/.flake8 b/roop-unleashed-main/.flake8 deleted file mode 100644 index 43a1b76932b6cb62486ec7e925caf1853693a403..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/.flake8 +++ /dev/null @@ -1,3 +0,0 @@ -[flake8] -select = E3, E4, F -per-file-ignores = roop/core.py:E402 \ No newline at end of file diff --git a/roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md b/roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md deleted file mode 100644 index e8e22cd1eeec326f617f42dd87739c2b0a201ecb..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -name: Bug report -about: Create a report to help us improve -title: '' -labels: '' -assignees: '' - ---- - -**Describe the bug** -A clear and concise description of what the bug is. - -**To Reproduce** -Steps to reproduce the behavior: -1. Go to '...' -2. Click on '....' -3. Scroll down to '....' -4. See error - -**Details** -What OS are you using? -- [ ] Linux -- [ ] Linux in WSL -- [ ] Windows -- [ ] Mac - -Are you using a GPU? -- [ ] No. CPU FTW -- [ ] NVIDIA -- [ ] AMD -- [ ] Intel -- [ ] Mac - -**Which version of roop unleashed are you using?** - -**Screenshots** -If applicable, add screenshots to help explain your problem. diff --git a/roop-unleashed-main/.github/workflows/stale.yml b/roop-unleashed-main/.github/workflows/stale.yml deleted file mode 100644 index 87169171c24c7a2f27c88f7a1d00b654afad90d3..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/.github/workflows/stale.yml +++ /dev/null @@ -1,29 +0,0 @@ -# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time. -# -# You can adjust the behavior by modifying this file. -# For more information, see: -# https://github.com/actions/stale -name: Mark stale issues and pull requests - -on: - schedule: - - cron: '32 0 * * *' - -jobs: - stale: - - runs-on: ubuntu-latest - permissions: - issues: write - pull-requests: write - - steps: - - uses: actions/stale@v5 - with: - repo-token: ${{ secrets.GITHUB_TOKEN }} - stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.' - stale-pr-message: 'This PR is stale because it has been open 45 days with no activity. Remove stale label or comment or this will be closed in 10 days.' - close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.' - days-before-stale: 30 - days-before-close: 5 - days-before-pr-close: -1 diff --git a/roop-unleashed-main/.gitignore b/roop-unleashed-main/.gitignore deleted file mode 100644 index de72980338a5aed2296b06c24fb4e1bb0be7751b..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/.gitignore +++ /dev/null @@ -1,15 +0,0 @@ -.vs -.idea -models -temp -__pycache__ -*.pth -/start.bat -/env -.vscode -output -temp -config.yaml -run.bat -venv -start.sh \ No newline at end of file diff --git a/roop-unleashed-main/Dockerfile b/roop-unleashed-main/Dockerfile deleted file mode 100644 index 1fef507110d4bba6658c0d26af3f29388c032a0d..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/Dockerfile +++ /dev/null @@ -1,18 +0,0 @@ -FROM python:3.11 - -# making app folder -WORKDIR /app - -# copying files -COPY . . - -# installing requirements -RUN apt-get update -RUN apt-get install ffmpeg -y -RUN pip install --upgrade pip -RUN pip install -r ./requirements.txt - -# launching gradio app -ENV GRADIO_SERVER_NAME="0.0.0.0" -EXPOSE 7860 -ENTRYPOINT python ./run.py \ No newline at end of file diff --git a/roop-unleashed-main/LICENSE b/roop-unleashed-main/LICENSE deleted file mode 100644 index 0ad25db4bd1d86c452db3f9602ccdbe172438f52..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/LICENSE +++ /dev/null @@ -1,661 +0,0 @@ - GNU AFFERO GENERAL PUBLIC LICENSE - Version 3, 19 November 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU Affero General Public License is a free, copyleft license for -software and other kinds of works, specifically designed to ensure -cooperation with the community in the case of network server software. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -our General Public Licenses are intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - Developers that use our General Public Licenses protect your rights -with two steps: (1) assert copyright on the software, and (2) offer -you this License which gives you legal permission to copy, distribute -and/or modify the software. - - A secondary benefit of defending all users' freedom is that -improvements made in alternate versions of the program, if they -receive widespread use, become available for other developers to -incorporate. Many developers of free software are heartened and -encouraged by the resulting cooperation. However, in the case of -software used on network servers, this result may fail to come about. -The GNU General Public License permits making a modified version and -letting the public access it on a server without ever releasing its -source code to the public. - - The GNU Affero General Public License is designed specifically to -ensure that, in such cases, the modified source code becomes available -to the community. It requires the operator of a network server to -provide the source code of the modified version running there to the -users of that server. Therefore, public use of a modified version, on -a publicly accessible server, gives the public access to the source -code of the modified version. - - An older license, called the Affero General Public License and -published by Affero, was designed to accomplish similar goals. This is -a different license, not a version of the Affero GPL, but Affero has -released a new version of the Affero GPL which permits relicensing under -this license. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU Affero General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Remote Network Interaction; Use with the GNU General Public License. - - Notwithstanding any other provision of this License, if you modify the -Program, your modified version must prominently offer all users -interacting with it remotely through a computer network (if your version -supports such interaction) an opportunity to receive the Corresponding -Source of your version by providing access to the Corresponding Source -from a network server at no charge, through some standard or customary -means of facilitating copying of software. This Corresponding Source -shall include the Corresponding Source for any work covered by version 3 -of the GNU General Public License that is incorporated pursuant to the -following paragraph. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the work with which it is combined will remain governed by version -3 of the GNU General Public License. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU Affero General Public License from time to time. Such new versions -will be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU Affero General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU Affero General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU Affero General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU Affero General Public License as published - by the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU Affero General Public License for more details. - - You should have received a copy of the GNU Affero General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If your software can interact with users remotely through a computer -network, you should also make sure that it provides a way for users to -get its source. For example, if your program is a web application, its -interface could display a "Source" link that leads users to an archive -of the code. There are many ways you could offer source, and different -solutions will be better for different programs; see section 13 for the -specific requirements. - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU AGPL, see -. diff --git a/roop-unleashed-main/README.md b/roop-unleashed-main/README.md deleted file mode 100644 index 0773a4bbc6fda74e2a063d1282a9c190658f9d5b..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/README.md +++ /dev/null @@ -1,253 +0,0 @@ -# roop-unleashed - -[Changelog](#changelog) โ€ข [Usage](#usage) โ€ข [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki) - - -Uncensored Deepfakes for images and videos without training and an easy-to-use GUI. - - -![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637) - -### Features - -- Platform-independant Browser GUI -- Selection of multiple input/output faces in one go -- Many different swapping modes, first detected, face selections, by gender -- Batch processing of images/videos -- Masking of face occluders using text prompts or automatically -- Optional Face Upscaler/Restoration using different enhancers -- Preview swapping from different video frames -- Live Fake Cam using your webcam -- Extras Tab for cutting videos etc. -- Settings - storing configuration for next session -- Theme Support - -and lots more... - - -## Disclaimer - -This project is for technical and academic use only. -Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users. -**Please do not apply it to illegal and unethical scenarios.** - -In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability - -### Installation - -Please refer to the [wiki](https://github.com/C0untFloyd/roop-unleashed/wiki). - -#### macOS Installation -Simply run the following command. It will check and install all dependencies if necessary. - -`/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)"` - - - -### Usage - -- Windows: run the `windows_run.bat` from the Installer. -- Linux: `python run.py` -- macOS: `sh runMacOS.sh` -- Dockerfile: - ```shell - docker build -t roop-unleashed . && docker run -t \ - -p 7860:7860 \ - -v ./config.yaml:/app/config.yaml \ - -v ./models:/app/models \ - -v ./temp:/app/temp \ - -v ./output:/app/output \ - roop-unleashed - ``` - - - Open In Colab - - - -Additional commandline arguments are currently unsupported and settings should be done via the UI. - -> Note: When you run this program for the first time, it will download some models roughly ~2Gb in size. - - - - -### Changelog - -**31.12.2024** v4.4.0 Hotfix - -Bugfix: Updated Colab to use present Cuda Drivers -Bugfix: Live-Cam not working because of new face swapper -Set default swapping model back to Insightface - -Happy New Year! - - -**30.12.2024** v4.4.0 - -- Added random face selection mode -- Added alternative face swapping model with 128px & 256 px output ([ReSwapper](https://github.com/somanchiu/ReSwapper/tree/main)) -- Video repair added to Extras Tab -- Updated most packages to newer versions. CUDA >= 12.4 now required! -- Several minor bugfixes and QoL Changes - - -**28.9.2024** v4.3.1 - -- Bugfix: Several possible memory leaks -- Added different output modes, e.g. to virtual cam stream -- New swapping mode "All input faces" -- Average total fps displayed and setting for autorun - - -**16.9.2024** v4.2.8 - -- Bugfix: Starting roop-unleashed without NVIDIA gpu but cuda option enabled -- Bugfix: Target Faces couldn't be moved left/right -- Bugfix: Enhancement and upscaling working again in virtual cam -- Corrupt videos caught when adding to target files, displaying warning msg -- Source Files Component cleared after face detection to release temp files -- Added masking and mouth restore options to virtual cam - - -**9.9.2024** v4.2.3 - -- Hotfix for gradio pydantic issue with fastapi -- Upgraded to Gradio 4.43 hoping it will fix remaining issues -- Added new action when no face detected -> use last swapped -- Specified image format for image controls - opening new tabs on preview images possible again! -- Hardcoded image output format for livecam to jpeg - might be faster than previous webp -- Chain events to be only executed if previous was a success - - -**5.9.2024** v4.2.0 - -- Added ability to move input & target faces order -- New CLI Arguments override settings -- Small UI changes to faceswapping tab -- Added mask option and code for restoration of original mouth area -- Updated gradio to v4.42.0 -- Added CLI Arguments --server_share and --cuda_device_id -- Added webp image support - - -**15.07.2024** v4.1.1 - -- Bugfix: Post-processing after swapping - - -**14.07.2024** v4.1.0 - -- Added subsample upscaling to increase swap resolution -- Upgraded gradio - - -**12.05.2024** v4.0.0 - -- Bugfix: Unnecessary init every frame in live-cam -- Bugfix: Installer downloading insightface package each run -- Added xseg masking to live-cam -- Added realesrganx2 to frame processors -- Upgraded some requirements -- Added subtypes and different model support to frame processors -- Allow frame processors to change resolutions of videos -- Different OpenCV Cap for MacOS Virtual Cam -- Added complete frame processing to extras tab -- Colorize, upscale and misc filters added - - -**22.04.2024** v3.9.0 - -- Bugfix: Face detection bounding box corrupt values at weird angles -- Rewrote mask previewing to work with every model -- Switching mask engines toggles text interactivity -- Clearing target files, resets face selection dropdown -- Massive rewrite of swapping architecture, needed for xseg implementation -- Added DFL Xseg Support for partial face occlusion -- Face masking only runs when there is a face detected -- Removed unnecessary toggle checkbox for text masking - - -**22.03.2024** v3.6.5 - -- Bugfix: Installer pulling latest update on first installation -- Bugfix: Regression issue, blurring/erosion missing from face swap -- Exposed erosion and blur amounts to UI -- Using same values for manual masking too - - -**20.03.2024** v3.6.3 - -- Bugfix: Workaround for Gradio Slider Change Bug -- Bugfix: CSS Styling to fix Gradio Image Height Bug -- Made face swapping mask offsets resolution independant -- Show offset mask as overlay -- Changed layout for masking - - -**18.03.2024** v3.6.0 - -- Updated to Gradio 4.21.0 - requiring many changes under the hood -- New manual masking (draw the mask yourself) -- Extras Tab, streamlined cutting/joining videos -- Re-added face selection by gender (on-demand loading, default turned off) -- Removed unnecessary activate live-cam option -- Added time info to preview frame and changed frame slider event to allow faster changes - - -**10.03.2024** v3.5.5 - -- Bugfix: Installer Path Env -- Bugfix: file attributes -- Video processing checks for presence of ffmpeg and displays warning if not found -- Removed gender + age detection to speed up processing. Option removed from UI -- Replaced restoreformer with restoreformer++ -- Live Cam recoded to run separate from virtual cam and without blocking controls -- Swapping with only 1 target face allows selecting from several input faces - - - -**08.01.2024** v3.5.0 - -- Bugfix: wrong access options when creating folders -- New auto rotation of horizontal faces, fixing bad landmark positions (expanded on ![PR 364](https://github.com/C0untFloyd/roop-unleashed/pull/364)) -- Simple VR Option for stereo Images/Movies, best used in selected face mode -- Added RestoreFormer Enhancer - https://github.com/wzhouxiff/RestoreFormer -- Bumped up package versions for onnx/Torch etc. - - -**16.10.2023** v3.3.4 - -**11.8.2023** v2.7.0 - -Initial Gradio Version - old TkInter Version now deprecated - -- Re-added unified padding to face enhancers -- Fixed DMDNet for all resolutions -- Selecting target face now automatically switches swapping mode to selected -- GPU providers are correctly set using the GUI (needs restart currently) -- Local output folder can be opened from page -- Unfinished extras functions disabled for now -- Installer checks out specific commit, allowing to go back to first install -- Updated readme for new gradio version -- Updated Colab - - -# Acknowledgements - -Lots of ideas, code or pre-trained models borrowed from the following projects: - -https://github.com/deepinsight/insightface
-https://github.com/s0md3v/roop
-https://github.com/AUTOMATIC1111/stable-diffusion-webui
-https://github.com/Hillobar/Rope
-https://github.com/TencentARC/GFPGAN
-https://github.com/kadirnar/codeformer-pip
-https://github.com/csxmli2016/DMDNet
-https://github.com/glucauze/sd-webui-faceswaplab
-https://github.com/ykk648/face_power
- -
-
-Thanks to all developers! - diff --git a/roop-unleashed-main/clip/__init__.py b/roop-unleashed-main/clip/__init__.py deleted file mode 100644 index dcc5619538c0f7c782508bdbd9587259d805e0d9..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .clip import * diff --git a/roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz b/roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz deleted file mode 100644 index 36a15856e00a06a9fbed8cdd34d2393fea4a3113..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a -size 1356917 diff --git a/roop-unleashed-main/clip/clip.py b/roop-unleashed-main/clip/clip.py deleted file mode 100644 index f983b7b35a19634bfc941733ab24d69b132ebeac..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/clip.py +++ /dev/null @@ -1,241 +0,0 @@ -import hashlib -import os -import urllib -import warnings -from typing import Any, Union, List - -import torch -from PIL import Image -from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize -from tqdm import tqdm - -from .model import build_model -from .simple_tokenizer import SimpleTokenizer as _Tokenizer - -try: - from torchvision.transforms import InterpolationMode - BICUBIC = InterpolationMode.BICUBIC -except ImportError: - BICUBIC = Image.BICUBIC - - - -__all__ = ["available_models", "load", "tokenize"] -_tokenizer = _Tokenizer() - -_MODELS = { - "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", - "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", - "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", - "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", - "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", - "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", - "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", - "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", - "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", -} - - -def _download(url: str, root: str): - os.makedirs(root, exist_ok=True) - filename = os.path.basename(url) - - expected_sha256 = url.split("/")[-2] - download_target = os.path.join(root, filename) - - if os.path.exists(download_target) and not os.path.isfile(download_target): - raise RuntimeError(f"{download_target} exists and is not a regular file") - - if os.path.isfile(download_target): - if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: - return download_target - else: - warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") - - with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: - with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: - while True: - buffer = source.read(8192) - if not buffer: - break - - output.write(buffer) - loop.update(len(buffer)) - - if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: - raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") - - return download_target - - -def _convert_image_to_rgb(image): - return image.convert("RGB") - - -def _transform(n_px): - return Compose([ - Resize(n_px, interpolation=BICUBIC), - CenterCrop(n_px), - _convert_image_to_rgb, - ToTensor(), - Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), - ]) - - -def available_models() -> List[str]: - """Returns the names of available CLIP models""" - return list(_MODELS.keys()) - - -def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): - """Load a CLIP model - - Parameters - ---------- - name : str - A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict - - device : Union[str, torch.device] - The device to put the loaded model - - jit : bool - Whether to load the optimized JIT model or more hackable non-JIT model (default). - - download_root: str - path to download the model files; by default, it uses "~/.cache/clip" - - Returns - ------- - model : torch.nn.Module - The CLIP model - - preprocess : Callable[[PIL.Image], torch.Tensor] - A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input - """ - if name in _MODELS: - model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) - elif os.path.isfile(name): - model_path = name - else: - raise RuntimeError(f"Model {name} not found; available models = {available_models()}") - - with open(model_path, 'rb') as opened_file: - try: - # loading JIT archive - model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() - state_dict = None - except RuntimeError: - # loading saved state dict - if jit: - warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") - jit = False - state_dict = torch.load(opened_file, map_location="cpu") - - if not jit: - model = build_model(state_dict or model.state_dict()).to(device) - if str(device) == "cpu": - model.float() - return model, _transform(model.visual.input_resolution) - - # patch the device names - device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) - device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] - - def _node_get(node: torch._C.Node, key: str): - """Gets attributes of a node which is polymorphic over return type. - - From https://github.com/pytorch/pytorch/pull/82628 - """ - sel = node.kindOf(key) - return getattr(node, sel)(key) - - def patch_device(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("prim::Constant"): - if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"): - node.copyAttributes(device_node) - - model.apply(patch_device) - patch_device(model.encode_image) - patch_device(model.encode_text) - - # patch dtype to float32 on CPU - if str(device) == "cpu": - float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) - float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] - float_node = float_input.node() - - def patch_float(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("aten::to"): - inputs = list(node.inputs()) - for i in [1, 2]: # dtype can be the second or third argument to aten::to() - if _node_get(inputs[i].node(), "value") == 5: - inputs[i].node().copyAttributes(float_node) - - model.apply(patch_float) - patch_float(model.encode_image) - patch_float(model.encode_text) - - model.float() - - return model, _transform(model.input_resolution.item()) - - -def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: - """ - Returns the tokenized representation of given input string(s) - - Parameters - ---------- - texts : Union[str, List[str]] - An input string or a list of input strings to tokenize - - context_length : int - The context length to use; all CLIP models use 77 as the context length - - truncate: bool - Whether to truncate the text in case its encoding is longer than the context length - - Returns - ------- - A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. - We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. - """ - if isinstance(texts, str): - texts = [texts] - - sot_token = _tokenizer.encoder["<|startoftext|>"] - eot_token = _tokenizer.encoder["<|endoftext|>"] - all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] - #if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): - # result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) - #else: - result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) - - for i, tokens in enumerate(all_tokens): - if len(tokens) > context_length: - if truncate: - tokens = tokens[:context_length] - tokens[-1] = eot_token - else: - raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") - result[i, :len(tokens)] = torch.tensor(tokens) - - return result diff --git a/roop-unleashed-main/clip/clipseg.py b/roop-unleashed-main/clip/clipseg.py deleted file mode 100644 index 6adc7e4893cbb2bff31eb822dacf96a7c9a87e27..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/clipseg.py +++ /dev/null @@ -1,538 +0,0 @@ -import math -from os.path import basename, dirname, join, isfile -import torch -from torch import nn -from torch.nn import functional as nnf -from torch.nn.modules.activation import ReLU - - -def get_prompt_list(prompt): - if prompt == 'plain': - return ['{}'] - elif prompt == 'fixed': - return ['a photo of a {}.'] - elif prompt == 'shuffle': - return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] - elif prompt == 'shuffle+': - return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', - 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', - 'a bad photo of a {}.', 'a photo of the {}.'] - else: - raise ValueError('Invalid value for prompt') - - -def forward_multihead_attention(x, b, with_aff=False, attn_mask=None): - """ - Simplified version of multihead attention (taken from torch source code but without tons of if clauses). - The mlp and layer norm come from CLIP. - x: input. - b: multihead attention module. - """ - - x_ = b.ln_1(x) - q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1) - tgt_len, bsz, embed_dim = q.size() - - head_dim = embed_dim // b.attn.num_heads - scaling = float(head_dim) ** -0.5 - - q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) - k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) - v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) - - q = q * scaling - - attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2 - if attn_mask is not None: - - - attn_mask_type, attn_mask = attn_mask - n_heads = attn_output_weights.size(0) // attn_mask.size(0) - attn_mask = attn_mask.repeat(n_heads, 1) - - if attn_mask_type == 'cls_token': - # the mask only affects similarities compared to the readout-token. - attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...] - # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0] - - if attn_mask_type == 'all': - # print(attn_output_weights.shape, attn_mask[:, None].shape) - attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None] - - - attn_output_weights = torch.softmax(attn_output_weights, dim=-1) - - attn_output = torch.bmm(attn_output_weights, v) - attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) - attn_output = b.attn.out_proj(attn_output) - - x = x + attn_output - x = x + b.mlp(b.ln_2(x)) - - if with_aff: - return x, attn_output_weights - else: - return x - - -class CLIPDenseBase(nn.Module): - - def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens): - super().__init__() - - import clip - - # prec = torch.FloatTensor - self.clip_model, _ = clip.load(version, device='cpu', jit=False) - self.model = self.clip_model.visual - - # if not None, scale conv weights such that we obtain n_tokens. - self.n_tokens = n_tokens - - for p in self.clip_model.parameters(): - p.requires_grad_(False) - - # conditional - if reduce_cond is not None: - self.reduce_cond = nn.Linear(512, reduce_cond) - for p in self.reduce_cond.parameters(): - p.requires_grad_(False) - else: - self.reduce_cond = None - - self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) - self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) - - self.reduce = nn.Linear(768, reduce_dim) - - self.prompt_list = get_prompt_list(prompt) - - # precomputed prompts - import pickle - if isfile('precomputed_prompt_vectors.pickle'): - precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) - self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} - else: - self.precomputed_prompts = dict() - - def rescaled_pos_emb(self, new_size): - assert len(new_size) == 2 - - a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) - b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T - return torch.cat([self.model.positional_embedding[:1], b]) - - def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): - - - with torch.no_grad(): - - inp_size = x_inp.shape[2:] - - if self.n_tokens is not None: - stride2 = x_inp.shape[2] // self.n_tokens - conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True) - x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation) - else: - x = self.model.conv1(x_inp) # shape = [*, width, grid, grid] - - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] - - x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] - - standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197 - - if x.shape[1] != standard_n_tokens: - new_shape = int(math.sqrt(x.shape[1]-1)) - x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:] - else: - x = x + self.model.positional_embedding.to(x.dtype) - - x = self.model.ln_pre(x) - - x = x.permute(1, 0, 2) # NLD -> LND - - activations, affinities = [], [] - for i, res_block in enumerate(self.model.transformer.resblocks): - - if mask is not None: - mask_layer, mask_type, mask_tensor = mask - if mask_layer == i or mask_layer == 'all': - # import ipdb; ipdb.set_trace() - size = int(math.sqrt(x.shape[0] - 1)) - - attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size)) - - else: - attn_mask = None - else: - attn_mask = None - - x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask) - - if i in extract_layers: - affinities += [aff_per_head] - - #if self.n_tokens is not None: - # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)] - #else: - activations += [x] - - if len(extract_layers) > 0 and i == max(extract_layers) and skip: - print('early skip') - break - - x = x.permute(1, 0, 2) # LND -> NLD - x = self.model.ln_post(x[:, 0, :]) - - if self.model.proj is not None: - x = x @ self.model.proj - - return x, activations, affinities - - def sample_prompts(self, words, prompt_list=None): - - prompt_list = prompt_list if prompt_list is not None else self.prompt_list - - prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) - prompts = [prompt_list[i] for i in prompt_indices] - return [promt.format(w) for promt, w in zip(prompts, words)] - - def get_cond_vec(self, conditional, batch_size): - # compute conditional from a single string - if conditional is not None and type(conditional) == str: - cond = self.compute_conditional(conditional) - cond = cond.repeat(batch_size, 1) - - # compute conditional from string list/tuple - elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: - assert len(conditional) == batch_size - cond = self.compute_conditional(conditional) - - # use conditional directly - elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: - cond = conditional - - # compute conditional from image - elif conditional is not None and type(conditional) == torch.Tensor: - with torch.no_grad(): - cond, _, _ = self.visual_forward(conditional) - else: - raise ValueError('invalid conditional') - return cond - - def compute_conditional(self, conditional): - import clip - - dev = next(self.parameters()).device - - if type(conditional) in {list, tuple}: - text_tokens = clip.tokenize(conditional).to(dev) - cond = self.clip_model.encode_text(text_tokens) - else: - if conditional in self.precomputed_prompts: - cond = self.precomputed_prompts[conditional].float().to(dev) - else: - text_tokens = clip.tokenize([conditional]).to(dev) - cond = self.clip_model.encode_text(text_tokens)[0] - - if self.shift_vector is not None: - return cond + self.shift_vector - else: - return cond - - -def clip_load_untrained(version): - assert version == 'ViT-B/16' - from clip.model import CLIP - from clip.clip import _MODELS, _download - model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval() - state_dict = model.state_dict() - - vision_width = state_dict["visual.conv1.weight"].shape[0] - vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) - vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] - grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) - image_resolution = vision_patch_size * grid_size - embed_dim = state_dict["text_projection"].shape[1] - context_length = state_dict["positional_embedding"].shape[0] - vocab_size = state_dict["token_embedding.weight"].shape[0] - transformer_width = state_dict["ln_final.weight"].shape[0] - transformer_heads = transformer_width // 64 - transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) - - return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, - context_length, vocab_size, transformer_width, transformer_heads, transformer_layers) - - -class CLIPDensePredT(CLIPDenseBase): - - def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', - extra_blocks=0, reduce_cond=None, fix_shift=False, - learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False, - add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False): - - super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) - # device = 'cpu' - - self.extract_layers = extract_layers - self.cond_layer = cond_layer - self.limit_to_clip_only = limit_to_clip_only - self.process_cond = None - self.rev_activations = rev_activations - - depth = len(extract_layers) - - if add_calibration: - self.calibration_conds = 1 - - self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None - - self.add_activation1 = True - - self.version = version - - self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] - - if fix_shift: - # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False) - self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False) - # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False) - else: - self.shift_vector = None - - if trans_conv is None: - trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] - else: - # explicitly define transposed conv kernel size - trans_conv_ks = (trans_conv, trans_conv) - - if not complex_trans_conv: - self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) - else: - assert trans_conv_ks[0] == trans_conv_ks[1] - - tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4) - - self.trans_conv = nn.Sequential( - nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1), - nn.ReLU(), - nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]), - nn.ReLU(), - nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]), - ) - -# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) - - assert len(self.extract_layers) == depth - - self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) - self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) - self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) - - # refinement and trans conv - - if learn_trans_conv_only: - for p in self.parameters(): - p.requires_grad_(False) - - for p in self.trans_conv.parameters(): - p.requires_grad_(True) - - self.prompt_list = get_prompt_list(prompt) - - - def forward(self, inp_image, conditional=None, return_features=False, mask=None): - - assert type(return_features) == bool - - inp_image = inp_image.to(self.model.positional_embedding.device) - - if mask is not None: - raise ValueError('mask not supported') - - # x_inp = normalize(inp_image) - x_inp = inp_image - - bs, dev = inp_image.shape[0], x_inp.device - - cond = self.get_cond_vec(conditional, bs) - - visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) - - activation1 = activations[0] - activations = activations[1:] - - _activations = activations[::-1] if not self.rev_activations else activations - - a = None - for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)): - - if a is not None: - a = reduce(activation) + a - else: - a = reduce(activation) - - if i == self.cond_layer: - if self.reduce_cond is not None: - cond = self.reduce_cond(cond) - - a = self.film_mul(cond) * a + self.film_add(cond) - - a = block(a) - - for block in self.extra_blocks: - a = a + block(a) - - a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens - - size = int(math.sqrt(a.shape[2])) - - a = a.view(bs, a.shape[1], size, size) - - a = self.trans_conv(a) - - if self.n_tokens is not None: - a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True) - - if self.upsample_proj is not None: - a = self.upsample_proj(a) - a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') - - if return_features: - return a, visual_q, cond, [activation1] + activations - else: - return a, - - - -class CLIPDensePredTMasked(CLIPDensePredT): - - def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, - prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False, - refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None): - - super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim, - n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond, - fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only, - limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration, - n_tokens=n_tokens) - - def visual_forward_masked(self, img_s, seg_s): - return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s)) - - def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False): - - if seg_s is None: - cond = cond_or_img_s - else: - img_s = cond_or_img_s - - with torch.no_grad(): - cond, _, _ = self.visual_forward_masked(img_s, seg_s) - - return super().forward(img_q, cond, return_features=return_features) - - - -class CLIPDenseBaseline(CLIPDenseBase): - - def __init__(self, version='ViT-B/32', cond_layer=0, - extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed', - reduce_cond=None, limit_to_clip_only=False, n_tokens=None): - - super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) - device = 'cpu' - - # self.cond_layer = cond_layer - self.extract_layer = extract_layer - self.limit_to_clip_only = limit_to_clip_only - self.shift_vector = None - - self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] - - assert reduce2_dim is not None - - self.reduce2 = nn.Sequential( - nn.Linear(reduce_dim, reduce2_dim), - nn.ReLU(), - nn.Linear(reduce2_dim, reduce_dim) - ) - - trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] - self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) - - - def forward(self, inp_image, conditional=None, return_features=False): - - inp_image = inp_image.to(self.model.positional_embedding.device) - - # x_inp = normalize(inp_image) - x_inp = inp_image - - bs, dev = inp_image.shape[0], x_inp.device - - cond = self.get_cond_vec(conditional, bs) - - visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer]) - - a = activations[0] - a = self.reduce(a) - a = self.film_mul(cond) * a + self.film_add(cond) - - if self.reduce2 is not None: - a = self.reduce2(a) - - # the original model would execute a transformer block here - - a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens - - size = int(math.sqrt(a.shape[2])) - - a = a.view(bs, a.shape[1], size, size) - a = self.trans_conv(a) - - if return_features: - return a, visual_q, cond, activations - else: - return a, - - -class CLIPSegMultiLabel(nn.Module): - - def __init__(self, model) -> None: - super().__init__() - - from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC - - self.pascal_classes = VOC - - from clip.clipseg import CLIPDensePredT - from general_utils import load_model - # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False) - self.clipseg = load_model(model, strict=False) - - self.clipseg.eval() - - def forward(self, x): - - bs = x.shape[0] - out = torch.ones(21, bs, 352, 352).to(x.device) * -10 - - for class_id, class_name in enumerate(self.pascal_classes): - - fac = 3 if class_name == 'background' else 1 - - with torch.no_grad(): - pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac - - out[class_id] += pred - - - out = out.permute(1, 0, 2, 3) - - return out - - # construct output tensor - diff --git a/roop-unleashed-main/clip/model.py b/roop-unleashed-main/clip/model.py deleted file mode 100644 index 232b7792eb97440642547bd462cf128df9243933..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/model.py +++ /dev/null @@ -1,436 +0,0 @@ -from collections import OrderedDict -from typing import Tuple, Union - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn - - -class Bottleneck(nn.Module): - expansion = 4 - - def __init__(self, inplanes, planes, stride=1): - super().__init__() - - # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 - self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) - self.bn1 = nn.BatchNorm2d(planes) - self.relu1 = nn.ReLU(inplace=True) - - self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(planes) - self.relu2 = nn.ReLU(inplace=True) - - self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() - - self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.relu3 = nn.ReLU(inplace=True) - - self.downsample = None - self.stride = stride - - if stride > 1 or inplanes != planes * Bottleneck.expansion: - # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 - self.downsample = nn.Sequential(OrderedDict([ - ("-1", nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), - ("1", nn.BatchNorm2d(planes * self.expansion)) - ])) - - def forward(self, x: torch.Tensor): - identity = x - - out = self.relu1(self.bn1(self.conv1(x))) - out = self.relu2(self.bn2(self.conv2(out))) - out = self.avgpool(out) - out = self.bn3(self.conv3(out)) - - if self.downsample is not None: - identity = self.downsample(x) - - out += identity - out = self.relu3(out) - return out - - -class AttentionPool2d(nn.Module): - def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): - super().__init__() - self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) - self.k_proj = nn.Linear(embed_dim, embed_dim) - self.q_proj = nn.Linear(embed_dim, embed_dim) - self.v_proj = nn.Linear(embed_dim, embed_dim) - self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) - self.num_heads = num_heads - - def forward(self, x): - x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC - x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC - x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC - x, _ = F.multi_head_attention_forward( - query=x[:1], key=x, value=x, - embed_dim_to_check=x.shape[-1], - num_heads=self.num_heads, - q_proj_weight=self.q_proj.weight, - k_proj_weight=self.k_proj.weight, - v_proj_weight=self.v_proj.weight, - in_proj_weight=None, - in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), - bias_k=None, - bias_v=None, - add_zero_attn=False, - dropout_p=0, - out_proj_weight=self.c_proj.weight, - out_proj_bias=self.c_proj.bias, - use_separate_proj_weight=True, - training=self.training, - need_weights=False - ) - return x.squeeze(0) - - -class ModifiedResNet(nn.Module): - """ - A ResNet class that is similar to torchvision's but contains the following changes: - - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - - The final pooling layer is a QKV attention instead of an average pool - """ - - def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): - super().__init__() - self.output_dim = output_dim - self.input_resolution = input_resolution - - # the 3-layer stem - self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) - self.bn1 = nn.BatchNorm2d(width // 2) - self.relu1 = nn.ReLU(inplace=True) - self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(width // 2) - self.relu2 = nn.ReLU(inplace=True) - self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) - self.bn3 = nn.BatchNorm2d(width) - self.relu3 = nn.ReLU(inplace=True) - self.avgpool = nn.AvgPool2d(2) - - # residual layers - self._inplanes = width # this is a *mutable* variable used during construction - self.layer1 = self._make_layer(width, layers[0]) - self.layer2 = self._make_layer(width * 2, layers[1], stride=2) - self.layer3 = self._make_layer(width * 4, layers[2], stride=2) - self.layer4 = self._make_layer(width * 8, layers[3], stride=2) - - embed_dim = width * 32 # the ResNet feature dimension - self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) - - def _make_layer(self, planes, blocks, stride=1): - layers = [Bottleneck(self._inplanes, planes, stride)] - - self._inplanes = planes * Bottleneck.expansion - for _ in range(1, blocks): - layers.append(Bottleneck(self._inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - def stem(x): - x = self.relu1(self.bn1(self.conv1(x))) - x = self.relu2(self.bn2(self.conv2(x))) - x = self.relu3(self.bn3(self.conv3(x))) - x = self.avgpool(x) - return x - - x = x.type(self.conv1.weight.dtype) - x = stem(x) - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - x = self.attnpool(x) - - return x - - -class LayerNorm(nn.LayerNorm): - """Subclass torch's LayerNorm to handle fp16.""" - - def forward(self, x: torch.Tensor): - orig_type = x.dtype - ret = super().forward(x.type(torch.float32)) - return ret.type(orig_type) - - -class QuickGELU(nn.Module): - def forward(self, x: torch.Tensor): - return x * torch.sigmoid(1.702 * x) - - -class ResidualAttentionBlock(nn.Module): - def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): - super().__init__() - - self.attn = nn.MultiheadAttention(d_model, n_head) - self.ln_1 = LayerNorm(d_model) - self.mlp = nn.Sequential(OrderedDict([ - ("c_fc", nn.Linear(d_model, d_model * 4)), - ("gelu", QuickGELU()), - ("c_proj", nn.Linear(d_model * 4, d_model)) - ])) - self.ln_2 = LayerNorm(d_model) - self.attn_mask = attn_mask - - def attention(self, x: torch.Tensor): - self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None - return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] - - def forward(self, x: torch.Tensor): - x = x + self.attention(self.ln_1(x)) - x = x + self.mlp(self.ln_2(x)) - return x - - -class Transformer(nn.Module): - def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): - super().__init__() - self.width = width - self.layers = layers - self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) - - def forward(self, x: torch.Tensor): - return self.resblocks(x) - - -class VisionTransformer(nn.Module): - def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): - super().__init__() - self.input_resolution = input_resolution - self.output_dim = output_dim - self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) - - scale = width ** -0.5 - self.class_embedding = nn.Parameter(scale * torch.randn(width)) - self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) - self.ln_pre = LayerNorm(width) - - self.transformer = Transformer(width, layers, heads) - - self.ln_post = LayerNorm(width) - self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) - - def forward(self, x: torch.Tensor): - x = self.conv1(x) # shape = [*, width, grid, grid] - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] - x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] - x = x + self.positional_embedding.to(x.dtype) - x = self.ln_pre(x) - - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x) - x = x.permute(1, 0, 2) # LND -> NLD - - x = self.ln_post(x[:, 0, :]) - - if self.proj is not None: - x = x @ self.proj - - return x - - -class CLIP(nn.Module): - def __init__(self, - embed_dim: int, - # vision - image_resolution: int, - vision_layers: Union[Tuple[int, int, int, int], int], - vision_width: int, - vision_patch_size: int, - # text - context_length: int, - vocab_size: int, - transformer_width: int, - transformer_heads: int, - transformer_layers: int - ): - super().__init__() - - self.context_length = context_length - - if isinstance(vision_layers, (tuple, list)): - vision_heads = vision_width * 32 // 64 - self.visual = ModifiedResNet( - layers=vision_layers, - output_dim=embed_dim, - heads=vision_heads, - input_resolution=image_resolution, - width=vision_width - ) - else: - vision_heads = vision_width // 64 - self.visual = VisionTransformer( - input_resolution=image_resolution, - patch_size=vision_patch_size, - width=vision_width, - layers=vision_layers, - heads=vision_heads, - output_dim=embed_dim - ) - - self.transformer = Transformer( - width=transformer_width, - layers=transformer_layers, - heads=transformer_heads, - attn_mask=self.build_attention_mask() - ) - - self.vocab_size = vocab_size - self.token_embedding = nn.Embedding(vocab_size, transformer_width) - self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) - self.ln_final = LayerNorm(transformer_width) - - self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - - self.initialize_parameters() - - def initialize_parameters(self): - nn.init.normal_(self.token_embedding.weight, std=0.02) - nn.init.normal_(self.positional_embedding, std=0.01) - - if isinstance(self.visual, ModifiedResNet): - if self.visual.attnpool is not None: - std = self.visual.attnpool.c_proj.in_features ** -0.5 - nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) - nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) - nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) - nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) - - for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: - for name, param in resnet_block.named_parameters(): - if name.endswith("bn3.weight"): - nn.init.zeros_(param) - - proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) - attn_std = self.transformer.width ** -0.5 - fc_std = (2 * self.transformer.width) ** -0.5 - for block in self.transformer.resblocks: - nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - - if self.text_projection is not None: - nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) - - def build_attention_mask(self): - # lazily create causal attention mask, with full attention between the vision tokens - # pytorch uses additive attention mask; fill with -inf - mask = torch.empty(self.context_length, self.context_length) - mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal - return mask - - @property - def dtype(self): - return self.visual.conv1.weight.dtype - - def encode_image(self, image): - return self.visual(image.type(self.dtype)) - - def encode_text(self, text): - x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] - - x = x + self.positional_embedding.type(self.dtype) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x) - x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_final(x).type(self.dtype) - - # x.shape = [batch_size, n_ctx, transformer.width] - # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection - - return x - - def forward(self, image, text): - image_features = self.encode_image(image) - text_features = self.encode_text(text) - - # normalized features - image_features = image_features / image_features.norm(dim=1, keepdim=True) - text_features = text_features / text_features.norm(dim=1, keepdim=True) - - # cosine similarity as logits - logit_scale = self.logit_scale.exp() - logits_per_image = logit_scale * image_features @ text_features.t() - logits_per_text = logits_per_image.t() - - # shape = [global_batch_size, global_batch_size] - return logits_per_image, logits_per_text - - -def convert_weights(model: nn.Module): - """Convert applicable model parameters to fp16""" - - def _convert_weights_to_fp16(l): - if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): - l.weight.data = l.weight.data.half() - if l.bias is not None: - l.bias.data = l.bias.data.half() - - if isinstance(l, nn.MultiheadAttention): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: - tensor = getattr(l, attr) - if tensor is not None: - tensor.data = tensor.data.half() - - for name in ["text_projection", "proj"]: - if hasattr(l, name): - attr = getattr(l, name) - if attr is not None: - attr.data = attr.data.half() - - model.apply(_convert_weights_to_fp16) - - -def build_model(state_dict: dict): - vit = "visual.proj" in state_dict - - if vit: - vision_width = state_dict["visual.conv1.weight"].shape[0] - vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) - vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] - grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) - image_resolution = vision_patch_size * grid_size - else: - counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] - vision_layers = tuple(counts) - vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] - output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) - vision_patch_size = None - assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] - image_resolution = output_width * 32 - - embed_dim = state_dict["text_projection"].shape[1] - context_length = state_dict["positional_embedding"].shape[0] - vocab_size = state_dict["token_embedding.weight"].shape[0] - transformer_width = state_dict["ln_final.weight"].shape[0] - transformer_heads = transformer_width // 64 - transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks"))) - - model = CLIP( - embed_dim, - image_resolution, vision_layers, vision_width, vision_patch_size, - context_length, vocab_size, transformer_width, transformer_heads, transformer_layers - ) - - for key in ["input_resolution", "context_length", "vocab_size"]: - if key in state_dict: - del state_dict[key] - - convert_weights(model) - model.load_state_dict(state_dict) - return model.eval() diff --git a/roop-unleashed-main/clip/simple_tokenizer.py b/roop-unleashed-main/clip/simple_tokenizer.py deleted file mode 100644 index 0a66286b7d5019c6e221932a813768038f839c91..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/simple_tokenizer.py +++ /dev/null @@ -1,132 +0,0 @@ -import gzip -import html -import os -from functools import lru_cache - -import ftfy -import regex as re - - -@lru_cache() -def default_bpe(): - return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") - - -@lru_cache() -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a signficant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("ยก"), ord("ยฌ")+1))+list(range(ord("ยฎ"), ord("รฟ")+1)) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8+n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -def get_pairs(word): - """Return set of symbol pairs in a word. - Word is represented as tuple of symbols (symbols being variable-length strings). - """ - pairs = set() - prev_char = word[0] - for char in word[1:]: - pairs.add((prev_char, char)) - prev_char = char - return pairs - - -def basic_clean(text): - text = ftfy.fix_text(text) - text = html.unescape(html.unescape(text)) - return text.strip() - - -def whitespace_clean(text): - text = re.sub(r'\s+', ' ', text) - text = text.strip() - return text - - -class SimpleTokenizer(object): - def __init__(self, bpe_path: str = default_bpe()): - self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') - merges = merges[1:49152-256-2+1] - merges = [tuple(merge.split()) for merge in merges] - vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v+'' for v in vocab] - for merge in merges: - vocab.append(''.join(merge)) - vocab.extend(['<|startoftext|>', '<|endoftext|>']) - self.encoder = dict(zip(vocab, range(len(vocab)))) - self.decoder = {v: k for k, v in self.encoder.items()} - self.bpe_ranks = dict(zip(merges, range(len(merges)))) - self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} - self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) - - def bpe(self, token): - if token in self.cache: - return self.cache[token] - word = tuple(token[:-1]) + ( token[-1] + '',) - pairs = get_pairs(word) - - if not pairs: - return token+'' - - while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) - if bigram not in self.bpe_ranks: - break - first, second = bigram - new_word = [] - i = 0 - while i < len(word): - try: - j = word.index(first, i) - new_word.extend(word[i:j]) - i = j - except: - new_word.extend(word[i:]) - break - - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) - i += 2 - else: - new_word.append(word[i]) - i += 1 - new_word = tuple(new_word) - word = new_word - if len(word) == 1: - break - else: - pairs = get_pairs(word) - word = ' '.join(word) - self.cache[token] = word - return word - - def encode(self, text): - bpe_tokens = [] - text = whitespace_clean(basic_clean(text)).lower() - for token in re.findall(self.pat, text): - token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) - bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) - return bpe_tokens - - def decode(self, tokens): - text = ''.join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') - return text diff --git a/roop-unleashed-main/clip/vitseg.py b/roop-unleashed-main/clip/vitseg.py deleted file mode 100644 index ed621431ddf930fcfa27b5929999776b96fede63..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/clip/vitseg.py +++ /dev/null @@ -1,286 +0,0 @@ -import math -from posixpath import basename, dirname, join -# import clip -from clip.model import convert_weights -import torch -import json -from torch import nn -from torch.nn import functional as nnf -from torch.nn.modules import activation -from torch.nn.modules.activation import ReLU -from torchvision import transforms - -normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) - -from torchvision.models import ResNet - - -def process_prompts(conditional, prompt_list, conditional_map): - # DEPRECATED - - # randomly sample a synonym - words = [conditional_map[int(i)] for i in conditional] - words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words] - words = [w.replace('_', ' ') for w in words] - - if prompt_list is not None: - prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) - prompts = [prompt_list[i] for i in prompt_indices] - else: - prompts = ['a photo of {}'] * (len(words)) - - return [promt.format(w) for promt, w in zip(prompts, words)] - - -class VITDenseBase(nn.Module): - - def rescaled_pos_emb(self, new_size): - assert len(new_size) == 2 - - a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) - b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T - return torch.cat([self.model.positional_embedding[:1], b]) - - def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): - - with torch.no_grad(): - - x_inp = nnf.interpolate(x_inp, (384, 384)) - - x = self.model.patch_embed(x_inp) - cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks - if self.model.dist_token is None: - x = torch.cat((cls_token, x), dim=1) - else: - x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1) - x = self.model.pos_drop(x + self.model.pos_embed) - - activations = [] - for i, block in enumerate(self.model.blocks): - x = block(x) - - if i in extract_layers: - # permute to be compatible with CLIP - activations += [x.permute(1,0,2)] - - x = self.model.norm(x) - x = self.model.head(self.model.pre_logits(x[:, 0])) - - # again for CLIP compatibility - # x = x.permute(1, 0, 2) - - return x, activations, None - - def sample_prompts(self, words, prompt_list=None): - - prompt_list = prompt_list if prompt_list is not None else self.prompt_list - - prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) - prompts = [prompt_list[i] for i in prompt_indices] - return [promt.format(w) for promt, w in zip(prompts, words)] - - def get_cond_vec(self, conditional, batch_size): - # compute conditional from a single string - if conditional is not None and type(conditional) == str: - cond = self.compute_conditional(conditional) - cond = cond.repeat(batch_size, 1) - - # compute conditional from string list/tuple - elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: - assert len(conditional) == batch_size - cond = self.compute_conditional(conditional) - - # use conditional directly - elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: - cond = conditional - - # compute conditional from image - elif conditional is not None and type(conditional) == torch.Tensor: - with torch.no_grad(): - cond, _, _ = self.visual_forward(conditional) - else: - raise ValueError('invalid conditional') - return cond - - def compute_conditional(self, conditional): - import clip - - dev = next(self.parameters()).device - - if type(conditional) in {list, tuple}: - text_tokens = clip.tokenize(conditional).to(dev) - cond = self.clip_model.encode_text(text_tokens) - else: - if conditional in self.precomputed_prompts: - cond = self.precomputed_prompts[conditional].float().to(dev) - else: - text_tokens = clip.tokenize([conditional]).to(dev) - cond = self.clip_model.encode_text(text_tokens)[0] - - return cond - - -class VITDensePredT(VITDenseBase): - - def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', - depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False, - learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False, - add_calibration=False, process_cond=None, not_pretrained=False): - super().__init__() - # device = 'cpu' - - self.extract_layers = extract_layers - self.cond_layer = cond_layer - self.limit_to_clip_only = limit_to_clip_only - self.process_cond = None - - if add_calibration: - self.calibration_conds = 1 - - self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None - - self.add_activation1 = True - - import timm - self.model = timm.create_model('vit_base_patch16_384', pretrained=True) - self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond) - - for p in self.model.parameters(): - p.requires_grad_(False) - - import clip - self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False) - # del self.clip_model.visual - - - self.token_shape = (14, 14) - - # conditional - if reduce_cond is not None: - self.reduce_cond = nn.Linear(512, reduce_cond) - for p in self.reduce_cond.parameters(): - p.requires_grad_(False) - else: - self.reduce_cond = None - - # self.film = AVAILABLE_BLOCKS['film'](512, 128) - self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) - self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) - - # DEPRECATED - # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))} - - assert len(self.extract_layers) == depth - - self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) - self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) - self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) - - trans_conv_ks = (16, 16) - self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) - - # refinement and trans conv - - if learn_trans_conv_only: - for p in self.parameters(): - p.requires_grad_(False) - - for p in self.trans_conv.parameters(): - p.requires_grad_(True) - - if prompt == 'fixed': - self.prompt_list = ['a photo of a {}.'] - elif prompt == 'shuffle': - self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] - elif prompt == 'shuffle+': - self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', - 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', - 'a bad photo of a {}.', 'a photo of the {}.'] - elif prompt == 'shuffle_clip': - from models.clip_prompts import imagenet_templates - self.prompt_list = imagenet_templates - - if process_cond is not None: - if process_cond == 'clamp' or process_cond[0] == 'clamp': - - val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2 - - def clamp_vec(x): - return torch.clamp(x, -val, val) - - self.process_cond = clamp_vec - - elif process_cond.endswith('.pth'): - - shift = torch.load(process_cond) - def add_shift(x): - return x + shift.to(x.device) - - self.process_cond = add_shift - - import pickle - precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) - self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} - - - def forward(self, inp_image, conditional=None, return_features=False, mask=None): - - assert type(return_features) == bool - - # inp_image = inp_image.to(self.model.positional_embedding.device) - - if mask is not None: - raise ValueError('mask not supported') - - # x_inp = normalize(inp_image) - x_inp = inp_image - - bs, dev = inp_image.shape[0], x_inp.device - - inp_image_size = inp_image.shape[2:] - - cond = self.get_cond_vec(conditional, bs) - - visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) - - activation1 = activations[0] - activations = activations[1:] - - a = None - for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)): - - if a is not None: - a = reduce(activation) + a - else: - a = reduce(activation) - - if i == self.cond_layer: - if self.reduce_cond is not None: - cond = self.reduce_cond(cond) - - a = self.film_mul(cond) * a + self.film_add(cond) - - a = block(a) - - for block in self.extra_blocks: - a = a + block(a) - - a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens - - size = int(math.sqrt(a.shape[2])) - - a = a.view(bs, a.shape[1], size, size) - - if self.trans_conv is not None: - a = self.trans_conv(a) - - if self.upsample_proj is not None: - a = self.upsample_proj(a) - a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') - - a = nnf.interpolate(a, inp_image_size) - - if return_features: - return a, visual_q, cond, [activation1] + activations - else: - return a, diff --git a/roop-unleashed-main/config_colab.yaml b/roop-unleashed-main/config_colab.yaml deleted file mode 100644 index 2c47f3f6f17f35eeb2089e8aba2ff42c80077ba5..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/config_colab.yaml +++ /dev/null @@ -1,14 +0,0 @@ -clear_output: true -force_cpu: false -max_threads: 3 -memory_limit: 0 -output_image_format: png -output_template: '{file}_{time}' -output_video_codec: libx264 -output_video_format: mp4 -provider: cuda -selected_theme: Default -server_name: '' -server_port: 0 -server_share: true -video_quality: 14 diff --git a/roop-unleashed-main/docs/screenshot.png b/roop-unleashed-main/docs/screenshot.png deleted file mode 100644 index cc5fd8868554b756c9e5630e7185c9c52bea4cdb..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/docs/screenshot.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a86df433a470c2b123dbcc4b3e93b7ba00f261a862e5a5b8c747764dc5d6c147 -size 3549458 diff --git a/roop-unleashed-main/installer/installer.py b/roop-unleashed-main/installer/installer.py deleted file mode 100644 index c19769089181ad09ba9e6419ed84c87b838f5975..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/installer/installer.py +++ /dev/null @@ -1,87 +0,0 @@ -import argparse -import glob -import os -import shutil -import site -import subprocess -import sys - - -script_dir = os.getcwd() - - -def run_cmd(cmd, capture_output=False, env=None): - # Run shell commands - return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env) - - -def check_env(): - # If we have access to conda, we are probably in an environment - conda_not_exist = run_cmd("conda", capture_output=True).returncode - if conda_not_exist: - print("Conda is not installed. Exiting...") - sys.exit() - - # Ensure this is a new environment and not the base environment - if os.environ["CONDA_DEFAULT_ENV"] == "base": - print("Create an environment for this project and activate it. Exiting...") - sys.exit() - - -def install_dependencies(): - global MY_PATH - - # Install Git and clone repo - run_cmd("conda install -y -k git") - run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git") - os.chdir(MY_PATH) - run_cmd("git checkout 5bfafdc97a0c47b46ec83e6530a57399aaad75d7") - # Installs dependencies from requirements.txt - run_cmd("python -m pip install -r requirements.txt") - - - -def update_dependencies(): - global MY_PATH - - os.chdir(MY_PATH) - # do a hard reset for to update even if there are local changes - run_cmd("git fetch --all") - run_cmd("git reset --hard origin/main") - run_cmd("git pull") - # Installs/Updates dependencies from all requirements.txt - run_cmd("python -m pip install -r requirements.txt") - - -def start_app(): - global MY_PATH - - os.chdir(MY_PATH) - # forward commandline arguments - sys.argv.pop(0) - args = ' '.join(sys.argv) - print("Launching App") - run_cmd(f'python run.py {args}') - - -if __name__ == "__main__": - global MY_PATH - - MY_PATH = "roop-unleashed" - - - # Verifies we are in a conda environment - check_env() - - # If webui has already been installed, skip and run - if not os.path.exists(MY_PATH): - install_dependencies() - else: - # moved update from batch to here, because of batch limitations - updatechoice = input("Check for Updates? [y/n]").lower() - if updatechoice == "y": - update_dependencies() - - # Run the model with webui - os.chdir(script_dir) - start_app() diff --git a/roop-unleashed-main/installer/macOSinstaller.sh b/roop-unleashed-main/installer/macOSinstaller.sh deleted file mode 100644 index 90eb3ddd31727c81dbd702cb8327fdbfb06193f0..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/installer/macOSinstaller.sh +++ /dev/null @@ -1,73 +0,0 @@ -#!/bin/bash - -# This script checks and installs all dependencies which are needed to run roop-unleashed. After that, it clones the repo. -# Execute this easily with /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh) - -# Function to check if a command exists -command_exists() { - command -v "$1" >/dev/null 2>&1 -} - -echo "Starting check and installation process of dependencies for roop-unleashed" - -# Check if Homebrew is installed -if ! command_exists brew; then - echo "Homebrew is not installed. Starting installation..." - /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" -else - echo "Homebrew is already installed." -fi - -# Update Homebrew -echo "Updating Homebrew..." -brew update - -# Check if Python 3.11 is installed -if brew list --versions python@3.11 >/dev/null; then - echo "Python 3.11 is already installed." -else - echo "Python 3.11 is not installed. Installing it now..." - brew install python@3.11 -fi - -# Check if python-tk@3.11 is installed -if brew list --versions python-tk@3.11 >/dev/null; then - echo "python-tk@3.11 is already installed." -else - echo "python-tk@3.11 is not installed. Installing it now..." - brew install python-tk@3.11 -fi - -# Check if ffmpeg is installed -if command_exists ffmpeg; then - echo "ffmpeg is already installed." -else - echo "ffmpeg is not installed. Installing it now..." - brew install ffmpeg -fi - -# Check if git is installed -if command_exists git; then - echo "git is already installed." -else - echo "git is not installed. Installing it now..." - brew install git -fi - -# Clone the repository -REPO_URL="https://github.com/C0untFloyd/roop-unleashed.git" -REPO_NAME="roop-unleashed" - -echo "Cloning the repository $REPO_URL..." -git clone $REPO_URL - -# Check if the repository was cloned successfully -if [ -d "$REPO_NAME" ]; then - echo "Repository cloned successfully. Changing into directory $REPO_NAME..." - cd "$REPO_NAME" -else - echo "Failed to clone the repository." -fi - -echo "Check and installation process completed." - diff --git a/roop-unleashed-main/installer/windows_run.bat b/roop-unleashed-main/installer/windows_run.bat deleted file mode 100644 index cb5f90dece8a3717644e08c159741a9d7baacd15..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/installer/windows_run.bat +++ /dev/null @@ -1,95 +0,0 @@ -@echo off - -REM No CLI arguments supported anymore -set COMMANDLINE_ARGS= - -cd /D "%~dp0" - -echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end - -set PATH=%PATH%;%SystemRoot%\system32 - -@rem config -set INSTALL_DIR=%cd%\installer_files -set CONDA_ROOT_PREFIX=%cd%\installer_files\conda -set INSTALL_ENV_DIR=%cd%\installer_files\env -set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe -set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/7.1/ffmpeg-7.1-essentials_build.zip -set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg -set INSIGHTFACE_PACKAGE_URL=https://github.com/C0untFloyd/roop-unleashed/releases/download/3.6.6/insightface-0.7.3-cp310-cp310-win_amd64.whl -set INSIGHTFACE_PACKAGE_PATH=%INSTALL_DIR%\insightface-0.7.3-cp310-cp310-win_amd64.whl - -set conda_exists=F -set ffmpeg_exists=F - -@rem figure out whether git and conda needs to be installed -call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1 -if "%ERRORLEVEL%" EQU "0" set conda_exists=T - -@rem Check if FFmpeg is already in PATH -where ffmpeg >nul 2>&1 -if "%ERRORLEVEL%" EQU "0" ( - echo FFmpeg is already installed. - set ffmpeg_exists=T -) - -@rem (if necessary) install git and conda into a contained environment - -@rem download conda -if "%conda_exists%" == "F" ( - echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe - mkdir "%INSTALL_DIR%" - call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end ) - echo Installing Miniconda to %CONDA_ROOT_PREFIX% - start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX% - - @rem test the conda binary - echo Miniconda version: - call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end ) -) - -@rem create the installer env -if not exist "%INSTALL_ENV_DIR%" ( - echo Creating Conda Environment - call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo ERROR: Conda environment creation failed. && goto end ) - @rem check if conda environment was actually created - if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end ) - @rem activate installer env - call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end ) - @rem Download insightface package - echo Downloading insightface package from %INSIGHTFACE_PACKAGE_URL% to %INSIGHTFACE_PACKAGE_PATH% - call curl -Lk "%INSIGHTFACE_PACKAGE_URL%" > "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package failed to download. && goto end ) - @rem install insightface package using pip - echo Installing insightface package - call pip install "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package installation failed. && goto end ) -) - -@rem Download and install FFmpeg if not already installed -if "%ffmpeg_exists%" == "F" ( - if not exist "%INSTALL_FFMPEG_DIR%" ( - echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR% - call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end ) - call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'" - cd "%INSTALL_DIR%" - move ffmpeg-* ffmpeg - setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%" - echo To use videos, you need to restart roop after this installation. - cd .. - ) -) else ( - echo Skipping FFmpeg installation as it is already available. -) - -@rem setup installer env -@rem check if conda environment was actually created -if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end ) -@rem activate installer env -call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end ) -echo Launching roop unleashed -call python installer.py %COMMANDLINE_ARGS% - -echo. -echo Done! - -:end -pause diff --git a/roop-unleashed-main/mypy.ini b/roop-unleashed-main/mypy.ini deleted file mode 100644 index 64218bc23688632a08c98ec4a0451ed46f8ed5e5..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/mypy.ini +++ /dev/null @@ -1,7 +0,0 @@ -[mypy] -check_untyped_defs = True -disallow_any_generics = True -disallow_untyped_calls = True -disallow_untyped_defs = True -ignore_missing_imports = True -strict_optional = False diff --git a/roop-unleashed-main/requirements.txt b/roop-unleashed-main/requirements.txt deleted file mode 100644 index 446ee524551444b3be06b7212b447c1f811adf95..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/requirements.txt +++ /dev/null @@ -1,19 +0,0 @@ ---extra-index-url https://download.pytorch.org/whl/cu124 -numpy==1.26.4 -gradio==5.9.1 -opencv-python-headless==4.10.0.84 -onnx==1.16.1 -insightface==0.7.3 -albucore==0.0.16 -psutil==5.9.6 -torch==2.5.1+cu124; sys_platform != 'darwin' -torch==2.5.1; sys_platform == 'darwin' -torchvision==0.20.1+cu124; sys_platform != 'darwin' -torchvision==0.20.1; sys_platform == 'darwin' -onnxruntime==1.20.1; sys_platform == 'darwin' and platform_machine != 'arm64' -onnxruntime-silicon==1.20.1; sys_platform == 'darwin' and platform_machine == 'arm64' -onnxruntime-gpu==1.20.1; sys_platform != 'darwin' -tqdm==4.66.4 -ftfy -regex -pyvirtualcam diff --git a/roop-unleashed-main/roop-unleashed.ipynb b/roop-unleashed-main/roop-unleashed.ipynb deleted file mode 100644 index 0ef9842f23914c6d1de07bc3d695e48466e095ab..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop-unleashed.ipynb +++ /dev/null @@ -1,166 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "G9BdiCppV6AS" - }, - "source": [ - "# Colab for roop-unleashed - Gradio version\n", - "https://github.com/C0untFloyd/roop-unleashed\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CanIXgLJgaOj" - }, - "source": [ - "Install CUDA 12.6 on Google Cloud Compute\n", - "(currently unnecessary because the latest 12.x should be already installed)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "96GE4UgYg3Ej" - }, - "outputs": [], - "source": [ - "# don't run this cell if you know that there is at least Cuda 12.4 installed\n", - "!apt-get -y update\n", - "!apt-get -y install cuda-toolkit-12-6\n", - "import os\n", - "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12/lib64\"\n", - "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12.6/lib64\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0ZYRNb0AWLLW" - }, - "source": [ - "Installing & preparing requirements" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "t1yPuhdySqCq" - }, - "outputs": [], - "source": [ - "!git clone https://github.com/C0untFloyd/roop-unleashed.git\n", - "%cd roop-unleashed\n", - "!mv config_colab.yaml config.yaml\n", - "!pip install -r requirements.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "u_4JQiSlV9Fi" - }, - "source": [ - "Running roop-unleashed with default config" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Is6U2huqSzLE" - }, - "outputs": [], - "source": [ - "!python run.py" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UdQ1VHdI8lCf" - }, - "source": [ - "### Download generated images folder\n", - "(only needed if you want to zip the generated output)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 - }, - "id": "oYjWveAmw10X", - "outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e" - }, - "outputs": [ - { - "data": { - "application/javascript": "\n async function download(id, filename, size) {\n if (!google.colab.kernel.accessAllowed) {\n return;\n }\n const div = document.createElement('div');\n const label = document.createElement('label');\n label.textContent = `Downloading \"${filename}\": `;\n div.appendChild(label);\n const progress = document.createElement('progress');\n progress.max = size;\n div.appendChild(progress);\n document.body.appendChild(div);\n\n const buffers = [];\n let downloaded = 0;\n\n const channel = await google.colab.kernel.comms.open(id);\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n\n for await (const message of channel.messages) {\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n if (message.buffers) {\n for (const buffer of message.buffers) {\n buffers.push(buffer);\n downloaded += buffer.byteLength;\n progress.value = downloaded;\n }\n }\n }\n const blob = new Blob(buffers, {type: 'application/binary'});\n const a = document.createElement('a');\n a.href = window.URL.createObjectURL(blob);\n a.download = filename;\n div.appendChild(a);\n a.click();\n div.remove();\n }\n ", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import shutil\n", - "import os\n", - "from google.colab import files\n", - "\n", - "def zip_directory(directory_path, zip_path):\n", - " shutil.make_archive(zip_path, 'zip', directory_path)\n", - "\n", - "# Set the directory path you want to download\n", - "directory_path = '/content/roop-unleashed/output'\n", - "\n", - "# Set the zip file name\n", - "zip_filename = 'fake_output.zip'\n", - "\n", - "# Zip the directory\n", - "zip_directory(directory_path, zip_filename)\n", - "\n", - "# Download the zip file\n", - "files.download(zip_filename+'.zip')\n" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [ - "UdQ1VHdI8lCf" - ], - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/roop-unleashed-main/roop/FaceSet.py b/roop-unleashed-main/roop/FaceSet.py deleted file mode 100644 index 9e426219fe4265290883a026fbde2d0513d5d554..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/FaceSet.py +++ /dev/null @@ -1,20 +0,0 @@ -import numpy as np - -class FaceSet: - faces = [] - ref_images = [] - embedding_average = 'None' - embeddings_backup = None - - def __init__(self): - self.faces = [] - self.ref_images = [] - self.embeddings_backup = None - - def AverageEmbeddings(self): - if len(self.faces) > 1 and self.embeddings_backup is None: - self.embeddings_backup = self.faces[0]['embedding'] - embeddings = [face.embedding for face in self.faces] - - self.faces[0]['embedding'] = np.mean(embeddings, axis=0) - # try median too? diff --git a/roop-unleashed-main/roop/ProcessEntry.py b/roop-unleashed-main/roop/ProcessEntry.py deleted file mode 100644 index 2dd53239463a14769954a10f1371d332bd88e05d..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/ProcessEntry.py +++ /dev/null @@ -1,7 +0,0 @@ -class ProcessEntry: - def __init__(self, filename: str, start: int, end: int, fps: float): - self.filename = filename - self.finalname = None - self.startframe = start - self.endframe = end - self.fps = fps \ No newline at end of file diff --git a/roop-unleashed-main/roop/ProcessMgr.py b/roop-unleashed-main/roop/ProcessMgr.py deleted file mode 100644 index 9c56cd513a45d1559933307a172bbd47a6196681..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/ProcessMgr.py +++ /dev/null @@ -1,911 +0,0 @@ -import os -import cv2 -import numpy as np -import psutil - -from roop.ProcessOptions import ProcessOptions - -from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values -from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array -import roop.vr_util as vr - -from typing import Any, List, Callable -from roop.typing import Frame, Face -from concurrent.futures import ThreadPoolExecutor, as_completed -from threading import Thread, Lock -from queue import Queue -from tqdm import tqdm -from roop.ffmpeg_writer import FFMPEG_VideoWriter -from roop.StreamWriter import StreamWriter -import roop.globals - - - -# Poor man's enum to be able to compare to int -class eNoFaceAction(): - USE_ORIGINAL_FRAME = 0 - RETRY_ROTATED = 1 - SKIP_FRAME = 2 - SKIP_FRAME_IF_DISSIMILAR = 3, - USE_LAST_SWAPPED = 4 - - - -def create_queue(temp_frame_paths: List[str]) -> Queue[str]: - queue: Queue[str] = Queue() - for frame_path in temp_frame_paths: - queue.put(frame_path) - return queue - - -def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]: - queues = [] - for _ in range(queue_per_future): - if not queue.empty(): - queues.append(queue.get()) - return queues - - - -class ProcessMgr(): - input_face_datas = [] - target_face_datas = [] - - imagemask = None - - processors = [] - options : ProcessOptions = None - - num_threads = 1 - current_index = 0 - processing_threads = 1 - buffer_wait_time = 0.1 - - lock = Lock() - - frames_queue = None - processed_queue = None - - videowriter= None - streamwriter = None - - progress_gradio = None - total_frames = 0 - - num_frames_no_face = 0 - last_swapped_frame = None - - output_to_file = None - output_to_cam = None - - - plugins = { - 'faceswap' : 'FaceSwapInsightFace', - 'mask_clip2seg' : 'Mask_Clip2Seg', - 'mask_xseg' : 'Mask_XSeg', - 'codeformer' : 'Enhance_CodeFormer', - 'gfpgan' : 'Enhance_GFPGAN', - 'dmdnet' : 'Enhance_DMDNet', - 'gpen' : 'Enhance_GPEN', - 'restoreformer++' : 'Enhance_RestoreFormerPPlus', - 'colorizer' : 'Frame_Colorizer', - 'filter_generic' : 'Frame_Filter', - 'removebg' : 'Frame_Masking', - 'upscale' : 'Frame_Upscale' - } - - def __init__(self, progress): - if progress is not None: - self.progress_gradio = progress - - def reuseOldProcessor(self, name:str): - for p in self.processors: - if p.processorname == name: - return p - - return None - - - def initialize(self, input_faces, target_faces, options): - self.input_face_datas = input_faces - self.target_face_datas = target_faces - self.num_frames_no_face = 0 - self.last_swapped_frame = None - self.options = options - devicename = get_device() - - roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"] - if options.swap_mode == "all_female" or options.swap_mode == "all_male": - roop.globals.g_desired_face_analysis.append("genderage") - elif options.swap_mode == "all_random": - # don't modify original list - self.input_face_datas = input_faces.copy() - shuffle_array(self.input_face_datas) - - - for p in self.processors: - newp = next((x for x in options.processors.keys() if x == p.processorname), None) - if newp is None: - p.Release() - del p - - newprocessors = [] - for key, extoption in options.processors.items(): - p = self.reuseOldProcessor(key) - if p is None: - classname = self.plugins[key] - module = 'roop.processors.' + classname - p = str_to_class(module, classname) - if p is not None: - extoption.update({"devicename": devicename}) - if p.type == "swap": - if self.options.swap_modelname == "InSwapper 128": - extoption.update({"modelname": "inswapper_128.onnx"}) - elif self.options.swap_modelname == "ReSwapper 128": - extoption.update({"modelname": "reswapper_128.onnx"}) - elif self.options.swap_modelname == "ReSwapper 256": - extoption.update({"modelname": "reswapper_256.onnx"}) - - p.Initialize(extoption) - newprocessors.append(p) - else: - print(f"Not using {module}") - self.processors = newprocessors - - - - if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0: - self.options.imagemask = self.options.imagemask.get("layers")[0] - # Get rid of alpha - self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY) - if np.any(self.options.imagemask): - mo = self.input_face_datas[0].faces[0].mask_offsets - self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5]) - self.options.imagemask = self.options.imagemask.astype(np.float32) / 255 - self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB) - else: - self.options.imagemask = None - - self.options.frame_processing = False - for p in self.processors: - if p.type.startswith("frame_"): - self.options.frame_processing = True - - - - - - - def run_batch(self, source_files, target_files, threads:int = 1): - progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' - self.total_frames = len(source_files) - self.num_threads = threads - with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress: - with ThreadPoolExecutor(max_workers=threads) as executor: - futures = [] - queue = create_queue(source_files) - queue_per_future = max(len(source_files) // threads, 1) - while not queue.empty(): - future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress)) - futures.append(future) - for future in as_completed(futures): - future.result() - - - def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None: - for f in current_files: - if not roop.globals.processing: - return - - # Decode the byte array into an OpenCV image - temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR) - if temp_frame is not None: - if self.options.frame_processing: - for p in self.processors: - frame = p.Run(temp_frame) - resimg = frame - else: - resimg = self.process_frame(temp_frame) - if resimg is not None: - i = source_files.index(f) - # Also let numpy write the file to support utf-8/16 filenames - cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i]) - if update: - update() - - - - def read_frames_thread(self, cap, frame_start, frame_end, num_threads): - num_frame = 0 - total_num = frame_end - frame_start - if frame_start > 0: - cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start) - - while True and roop.globals.processing: - ret, frame = cap.read() - if not ret: - break - - self.frames_queue[num_frame % num_threads].put(frame, block=True) - num_frame += 1 - if num_frame == total_num: - break - - for i in range(num_threads): - self.frames_queue[i].put(None) - - - - def process_videoframes(self, threadindex, progress) -> None: - while True: - frame = self.frames_queue[threadindex].get() - if frame is None: - self.processing_threads -= 1 - self.processed_queue[threadindex].put((False, None)) - return - else: - if self.options.frame_processing: - for p in self.processors: - frame = p.Run(frame) - resimg = frame - else: - resimg = self.process_frame(frame) - self.processed_queue[threadindex].put((True, resimg)) - del frame - progress() - - - def write_frames_thread(self): - nextindex = 0 - num_producers = self.num_threads - - while True: - process, frame = self.processed_queue[nextindex % self.num_threads].get() - nextindex += 1 - if frame is not None: - if self.output_to_file: - self.videowriter.write_frame(frame) - if self.output_to_cam: - self.streamwriter.WriteToStream(frame) - del frame - elif process == False: - num_producers -= 1 - if num_producers < 1: - return - - - - def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1): - if len(self.processors) < 1: - print("No processor defined!") - return - - cap = cv2.VideoCapture(source_video) - # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - frame_count = (frame_end - frame_start) + 1 - width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - - processed_resolution = None - for p in self.processors: - if hasattr(p, 'getProcessedResolution'): - processed_resolution = p.getProcessedResolution(width, height) - print(f"Processed resolution: {processed_resolution}") - if processed_resolution is not None: - width = processed_resolution[0] - height = processed_resolution[1] - - - self.total_frames = frame_count - self.num_threads = threads - - self.processing_threads = self.num_threads - self.frames_queue = [] - self.processed_queue = [] - for _ in range(threads): - self.frames_queue.append(Queue(1)) - self.processed_queue.append(Queue(1)) - - self.output_to_file = output_method != "Virtual Camera" - self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both" - - if self.output_to_file: - self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None) - if self.output_to_cam: - self.streamwriter = StreamWriter((width, height), int(fps)) - - readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads)) - readthread.start() - - writethread = Thread(target=self.write_frames_thread) - writethread.start() - - progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' - with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress: - with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor: - futures = [] - - for threadindex in range(threads): - future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress)) - futures.append(future) - - for future in as_completed(futures): - future.result() - # wait for the task to complete - readthread.join() - writethread.join() - cap.release() - if self.output_to_file: - self.videowriter.close() - if self.output_to_cam: - self.streamwriter.Close() - - self.frames_queue.clear() - self.processed_queue.clear() - - - - - def update_progress(self, progress: Any = None) -> None: - process = psutil.Process(os.getpid()) - memory_usage = process.memory_info().rss / 1024 / 1024 / 1024 - progress.set_postfix({ - 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB', - 'execution_threads': self.num_threads - }) - progress.update(1) - if self.progress_gradio is not None: - self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames') - - - - def process_frame(self, frame:Frame): - if len(self.input_face_datas) < 1 and not self.options.show_face_masking: - return frame - temp_frame = frame.copy() - num_swapped, temp_frame = self.swap_faces(frame, temp_frame) - if num_swapped > 0: - if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR: - if len(self.input_face_datas) > num_swapped: - return None - self.num_frames_no_face = 0 - self.last_swapped_frame = temp_frame.copy() - return temp_frame - if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED: - if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame: - self.num_frames_no_face += 1 - return self.last_swapped_frame.copy() - return frame - - elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME: - return frame - if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME: - #This only works with in-mem processing, as it simply skips the frame. - #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg. - #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is????? - #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work? - return None - else: - return self.retry_rotated(frame) - - def retry_rotated(self, frame): - copyframe = frame.copy() - copyframe = rotate_clockwise(copyframe) - temp_frame = copyframe.copy() - num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame) - if num_swapped > 0: - return rotate_anticlockwise(temp_frame) - - copyframe = frame.copy() - copyframe = rotate_anticlockwise(copyframe) - temp_frame = copyframe.copy() - num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame) - if num_swapped > 0: - return rotate_clockwise(temp_frame) - del copyframe - return frame - - - - def swap_faces(self, frame, temp_frame): - num_faces_found = 0 - - if self.options.swap_mode == "first": - face = get_first_face(frame) - - if face is None: - return num_faces_found, frame - - num_faces_found += 1 - temp_frame = self.process_face(self.options.selected_index, face, temp_frame) - del face - - else: - faces = get_all_faces(frame) - if faces is None: - return num_faces_found, frame - - if self.options.swap_mode == "all": - for face in faces: - num_faces_found += 1 - temp_frame = self.process_face(self.options.selected_index, face, temp_frame) - - elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random": - for i,face in enumerate(faces): - num_faces_found += 1 - if i < len(self.input_face_datas): - temp_frame = self.process_face(i, face, temp_frame) - else: - break - - elif self.options.swap_mode == "selected": - num_targetfaces = len(self.target_face_datas) - use_index = num_targetfaces == 1 - for i,tf in enumerate(self.target_face_datas): - for face in faces: - if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold: - if i < len(self.input_face_datas): - if use_index: - temp_frame = self.process_face(self.options.selected_index, face, temp_frame) - else: - temp_frame = self.process_face(i, face, temp_frame) - num_faces_found += 1 - if not roop.globals.vr_mode and num_faces_found == num_targetfaces: - break - elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male": - gender = 'F' if self.options.swap_mode == "all_female" else 'M' - for face in faces: - if face.sex == gender: - num_faces_found += 1 - temp_frame = self.process_face(self.options.selected_index, face, temp_frame) - - # might be slower but way more clean to release everything here - for face in faces: - del face - faces.clear() - - - - if roop.globals.vr_mode and num_faces_found % 2 > 0: - # stereo image, there has to be an even number of faces - num_faces_found = 0 - return num_faces_found, frame - if num_faces_found == 0: - return num_faces_found, frame - - #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None) - - if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape: - temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask) - return num_faces_found, temp_frame - - - def rotation_action(self, original_face:Face, frame:Frame): - (height, width) = frame.shape[:2] - - bounding_box_width = original_face.bbox[2] - original_face.bbox[0] - bounding_box_height = original_face.bbox[3] - original_face.bbox[1] - horizontal_face = bounding_box_width > bounding_box_height - - center_x = width // 2.0 - start_x = original_face.bbox[0] - end_x = original_face.bbox[2] - bbox_center_x = start_x + (bounding_box_width // 2.0) - - # need to leverage the array of landmarks as decribed here: - # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg - # basically, we should be able to check for the relative position of eyes and nose - # then use that to determine which way the face is actually facing when in a horizontal position - # and use that to determine the correct rotation_action - - forehead_x = original_face.landmark_2d_106[72][0] - chin_x = original_face.landmark_2d_106[0][0] - - if horizontal_face: - if chin_x < forehead_x: - # this is someone lying down with their face like this (: - return "rotate_anticlockwise" - elif forehead_x < chin_x: - # this is someone lying down with their face like this :) - return "rotate_clockwise" - if bbox_center_x >= center_x: - # this is someone lying down with their face in the right hand side of the frame - return "rotate_anticlockwise" - if bbox_center_x < center_x: - # this is someone lying down with their face in the left hand side of the frame - return "rotate_clockwise" - - return None - - - def auto_rotate_frame(self, original_face, frame:Frame): - target_face = original_face - original_frame = frame - - rotation_action = self.rotation_action(original_face, frame) - - if rotation_action == "rotate_anticlockwise": - #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame - frame = rotate_anticlockwise(frame) - elif rotation_action == "rotate_clockwise": - #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame - frame = rotate_clockwise(frame) - - return target_face, frame, rotation_action - - - def auto_unrotate_frame(self, frame:Frame, rotation_action): - if rotation_action == "rotate_anticlockwise": - return rotate_clockwise(frame) - elif rotation_action == "rotate_clockwise": - return rotate_anticlockwise(frame) - - return frame - - - - def process_face(self,face_index, target_face:Face, frame:Frame): - from roop.face_util import align_crop - - enhanced_frame = None - if(len(self.input_face_datas) > 0): - inputface = self.input_face_datas[face_index].faces[0] - else: - inputface = None - - rotation_action = None - if roop.globals.autorotate_faces: - # check for sideways rotation of face - rotation_action = self.rotation_action(target_face, frame) - if rotation_action is not None: - (startX, startY, endX, endY) = target_face["bbox"].astype("int") - width = endX - startX - height = endY - startY - offs = int(max(width,height) * 0.25) - rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs) - if rotation_action == "rotate_anticlockwise": - rotcutframe = rotate_anticlockwise(rotcutframe) - elif rotation_action == "rotate_clockwise": - rotcutframe = rotate_clockwise(rotcutframe) - # rotate image and re-detect face to correct wonky landmarks - rotface = get_first_face(rotcutframe) - if rotface is None: - rotation_action = None - else: - saved_frame = frame.copy() - frame = rotcutframe - target_face = rotface - - - - # if roop.globals.vr_mode: - # bbox = target_face.bbox - # [orig_width, orig_height, _] = frame.shape - - # # Convert bounding box to ints - # x1, y1, x2, y2 = map(int, bbox) - - # # Determine the center of the bounding box - # x_center = (x1 + x2) / 2 - # y_center = (y1 + y2) / 2 - - # # Normalize coordinates to range [-1, 1] - # x_center_normalized = x_center / (orig_width / 2) - 1 - # y_center_normalized = y_center / (orig_width / 2) - 1 - - # # Convert normalized coordinates to spherical (theta, phi) - # theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees - # phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees - - # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image - - - """ Code ported/adapted from Facefusion which borrowed the idea from Rope: - Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to - the desired output resolution. This works around the current resolution limitations without using enhancers. - """ - model_output_size = self.options.swap_output_size - subsample_size = max(self.options.subsample_size, model_output_size) - subsample_total = subsample_size // model_output_size - aligned_img, M = align_crop(frame, target_face.kps, subsample_size) - - fake_frame = aligned_img - target_face.matrix = M - - for p in self.processors: - if p.type == 'swap': - swap_result_frames = [] - subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total) - for sliced_frame in subsample_frames: - for _ in range(0,self.options.num_swap_steps): - sliced_frame = self.prepare_crop_frame(sliced_frame) - sliced_frame = p.Run(inputface, target_face, sliced_frame) - sliced_frame = self.normalize_swap_frame(sliced_frame) - swap_result_frames.append(sliced_frame) - fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size) - fake_frame = fake_frame.astype(np.uint8) - scale_factor = 0.0 - elif p.type == 'mask': - fake_frame = self.process_mask(p, aligned_img, fake_frame) - else: - enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame) - - upscale = 512 - orig_width = fake_frame.shape[1] - if orig_width != upscale: - fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC) - mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets - - - if enhanced_frame is None: - scale_factor = int(upscale / orig_width) - result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets) - else: - result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets) - - # Restore mouth before unrotating - if self.options.restore_original_mouth: - mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame) - result = self.apply_mouth_area(result, mouth_cutout, mouth_bb) - - if rotation_action is not None: - fake_frame = self.auto_unrotate_frame(result, rotation_action) - result = self.paste_simple(fake_frame, saved_frame, startX, startY) - - return result - - - - - def cutout(self, frame:Frame, start_x, start_y, end_x, end_y): - if start_x < 0: - start_x = 0 - if start_y < 0: - start_y = 0 - if end_x > frame.shape[1]: - end_x = frame.shape[1] - if end_y > frame.shape[0]: - end_y = frame.shape[0] - return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y - - def paste_simple(self, src:Frame, dest:Frame, start_x, start_y): - end_x = start_x + src.shape[1] - end_y = start_y + src.shape[0] - - start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest) - dest[start_y:end_y, start_x:end_x] = src - return dest - - def simple_blend_with_mask(self, image1, image2, mask): - # Blend the images - blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask - return blended_image.astype(np.uint8) - - - def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets): - M_scale = M * scale_factor - IM = cv2.invertAffineTransform(M_scale) - - face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8) - # Generate white square sized as a upsk_face - img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8) - - w = img_matte.shape[1] - h = img_matte.shape[0] - - top = int(mask_offsets[0] * h) - bottom = int(h - (mask_offsets[1] * h)) - left = int(mask_offsets[2] * w) - right = int(w - (mask_offsets[3] * w)) - img_matte[top:bottom,left:right] = 255 - - # Transform white square back to target_img - img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0) - ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges) - img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0 - - img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5]) - #Normalize images to float values and reshape - img_matte = img_matte.astype(np.float32)/255 - face_matte = face_matte.astype(np.float32)/255 - img_matte = np.minimum(face_matte, img_matte) - if self.options.show_face_area_overlay: - # Additional steps for green overlay - green_overlay = np.zeros_like(target_img) - green_color = [0, 255, 0] # RGB for green - for i in range(3): # Apply green color where img_matte is not zero - green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img - img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1]) - paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) - if upsk_face is not fake_face: - fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) - paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0) - - # Re-assemble image - paste_face = img_matte * paste_face - paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32) - if self.options.show_face_area_overlay: - # Overlay the green overlay on the final image - paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0) - return paste_face.astype(np.uint8) - - - def blur_area(self, img_matte, num_erosion_iterations, blur_amount): - # Detect the affine transformed white area - mask_h_inds, mask_w_inds = np.where(img_matte==255) - # Calculate the size (and diagonal size) of transformed white area width and height boundaries - mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) - mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) - mask_size = int(np.sqrt(mask_h*mask_w)) - # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10)) - # k = max(mask_size//12, 8) - k = max(mask_size//(blur_amount // 2) , blur_amount // 2) - kernel = np.ones((k,k),np.uint8) - img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations) - #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5)) - # k = max(mask_size//24, 4) - k = max(mask_size//blur_amount, blur_amount//5) - kernel_size = (k, k) - blur_size = tuple(2*i+1 for i in kernel_size) - return cv2.GaussianBlur(img_matte, blur_size, 0) - - - def prepare_crop_frame(self, swap_frame): - model_type = 'inswapper' - model_mean = [0.0, 0.0, 0.0] - model_standard_deviation = [1.0, 1.0, 1.0] - - if model_type == 'ghost': - swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1 - else: - swap_frame = swap_frame[:, :, ::-1] / 255.0 - swap_frame = (swap_frame - model_mean) / model_standard_deviation - swap_frame = swap_frame.transpose(2, 0, 1) - swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32) - return swap_frame - - - def normalize_swap_frame(self, swap_frame): - model_type = 'inswapper' - swap_frame = swap_frame.transpose(1, 2, 0) - - if model_type == 'ghost': - swap_frame = (swap_frame * 127.5 + 127.5).round() - else: - swap_frame = (swap_frame * 255.0).round() - swap_frame = swap_frame[:, :, ::-1] - return swap_frame - - def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int): - subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3) - subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3) - return subsample_frame - - - def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size): - final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3) - final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3) - return final_frame - - def process_mask(self, processor, frame:Frame, target:Frame): - img_mask = processor.Run(frame, self.options.masking_text) - img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0])) - img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) - - if self.options.show_face_masking: - result = (1 - img_mask) * frame.astype(np.float32) - return np.uint8(result) - - - target = target.astype(np.float32) - result = (1-img_mask) * target - result += img_mask * frame.astype(np.float32) - return np.uint8(result) - - - # Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam - - def create_mouth_mask(self, face: Face, frame: Frame): - mouth_cutout = None - - landmarks = face.landmark_2d_106 - if landmarks is not None: - # Get mouth landmarks (indices 52 to 71 typically represent the outer mouth) - mouth_points = landmarks[52:71].astype(np.int32) - - # Add padding to mouth area - min_x, min_y = np.min(mouth_points, axis=0) - max_x, max_y = np.max(mouth_points, axis=0) - min_x = max(0, min_x - (15*6)) - min_y = max(0, min_y - 22) - max_x = min(frame.shape[1], max_x + (15*6)) - max_y = min(frame.shape[0], max_y + (90*6)) - - # Extract the mouth area from the frame using the calculated bounding box - mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() - - return mouth_cutout, (min_x, min_y, max_x, max_y) - - - - def create_feathered_mask(self, shape, feather_amount=30): - mask = np.zeros(shape[:2], dtype=np.float32) - center = (shape[1] // 2, shape[0] // 2) - cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount), - 0, 0, 360, 1, -1) - mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0) - return mask / np.max(mask) - - def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray: - min_x, min_y, max_x, max_y = mouth_box - box_width = max_x - min_x - box_height = max_y - min_y - - - # Resize the mouth cutout to match the mouth box size - if mouth_cutout is None or box_width is None or box_height is None: - return frame - try: - resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) - - # Extract the region of interest (ROI) from the target frame - roi = frame[min_y:max_y, min_x:max_x] - - # Ensure the ROI and resized_mouth_cutout have the same shape - if roi.shape != resized_mouth_cutout.shape: - resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0])) - - # Apply color transfer from ROI to mouth cutout - color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi) - - # Create a feathered mask with increased feather amount - feather_amount = min(30, box_width // 15, box_height // 15) - mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount) - - # Blend the color-corrected mouth cutout with the ROI using the feathered mask - mask = mask[:,:,np.newaxis] # Add channel dimension to mask - blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8) - - # Place the blended result back into the frame - frame[min_y:max_y, min_x:max_x] = blended - except Exception as e: - print(f'Error {e}') - pass - - return frame - - def apply_color_transfer(self, source, target): - """ - Apply color transfer from target to source image - """ - source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") - target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") - - source_mean, source_std = cv2.meanStdDev(source) - target_mean, target_std = cv2.meanStdDev(target) - - # Reshape mean and std to be broadcastable - source_mean = source_mean.reshape(1, 1, 3) - source_std = source_std.reshape(1, 1, 3) - target_mean = target_mean.reshape(1, 1, 3) - target_std = target_std.reshape(1, 1, 3) - - # Perform the color transfer - source = (source - source_mean) * (target_std / source_std) + target_mean - return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) - - - - def unload_models(): - pass - - - def release_resources(self): - for p in self.processors: - p.Release() - self.processors.clear() - if self.videowriter is not None: - self.videowriter.close() - if self.streamwriter is not None: - self.streamwriter.Close() - diff --git a/roop-unleashed-main/roop/ProcessOptions.py b/roop-unleashed-main/roop/ProcessOptions.py deleted file mode 100644 index 4d272efc89d2125688fe99884fcb4d4eb2a3a448..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/ProcessOptions.py +++ /dev/null @@ -1,18 +0,0 @@ -class ProcessOptions: - - def __init__(self, swap_model, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, subsample_size, show_face_area, restore_original_mouth, show_mask=False): - self.swap_modelname = swap_model - self.swap_output_size = int(swap_model.split()[-1]) - self.processors = processordefines - self.face_distance_threshold = face_distance - self.blend_ratio = blend_ratio - self.swap_mode = swap_mode - self.selected_index = selected_index - self.masking_text = masking_text - self.imagemask = imagemask - self.num_swap_steps = num_steps - self.show_face_area_overlay = show_face_area - self.show_face_masking = show_mask - self.subsample_size = subsample_size - self.restore_original_mouth = restore_original_mouth - self.max_num_reuse_frame = 15 \ No newline at end of file diff --git a/roop-unleashed-main/roop/StreamWriter.py b/roop-unleashed-main/roop/StreamWriter.py deleted file mode 100644 index 5030fa419c6bab703ff2917c4f02c80625ffc1fa..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/StreamWriter.py +++ /dev/null @@ -1,60 +0,0 @@ -import threading -import time -import pyvirtualcam - - -class StreamWriter(): - FPS = 30 - VCam = None - Active = False - THREAD_LOCK_STREAM = threading.Lock() - time_last_process = None - timespan_min = 0.0 - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, traceback): - self.Close() - - def __init__(self, size, fps): - self.time_last_process = time.perf_counter() - self.FPS = fps - self.timespan_min = 1.0 / fps - print('Detecting virtual cam devices') - self.VCam = pyvirtualcam.Camera(width=size[0], height=size[1], fps=fps, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False) - if self.VCam is None: - print("No virtual camera found!") - return - print(f'Using virtual camera: {self.VCam.device}') - print(f'Using {self.VCam.native_fmt}') - self.Active = True - - - def LimitFrames(self): - while True: - current_time = time.perf_counter() - time_passed = current_time - self.time_last_process - if time_passed >= self.timespan_min: - break - - # First version used a queue and threading. Surprisingly this - # totally simple, blocking version is 10 times faster! - def WriteToStream(self, frame): - if self.VCam is None: - return - with self.THREAD_LOCK_STREAM: - self.LimitFrames() - self.VCam.send(frame) - self.time_last_process = time.perf_counter() - - - def Close(self): - self.Active = False - if self.VCam is None: - self.VCam.close() - self.VCam = None - - - - diff --git a/roop-unleashed-main/roop/__init__.py b/roop-unleashed-main/roop/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/roop-unleashed-main/roop/capturer.py b/roop-unleashed-main/roop/capturer.py deleted file mode 100644 index 1d6567c91aefb1504a3d8c8a857f6e1ab033e59c..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/capturer.py +++ /dev/null @@ -1,46 +0,0 @@ -from typing import Optional -import cv2 -import numpy as np - -from roop.typing import Frame - -current_video_path = None -current_frame_total = 0 -current_capture = None - -def get_image_frame(filename: str): - try: - return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR) - except: - print(f"Exception reading {filename}") - return None - - -def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]: - global current_video_path, current_capture, current_frame_total - - if video_path != current_video_path: - release_video() - current_capture = cv2.VideoCapture(video_path) - current_video_path = video_path - current_frame_total = current_capture.get(cv2.CAP_PROP_FRAME_COUNT) - - current_capture.set(cv2.CAP_PROP_POS_FRAMES, min(current_frame_total, frame_number - 1)) - has_frame, frame = current_capture.read() - if has_frame: - return frame - return None - -def release_video(): - global current_capture - - if current_capture is not None: - current_capture.release() - current_capture = None - - -def get_video_frame_total(video_path: str) -> int: - capture = cv2.VideoCapture(video_path) - video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) - capture.release() - return video_frame_total diff --git a/roop-unleashed-main/roop/core.py b/roop-unleashed-main/roop/core.py deleted file mode 100644 index 251a038ca2f98f2366560d7f082cbaaf4e9a307a..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/core.py +++ /dev/null @@ -1,406 +0,0 @@ -#!/usr/bin/env python3 - -import os -import sys -import shutil -# single thread doubles cuda performance - needs to be set before torch import -if any(arg.startswith('--execution-provider') for arg in sys.argv): - os.environ['OMP_NUM_THREADS'] = '1' - -import warnings -from typing import List -import platform -import signal -import torch -import onnxruntime -import pathlib -import argparse - -from time import time - -import roop.globals -import roop.metadata -import roop.utilities as util -import roop.util_ffmpeg as ffmpeg -import ui.main as main -from settings import Settings -from roop.face_util import extract_face_images -from roop.ProcessEntry import ProcessEntry -from roop.ProcessMgr import ProcessMgr -from roop.ProcessOptions import ProcessOptions -from roop.capturer import get_video_frame_total, release_video - - -clip_text = None - -call_display_ui = None - -process_mgr = None - - -if 'ROCMExecutionProvider' in roop.globals.execution_providers: - del torch - -warnings.filterwarnings('ignore', category=FutureWarning, module='insightface') -warnings.filterwarnings('ignore', category=UserWarning, module='torchvision') - - -def parse_args() -> None: - signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) - roop.globals.headless = False - - program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) - program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False) - program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0) - roop.globals.startup_args = program.parse_args() - # Always enable all processors when using GUI - roop.globals.frame_processors = ['face_swapper', 'face_enhancer'] - - -def encode_execution_providers(execution_providers: List[str]) -> List[str]: - return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers] - - -def decode_execution_providers(execution_providers: List[str]) -> List[str]: - list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) - if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)] - - try: - for i in range(len(list_providers)): - if list_providers[i] == 'CUDAExecutionProvider': - list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id}) - torch.cuda.set_device(roop.globals.cuda_device_id) - break - except: - pass - - return list_providers - - - -def suggest_max_memory() -> int: - if platform.system().lower() == 'darwin': - return 4 - return 16 - - -def suggest_execution_providers() -> List[str]: - return encode_execution_providers(onnxruntime.get_available_providers()) - - -def suggest_execution_threads() -> int: - if 'DmlExecutionProvider' in roop.globals.execution_providers: - return 1 - if 'ROCMExecutionProvider' in roop.globals.execution_providers: - return 1 - return 8 - - -def limit_resources() -> None: - # limit memory usage - if roop.globals.max_memory: - memory = roop.globals.max_memory * 1024 ** 3 - if platform.system().lower() == 'darwin': - memory = roop.globals.max_memory * 1024 ** 6 - if platform.system().lower() == 'windows': - import ctypes - kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined] - kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) - else: - import resource - resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) - - - -def release_resources() -> None: - import gc - global process_mgr - - if process_mgr is not None: - process_mgr.release_resources() - process_mgr = None - - gc.collect() - # if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available(): - # with torch.cuda.device('cuda'): - # torch.cuda.empty_cache() - # torch.cuda.ipc_collect() - - -def pre_check() -> bool: - if sys.version_info < (3, 9): - update_status('Python version is not supported - please upgrade to 3.9 or higher.') - return False - - download_directory_path = util.resolve_relative_path('../models') - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_128.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_256.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx']) - util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx']) - download_directory_path = util.resolve_relative_path('../models/CLIP') - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth']) - download_directory_path = util.resolve_relative_path('../models/CodeFormer') - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx']) - download_directory_path = util.resolve_relative_path('../models/Frame') - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx']) - util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx']) - - if not shutil.which('ffmpeg'): - update_status('ffmpeg is not installed.') - return True - -def set_display_ui(function): - global call_display_ui - - call_display_ui = function - - -def update_status(message: str) -> None: - global call_display_ui - - print(message) - if call_display_ui is not None: - call_display_ui(message) - - - - -def start() -> None: - if roop.globals.headless: - print('Headless mode currently unsupported - starting UI!') - # faces = extract_face_images(roop.globals.source_path, (False, 0)) - # roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index]) - # faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path))) - # roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index]) - # if 'face_enhancer' in roop.globals.frame_processors: - # roop.globals.selected_enhancer = 'GFPGAN' - - batch_process_regular(None, False, None) - - -def get_processing_plugins(masking_engine): - processors = { "faceswap": {}} - if masking_engine is not None: - processors.update({masking_engine: {}}) - - if roop.globals.selected_enhancer == 'GFPGAN': - processors.update({"gfpgan": {}}) - elif roop.globals.selected_enhancer == 'Codeformer': - processors.update({"codeformer": {}}) - elif roop.globals.selected_enhancer == 'DMDNet': - processors.update({"dmdnet": {}}) - elif roop.globals.selected_enhancer == 'GPEN': - processors.update({"gpen": {}}) - elif roop.globals.selected_enhancer == 'Restoreformer++': - processors.update({"restoreformer++": {}}) - return processors - - -def live_swap(frame, options): - global process_mgr - - if frame is None: - return frame - - if process_mgr is None: - process_mgr = ProcessMgr(None) - -# if len(roop.globals.INPUT_FACESETS) <= selected_index: -# selected_index = 0 - process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) - newframe = process_mgr.process_frame(frame) - if newframe is None: - return frame - return newframe - - -def batch_process_regular(swap_model, output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None: - global clip_text, process_mgr - - release_resources() - limit_resources() - if process_mgr is None: - process_mgr = ProcessMgr(progress) - mask = imagemask["layers"][0] if imagemask is not None else None - if len(roop.globals.INPUT_FACESETS) <= selected_index: - selected_index = 0 - options = ProcessOptions(swap_model, get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio, - roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps, - roop.globals.subsample_size, False, restore_original_mouth) - process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) - batch_process(output_method, files, use_new_method) - return - -def batch_process_with_options(files:list[ProcessEntry], options, progress): - global clip_text, process_mgr - - release_resources() - limit_resources() - if process_mgr is None: - process_mgr = ProcessMgr(progress) - process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) - roop.globals.keep_frames = False - roop.globals.wait_after_extraction = False - roop.globals.skip_audio = False - batch_process("Files", files, True) - - - -def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None: - global clip_text, process_mgr - - roop.globals.processing = True - - # limit threads for some providers - max_threads = suggest_execution_threads() - if max_threads == 1: - roop.globals.execution_threads = 1 - - imagefiles:list[ProcessEntry] = [] - videofiles:list[ProcessEntry] = [] - - update_status('Sorting videos/images') - - - for index, f in enumerate(files): - fullname = f.filename - if util.has_image_extension(fullname): - destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}') - destination = util.replace_template(destination, index=index) - pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) - f.finalname = destination - imagefiles.append(f) - - elif util.is_video(fullname) or util.has_extension(fullname, ['gif']): - destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}') - f.finalname = destination - videofiles.append(f) - - - - if(len(imagefiles) > 0): - update_status('Processing image(s)') - origimages = [] - fakeimages = [] - for f in imagefiles: - origimages.append(f.filename) - fakeimages.append(f.finalname) - - process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads) - origimages.clear() - fakeimages.clear() - - if(len(videofiles) > 0): - for index,v in enumerate(videofiles): - if not roop.globals.processing: - end_processing('Processing stopped!') - return - fps = v.fps if v.fps > 0 else util.detect_fps(v.filename) - if v.endframe == 0: - v.endframe = get_video_frame_total(v.filename) - - is_streaming_only = output_method == "Virtual Camera" - if is_streaming_only == False: - update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...') - - start_processing = time() - if is_streaming_only == False and roop.globals.keep_frames or not use_new_method: - util.create_temp(v.filename) - update_status('Extracting frames...') - ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps) - if not roop.globals.processing: - end_processing('Processing stopped!') - return - - temp_frame_paths = util.get_temp_frame_paths(v.filename) - process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads) - if not roop.globals.processing: - end_processing('Processing stopped!') - return - if roop.globals.wait_after_extraction: - extract_path = os.path.dirname(temp_frame_paths[0]) - util.open_folder(extract_path) - input("Press any key to continue...") - print("Resorting frames to create video") - util.sort_rename_frames(extract_path) - - ffmpeg.create_video(v.filename, v.finalname, fps) - if not roop.globals.keep_frames: - util.delete_temp_frames(temp_frame_paths[0]) - else: - if util.has_extension(v.filename, ['gif']): - skip_audio = True - else: - skip_audio = roop.globals.skip_audio - process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads) - - if not roop.globals.processing: - end_processing('Processing stopped!') - return - - video_file_name = v.finalname - if os.path.isfile(video_file_name): - destination = '' - if util.has_extension(v.filename, ['gif']): - gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif') - destination = util.replace_template(gifname, index=index) - pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) - - update_status('Creating final GIF') - ffmpeg.create_gif_from_video(video_file_name, destination) - if os.path.isfile(destination): - os.remove(video_file_name) - else: - skip_audio = roop.globals.skip_audio - destination = util.replace_template(video_file_name, index=index) - pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) - - if not skip_audio: - ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination) - if os.path.isfile(destination): - os.remove(video_file_name) - else: - shutil.move(video_file_name, destination) - - elif is_streaming_only == False: - update_status(f'Failed processing {os.path.basename(v.finalname)}!') - elapsed_time = time() - start_processing - average_fps = (v.endframe - v.startframe) / elapsed_time - update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s') - end_processing('Finished') - - -def end_processing(msg:str): - update_status(msg) - roop.globals.target_folder_path = None - release_resources() - - -def destroy() -> None: - if roop.globals.target_path: - util.clean_temp(roop.globals.target_path) - release_resources() - sys.exit() - - -def run() -> None: - parse_args() - if not pre_check(): - return - roop.globals.CFG = Settings('config.yaml') - roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id - roop.globals.execution_threads = roop.globals.CFG.max_threads - roop.globals.video_encoder = roop.globals.CFG.output_video_codec - roop.globals.video_quality = roop.globals.CFG.video_quality - roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None - if roop.globals.startup_args.server_share: - roop.globals.CFG.server_share = True - main.run() diff --git a/roop-unleashed-main/roop/face_util.py b/roop-unleashed-main/roop/face_util.py deleted file mode 100644 index 0ea858c37fcbf8ab4f304285c3b9f520b6b1e80c..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/face_util.py +++ /dev/null @@ -1,338 +0,0 @@ -import threading -from typing import Any -import insightface - -import roop.globals -from roop.typing import Frame, Face - -import cv2 -import numpy as np -from skimage import transform as trans -from roop.capturer import get_video_frame -from roop.utilities import resolve_relative_path, conditional_thread_semaphore - -FACE_ANALYSER = None -#THREAD_LOCK_ANALYSER = threading.Lock() -#THREAD_LOCK_SWAPPER = threading.Lock() -FACE_SWAPPER = None - - -def get_face_analyser() -> Any: - global FACE_ANALYSER - - with conditional_thread_semaphore(): - if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis: - model_path = resolve_relative_path('..') - # removed genderage - allowed_modules = roop.globals.g_desired_face_analysis - roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis - if roop.globals.CFG.force_cpu: - print("Forcing CPU for Face Analysis") - FACE_ANALYSER = insightface.app.FaceAnalysis( - name="buffalo_l", - root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules - ) - else: - FACE_ANALYSER = insightface.app.FaceAnalysis( - name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules - ) - FACE_ANALYSER.prepare( - ctx_id=0, - det_size=(640, 640) if roop.globals.default_det_size else (320, 320), - ) - return FACE_ANALYSER - - -def get_first_face(frame: Frame) -> Any: - try: - faces = get_face_analyser().get(frame) - return min(faces, key=lambda x: x.bbox[0]) - # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0] - except: - return None - - -def get_all_faces(frame: Frame) -> Any: - try: - faces = get_face_analyser().get(frame) - return sorted(faces, key=lambda x: x.bbox[0]) - except: - return None - - -def extract_face_images(source_filename, video_info, extra_padding=-1.0): - face_data = [] - source_image = None - - if video_info[0]: - frame = get_video_frame(source_filename, video_info[1]) - if frame is not None: - source_image = frame - else: - return face_data - else: - source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR) - - faces = get_all_faces(source_image) - if faces is None: - return face_data - - i = 0 - for face in faces: - (startX, startY, endX, endY) = face["bbox"].astype("int") - startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) - if extra_padding > 0.0: - if source_image.shape[:2] == (512, 512): - i += 1 - face_data.append([face, source_image]) - continue - - found = False - for i in range(1, 3): - (startX, startY, endX, endY) = face["bbox"].astype("int") - startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) - cutout_padding = extra_padding - # top needs extra room for detection - padding = int((endY - startY) * cutout_padding) - oldY = startY - startY -= padding - - factor = 0.25 if i == 1 else 0.5 - cutout_padding = factor - padding = int((endY - oldY) * cutout_padding) - endY += padding - padding = int((endX - startX) * cutout_padding) - startX -= padding - endX += padding - startX, endX, startY, endY = clamp_cut_values( - startX, endX, startY, endY, source_image - ) - face_temp = source_image[startY:endY, startX:endX] - face_temp = resize_image_keep_content(face_temp) - testfaces = get_all_faces(face_temp) - if testfaces is not None and len(testfaces) > 0: - i += 1 - face_data.append([testfaces[0], face_temp]) - found = True - break - - if not found: - print("No face found after resizing, this shouldn't happen!") - continue - - face_temp = source_image[startY:endY, startX:endX] - if face_temp.size < 1: - continue - - i += 1 - face_data.append([face, face_temp]) - return face_data - - -def clamp_cut_values(startX, endX, startY, endY, image): - if startX < 0: - startX = 0 - if endX > image.shape[1]: - endX = image.shape[1] - if startY < 0: - startY = 0 - if endY > image.shape[0]: - endY = image.shape[0] - return startX, endX, startY, endY - - - -def face_offset_top(face: Face, offset): - face["bbox"][1] += offset - face["bbox"][3] += offset - lm106 = face.landmark_2d_106 - add = np.full_like(lm106, [0, offset]) - face["landmark_2d_106"] = lm106 + add - return face - - -def resize_image_keep_content(image, new_width=512, new_height=512): - dim = None - (h, w) = image.shape[:2] - if h > w: - r = new_height / float(h) - dim = (int(w * r), new_height) - else: - # Calculate the ratio of the width and construct the dimensions - r = new_width / float(w) - dim = (new_width, int(h * r)) - image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) - (h, w) = image.shape[:2] - if h == new_height and w == new_width: - return image - resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype) - offs = (new_width - w) if h == new_height else (new_height - h) - startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1 - offs = int(offs // 2) - - if h == new_height: - resize_img[0:new_height, startoffs : new_width - offs] = image - else: - resize_img[startoffs : new_height - offs, 0:new_width] = image - return resize_img - - -def rotate_image_90(image, rotate=True): - if rotate: - return np.rot90(image) - else: - return np.rot90(image, 1, (1, 0)) - - -def rotate_anticlockwise(frame): - return rotate_image_90(frame) - - -def rotate_clockwise(frame): - return rotate_image_90(frame, False) - - -def rotate_image_180(image): - return np.flip(image, 0) - - -# alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py - -arcface_dst = np.array( - [ - [38.2946, 51.6963], - [73.5318, 51.5014], - [56.0252, 71.7366], - [41.5493, 92.3655], - [70.7299, 92.2041], - ], - dtype=np.float32, -) - - -""" def estimate_norm(lmk, image_size=112): - assert lmk.shape == (5, 2) - if image_size % 112 == 0: - ratio = float(image_size) / 112.0 - diff_x = 0 - elif image_size % 128 == 0: - ratio = float(image_size) / 128.0 - diff_x = 8.0 * ratio - elif image_size % 512 == 0: - ratio = float(image_size) / 512.0 - diff_x = 32.0 * ratio - - dst = arcface_dst * ratio - dst[:, 0] += diff_x - tform = trans.SimilarityTransform() - tform.estimate(lmk, dst) - M = tform.params[0:2, :] - return M - """ - -def estimate_norm(lmk, image_size=112): - if image_size%112==0: - ratio = float(image_size)/112.0 - diff_x = 0 - else: - ratio = float(image_size)/128.0 - diff_x = 8.0*ratio - dst = arcface_dst * ratio - dst[:,0] += diff_x - - if image_size == 160: - dst[:,0] += 0.1 - dst[:,1] += 0.1 - elif image_size == 256: - dst[:,0] += 0.5 - dst[:,1] += 0.5 - elif image_size == 320: - dst[:,0] += 0.75 - dst[:,1] += 0.75 - elif image_size == 512: - dst[:,0] += 1.5 - dst[:,1] += 1.5 - - tform = trans.SimilarityTransform() - tform.estimate(lmk, dst) - M = tform.params[0:2, :] - return M - - - -# aligned, M = norm_crop2(f[1], face.kps, 512) -def align_crop(img, landmark, image_size=112, mode="arcface"): - M = estimate_norm(landmark, image_size) - warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) - return warped, M - - -def square_crop(im, S): - if im.shape[0] > im.shape[1]: - height = S - width = int(float(im.shape[1]) / im.shape[0] * S) - scale = float(S) / im.shape[0] - else: - width = S - height = int(float(im.shape[0]) / im.shape[1] * S) - scale = float(S) / im.shape[1] - resized_im = cv2.resize(im, (width, height)) - det_im = np.zeros((S, S, 3), dtype=np.uint8) - det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im - return det_im, scale - - -def transform(data, center, output_size, scale, rotation): - scale_ratio = scale - rot = float(rotation) * np.pi / 180.0 - # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) - t1 = trans.SimilarityTransform(scale=scale_ratio) - cx = center[0] * scale_ratio - cy = center[1] * scale_ratio - t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) - t3 = trans.SimilarityTransform(rotation=rot) - t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) - t = t1 + t2 + t3 + t4 - M = t.params[0:2] - cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) - return cropped, M - - -def trans_points2d(pts, M): - new_pts = np.zeros(shape=pts.shape, dtype=np.float32) - for i in range(pts.shape[0]): - pt = pts[i] - new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) - new_pt = np.dot(M, new_pt) - # print('new_pt', new_pt.shape, new_pt) - new_pts[i] = new_pt[0:2] - - return new_pts - - -def trans_points3d(pts, M): - scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) - # print(scale) - new_pts = np.zeros(shape=pts.shape, dtype=np.float32) - for i in range(pts.shape[0]): - pt = pts[i] - new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) - new_pt = np.dot(M, new_pt) - # print('new_pt', new_pt.shape, new_pt) - new_pts[i][0:2] = new_pt[0:2] - new_pts[i][2] = pts[i][2] * scale - - return new_pts - - -def trans_points(pts, M): - if pts.shape[1] == 2: - return trans_points2d(pts, M) - else: - return trans_points3d(pts, M) - -def create_blank_image(width, height): - img = np.zeros((height, width, 4), dtype=np.uint8) - img[:] = [0,0,0,0] - return img - diff --git a/roop-unleashed-main/roop/ffmpeg_writer.py b/roop-unleashed-main/roop/ffmpeg_writer.py deleted file mode 100644 index 9642efad2de4e2b3463a62d1ee04b5f02402702c..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/ffmpeg_writer.py +++ /dev/null @@ -1,218 +0,0 @@ -""" -FFMPEG_Writer - write set of frames to video file - -original from -https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py - -removed unnecessary dependencies - -The MIT License (MIT) - -Copyright (c) 2015 Zulko -Copyright (c) 2023 Janvarev Vladislav -""" - -import os -import subprocess as sp - -PIPE = -1 -STDOUT = -2 -DEVNULL = -3 - -FFMPEG_BINARY = "ffmpeg" - -class FFMPEG_VideoWriter: - """ A class for FFMPEG-based video writing. - - A class to write videos using ffmpeg. ffmpeg will write in a large - choice of formats. - - Parameters - ----------- - - filename - Any filename like 'video.mp4' etc. but if you want to avoid - complications it is recommended to use the generic extension - '.avi' for all your videos. - - size - Size (width,height) of the output video in pixels. - - fps - Frames per second in the output video file. - - codec - FFMPEG codec. It seems that in terms of quality the hierarchy is - 'rawvideo' = 'png' > 'mpeg4' > 'libx264' - 'png' manages the same lossless quality as 'rawvideo' but yields - smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list - of accepted codecs. - - Note for default 'libx264': by default the pixel format yuv420p - is used. If the video dimensions are not both even (e.g. 720x405) - another pixel format is used, and this can cause problem in some - video readers. - - audiofile - Optional: The name of an audio file that will be incorporated - to the video. - - preset - Sets the time that FFMPEG will take to compress the video. The slower, - the better the compression rate. Possibilities are: ultrafast,superfast, - veryfast, faster, fast, medium (default), slow, slower, veryslow, - placebo. - - bitrate - Only relevant for codecs which accept a bitrate. "5000k" offers - nice results in general. - - """ - - def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None, - preset="medium", bitrate=None, - logfile=None, threads=None, ffmpeg_params=None): - - if logfile is None: - logfile = sp.PIPE - - self.filename = filename - self.codec = codec - self.ext = self.filename.split(".")[-1] - w = size[0] - 1 if size[0] % 2 != 0 else size[0] - h = size[1] - 1 if size[1] % 2 != 0 else size[1] - - - # order is important - cmd = [ - FFMPEG_BINARY, - '-hide_banner', - '-hwaccel', 'auto', - '-y', - '-loglevel', 'error' if logfile == sp.PIPE else 'info', - '-f', 'rawvideo', - '-vcodec', 'rawvideo', - '-s', '%dx%d' % (size[0], size[1]), - #'-pix_fmt', 'rgba' if withmask else 'rgb24', - '-pix_fmt', 'bgr24', - '-r', str(fps), - '-an', '-i', '-' - ] - - if audiofile is not None: - cmd.extend([ - '-i', audiofile, - '-acodec', 'copy' - ]) - - cmd.extend([ - '-vcodec', codec, - '-crf', str(crf) - #'-preset', preset, - ]) - if ffmpeg_params is not None: - cmd.extend(ffmpeg_params) - if bitrate is not None: - cmd.extend([ - '-b', bitrate - ]) - - # scale to a resolution divisible by 2 if not even - cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1']) - - if threads is not None: - cmd.extend(["-threads", str(threads)]) - - cmd.extend([ - '-pix_fmt', 'yuv420p', - - ]) - cmd.extend([ - filename - ]) - - test = str(cmd) - print(test) - - popen_params = {"stdout": DEVNULL, - "stderr": logfile, - "stdin": sp.PIPE} - - # This was added so that no extra unwanted window opens on windows - # when the child process is created - if os.name == "nt": - popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW - - self.proc = sp.Popen(cmd, **popen_params) - - - def write_frame(self, img_array): - """ Writes one frame in the file.""" - try: - #if PY3: - self.proc.stdin.write(img_array.tobytes()) - # else: - # self.proc.stdin.write(img_array.tostring()) - except IOError as err: - _, ffmpeg_error = self.proc.communicate() - error = (str(err) + ("\n\nroop unleashed error: FFMPEG encountered " - "the following error while writing file %s:" - "\n\n %s" % (self.filename, str(ffmpeg_error)))) - - if b"Unknown encoder" in ffmpeg_error: - - error = error+("\n\nThe video export " - "failed because FFMPEG didn't find the specified " - "codec for video encoding (%s). Please install " - "this codec or change the codec when calling " - "write_videofile. For instance:\n" - " >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec) - - elif b"incorrect codec parameters ?" in ffmpeg_error: - - error = error+("\n\nThe video export " - "failed, possibly because the codec specified for " - "the video (%s) is not compatible with the given " - "extension (%s). Please specify a valid 'codec' " - "argument in write_videofile. This would be 'libx264' " - "or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. " - "Another possible reason is that the audio codec was not " - "compatible with the video codec. For instance the video " - "extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a" - "video codec." - )%(self.codec, self.ext) - - elif b"encoder setup failed" in ffmpeg_error: - - error = error+("\n\nThe video export " - "failed, possibly because the bitrate you specified " - "was too high or too low for the video codec.") - - elif b"Invalid encoder type" in ffmpeg_error: - - error = error + ("\n\nThe video export failed because the codec " - "or file extension you provided is not a video") - - - raise IOError(error) - - def close(self): - if self.proc: - self.proc.stdin.close() - if self.proc.stderr is not None: - self.proc.stderr.close() - self.proc.wait() - - self.proc = None - - # Support the Context Manager protocol, to ensure that resources are cleaned up. - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, traceback): - self.close() - - - - diff --git a/roop-unleashed-main/roop/globals.py b/roop-unleashed-main/roop/globals.py deleted file mode 100644 index cd241b521b72361dcd31b1d001e5cd218cc72f00..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/globals.py +++ /dev/null @@ -1,56 +0,0 @@ -from settings import Settings -from typing import List - -source_path = None -target_path = None -output_path = None -target_folder_path = None -startup_args = None - -cuda_device_id = 0 -frame_processors: List[str] = [] -keep_fps = None -keep_frames = None -autorotate_faces = None -vr_mode = None -skip_audio = None -wait_after_extraction = None -many_faces = None -use_batch = None -source_face_index = 0 -target_face_index = 0 -face_position = None -video_encoder = None -video_quality = None -max_memory = None -execution_providers: List[str] = [] -execution_threads = None -headless = None -log_level = 'error' -selected_enhancer = None -subsample_size = 128 -face_swap_mode = None -blend_ratio = 0.5 -distance_threshold = 0.65 -default_det_size = True - -no_face_action = 0 - -processing = False - -g_current_face_analysis = None -g_desired_face_analysis = None - -FACE_ENHANCER = None - -INPUT_FACESETS = [] -TARGET_FACES = [] - - -IMAGE_CHAIN_PROCESSOR = None -VIDEO_CHAIN_PROCESSOR = None -BATCH_IMAGE_CHAIN_PROCESSOR = None - -CFG: Settings = None - - diff --git a/roop-unleashed-main/roop/metadata.py b/roop-unleashed-main/roop/metadata.py deleted file mode 100644 index 461cf39403df85dadc32f57562fa97c207ae9919..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/metadata.py +++ /dev/null @@ -1,2 +0,0 @@ -name = 'roop unleashed' -version = '4.4.0' diff --git a/roop-unleashed-main/roop/processors/Enhance_CodeFormer.py b/roop-unleashed-main/roop/processors/Enhance_CodeFormer.py deleted file mode 100644 index 323902a9aabbf0bb17689ca8e3600adf246329f7..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Enhance_CodeFormer.py +++ /dev/null @@ -1,71 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.typing import Face, Frame, FaceSet -from roop.utilities import resolve_relative_path - -class Enhance_CodeFormer(): - model_codeformer = None - - plugin_options:dict = None - - processorname = 'codeformer' - type = 'enhance' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_codeformer is None: - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx') - self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_codeformer.get_inputs() - model_outputs = self.model_codeformer.get_outputs() - self.io_binding = self.model_codeformer.io_binding() - self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5])) - self.io_binding.bind_output(model_outputs[0].name, self.devicename) - - - def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: - input_size = temp_frame.shape[1] - # preprocess - temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - temp_frame = temp_frame.astype('float32') / 255.0 - temp_frame = (temp_frame - 0.5) / 0.5 - temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) - - self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32)) - self.model_codeformer.run_with_iobinding(self.io_binding) - ort_outs = self.io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - del ort_outs - - # post-process - result = result.transpose((1, 2, 0)) - - un_min = -1.0 - un_max = 1.0 - result = np.clip(result, un_min, un_max) - result = (result - un_min) / (un_max - un_min) - - result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) - result = (result * 255.0).round() - scale_factor = int(result.shape[1] / input_size) - return result.astype(np.uint8), scale_factor - - - def Release(self): - del self.model_codeformer - self.model_codeformer = None - del self.io_binding - self.io_binding = None - diff --git a/roop-unleashed-main/roop/processors/Enhance_DMDNet.py b/roop-unleashed-main/roop/processors/Enhance_DMDNet.py deleted file mode 100644 index 3b6a6bb2d2fdad863dcbf66da8e498555d357a64..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Enhance_DMDNet.py +++ /dev/null @@ -1,898 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -import torch.nn.utils.spectral_norm as SpectralNorm -import threading -from torchvision.ops import roi_align - -from math import sqrt - -from torchvision.transforms.functional import normalize - -from roop.typing import Face, Frame, FaceSet - - -THREAD_LOCK_DMDNET = threading.Lock() - - -class Enhance_DMDNet(): - plugin_options:dict = None - model_dmdnet = None - torchdevice = None - - processorname = 'dmdnet' - type = 'enhance' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_dmdnet is None: - self.model_dmdnet = self.create(self.plugin_options["devicename"]) - - - # temp_frame already cropped+aligned, bbox not - def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: - input_size = temp_frame.shape[1] - - result = self.enhance_face(source_faceset, temp_frame, target_face) - scale_factor = int(result.shape[1] / input_size) - return result.astype(np.uint8), scale_factor - - - def Release(self): - self.model_gfpgan = None - - - # https://stackoverflow.com/a/67174339 - def landmarks106_to_68(self, pt106): - map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17, - 43,48,49,51,50, - 102,103,104,105,101, - 72,73,74,86,78,79,80,85,84, - 35,41,42,39,37,36, - 89,95,96,93,91,90, - 52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54 - ] - - pt68 = [] - for i in range(68): - index = map106to68[i] - pt68.append(pt106[index]) - return pt68 - - - - - def check_bbox(self, imgs, boxes): - boxes = boxes.view(-1, 4, 4) - colors = [(0, 255, 0), (0, 255, 0), (255, 255, 0), (255, 0, 0)] - i = 0 - for img, box in zip(imgs, boxes): - img = (img + 1)/2 * 255 - img2 = img.permute(1, 2, 0).float().cpu().flip(2).numpy().copy() - for idx, point in enumerate(box): - cv2.rectangle(img2, (int(point[0]), int(point[1])), (int(point[2]), int(point[3])), color=colors[idx], thickness=2) - cv2.imwrite('dmdnet_{:02d}.png'.format(i), img2) - i += 1 - - - def trans_points2d(self, pts, M): - new_pts = np.zeros(shape=pts.shape, dtype=np.float32) - for i in range(pts.shape[0]): - pt = pts[i] - new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) - new_pt = np.dot(M, new_pt) - new_pts[i] = new_pt[0:2] - - return new_pts - - - def enhance_face(self, ref_faceset: FaceSet, temp_frame, face: Face): - # preprocess - start_x, start_y, end_x, end_y = map(int, face['bbox']) - lm106 = face.landmark_2d_106 - lq_landmarks = np.asarray(self.landmarks106_to_68(lm106)) - - if temp_frame.shape[0] != 512 or temp_frame.shape[1] != 512: - # scale to 512x512 - scale_factor = 512 / temp_frame.shape[1] - - M = face.matrix * scale_factor - - lq_landmarks = self.trans_points2d(lq_landmarks, M) - temp_frame = cv2.resize(temp_frame, (512,512), interpolation = cv2.INTER_AREA) - - if temp_frame.ndim == 2: - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG - # else: - # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB - - lq = read_img_tensor(temp_frame) - - LQLocs = get_component_location(lq_landmarks) - # self.check_bbox(lq, LQLocs.unsqueeze(0)) - - # specific, change 1000 to 1 to activate - if len(ref_faceset.faces) > 1: - SpecificImgs = [] - SpecificLocs = [] - for i,face in enumerate(ref_faceset.faces): - lm106 = face.landmark_2d_106 - lq_landmarks = np.asarray(self.landmarks106_to_68(lm106)) - ref_image = ref_faceset.ref_images[i] - if ref_image.shape[0] != 512 or ref_image.shape[1] != 512: - # scale to 512x512 - scale_factor = 512 / ref_image.shape[1] - - M = face.matrix * scale_factor - - lq_landmarks = self.trans_points2d(lq_landmarks, M) - ref_image = cv2.resize(ref_image, (512,512), interpolation = cv2.INTER_AREA) - - if ref_image.ndim == 2: - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG - # else: - # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB - - ref_tensor = read_img_tensor(ref_image) - ref_locs = get_component_location(lq_landmarks) - # self.check_bbox(ref_tensor, ref_locs.unsqueeze(0)) - - SpecificImgs.append(ref_tensor) - SpecificLocs.append(ref_locs.unsqueeze(0)) - - SpecificImgs = torch.cat(SpecificImgs, dim=0) - SpecificLocs = torch.cat(SpecificLocs, dim=0) - # check_bbox(SpecificImgs, SpecificLocs) - SpMem256, SpMem128, SpMem64 = self.model_dmdnet.generate_specific_dictionary(sp_imgs = SpecificImgs.to(self.torchdevice), sp_locs = SpecificLocs) - SpMem256Para = {} - SpMem128Para = {} - SpMem64Para = {} - for k, v in SpMem256.items(): - SpMem256Para[k] = v - for k, v in SpMem128.items(): - SpMem128Para[k] = v - for k, v in SpMem64.items(): - SpMem64Para[k] = v - else: - # generic - SpMem256Para, SpMem128Para, SpMem64Para = None, None, None - - with torch.no_grad(): - with THREAD_LOCK_DMDNET: - try: - GenericResult, SpecificResult = self.model_dmdnet(lq = lq.to(self.torchdevice), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para) - except Exception as e: - print(f'Error {e} there may be something wrong with the detected component locations.') - return temp_frame - - if SpecificResult is not None: - save_specific = SpecificResult * 0.5 + 0.5 - save_specific = save_specific.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR - save_specific = np.clip(save_specific.float().cpu().numpy(), 0, 1) * 255.0 - temp_frame = save_specific.astype("uint8") - if False: - save_generic = GenericResult * 0.5 + 0.5 - save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR - save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0 - check_lq = lq * 0.5 + 0.5 - check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR - check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0 - cv2.imwrite('dmdnet_comparison.png', cv2.cvtColor(np.hstack((check_lq, save_generic, save_specific)),cv2.COLOR_RGB2BGR)) - else: - save_generic = GenericResult * 0.5 + 0.5 - save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR - save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0 - temp_frame = save_generic.astype("uint8") - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) # RGB - return temp_frame - - - - def create(self, devicename): - self.torchdevice = torch.device(devicename) - model_dmdnet = DMDNet().to(self.torchdevice) - weights = torch.load('./models/DMDNet.pth') - model_dmdnet.load_state_dict(weights, strict=True) - - model_dmdnet.eval() - num_params = 0 - for param in model_dmdnet.parameters(): - num_params += param.numel() - return model_dmdnet - - # print('{:>8s} : {}'.format('Using device', device)) - # print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6)) - - - -def read_img_tensor(Img=None): #rgb -1~1 - Img = Img.transpose((2, 0, 1))/255.0 - Img = torch.from_numpy(Img).float() - normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True) - ImgTensor = Img.unsqueeze(0) - return ImgTensor - - -def get_component_location(Landmarks, re_read=False): - if re_read: - ReadLandmark = [] - with open(Landmarks,'r') as f: - for line in f: - tmp = [float(i) for i in line.split(' ') if i != '\n'] - ReadLandmark.append(tmp) - ReadLandmark = np.array(ReadLandmark) # - Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2 - Map_LE_B = list(np.hstack((range(17,22), range(36,42)))) - Map_RE_B = list(np.hstack((range(22,27), range(42,48)))) - Map_LE = list(range(36,42)) - Map_RE = list(range(42,48)) - Map_NO = list(range(29,36)) - Map_MO = list(range(48,68)) - - Landmarks[Landmarks>504]=504 - Landmarks[Landmarks<8]=8 - - #left eye - Mean_LE = np.mean(Landmarks[Map_LE],0) - L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1]) - L_LE1 = L_LE1 * 1.3 - L_LE2 = L_LE1 / 1.9 - L_LE_xy = L_LE1 + L_LE2 - L_LE_lt = [L_LE_xy/2, L_LE1] - L_LE_rb = [L_LE_xy/2, L_LE2] - Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int) - - #right eye - Mean_RE = np.mean(Landmarks[Map_RE],0) - L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1]) - L_RE1 = L_RE1 * 1.3 - L_RE2 = L_RE1 / 1.9 - L_RE_xy = L_RE1 + L_RE2 - L_RE_lt = [L_RE_xy/2, L_RE1] - L_RE_rb = [L_RE_xy/2, L_RE2] - Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int) - - #nose - Mean_NO = np.mean(Landmarks[Map_NO],0) - L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25 - L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1 - L_NO_xy = L_NO1 * 2 - L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2] - L_NO_rb = [L_NO_xy/2, L_NO2] - Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int) - - #mouth - Mean_MO = np.mean(Landmarks[Map_MO],0) - L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1 - MO_O = Mean_MO - L_MO + 1 - MO_T = Mean_MO + L_MO - MO_T[MO_T>510]=510 - Location_MO = np.hstack((MO_O, MO_T)).astype(int) - return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0) - - - - -def calc_mean_std_4D(feat, eps=1e-5): - # eps is a small value added to the variance to avoid divide-by-zero. - size = feat.size() - assert (len(size) == 4) - N, C = size[:2] - feat_var = feat.view(N, C, -1).var(dim=2) + eps - feat_std = feat_var.sqrt().view(N, C, 1, 1) - feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) - return feat_mean, feat_std - -def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature - size = content_feat.size() - style_mean, style_std = calc_mean_std_4D(style_feat) - content_mean, content_std = calc_mean_std_4D(content_feat) - normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) - return normalized_feat * style_std.expand(size) + style_mean.expand(size) - - -def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True): - return nn.Sequential( - SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), - nn.LeakyReLU(0.2), - SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), - ) - - -class MSDilateBlock(nn.Module): - def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True): - super(MSDilateBlock, self).__init__() - self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias) - self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias) - self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias) - self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias) - self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias)) - def forward(self, x): - conv1 = self.conv1(x) - conv2 = self.conv2(x) - conv3 = self.conv3(x) - conv4 = self.conv4(x) - cat = torch.cat([conv1, conv2, conv3, conv4], 1) - out = self.convi(cat) + x - return out - - -class AdaptiveInstanceNorm(nn.Module): - def __init__(self, in_channel): - super().__init__() - self.norm = nn.InstanceNorm2d(in_channel) - - def forward(self, input, style): - style_mean, style_std = calc_mean_std_4D(style) - out = self.norm(input) - size = input.size() - out = style_std.expand(size) * out + style_mean.expand(size) - return out - -class NoiseInjection(nn.Module): - def __init__(self, channel): - super().__init__() - self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) - def forward(self, image, noise): - if noise is None: - b, c, h, w = image.shape - noise = image.new_empty(b, 1, h, w).normal_() - return image + self.weight * noise - -class StyledUpBlock(nn.Module): - def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False): - super().__init__() - - self.noise_inject = noise_inject - if upsample: - self.conv1 = nn.Sequential( - nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), - SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), - nn.LeakyReLU(0.2), - ) - else: - self.conv1 = nn.Sequential( - SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), - ) - self.convup = nn.Sequential( - nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), - SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), - ) - if self.noise_inject: - self.noise1 = NoiseInjection(out_channel) - - self.lrelu1 = nn.LeakyReLU(0.2) - - self.ScaleModel1 = nn.Sequential( - SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)) - ) - self.ShiftModel1 = nn.Sequential( - SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), - ) - - def forward(self, input, style): - out = self.conv1(input) - out = self.lrelu1(out) - Shift1 = self.ShiftModel1(style) - Scale1 = self.ScaleModel1(style) - out = out * Scale1 + Shift1 - if self.noise_inject: - out = self.noise1(out, noise=None) - outup = self.convup(out) - return outup - - -#################################################################### -###############Face Dictionary Generator -#################################################################### -def AttentionBlock(in_channel): - return nn.Sequential( - SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), - ) - -class DilateResBlock(nn.Module): - def __init__(self, dim, dilation=[5,3] ): - super(DilateResBlock, self).__init__() - self.Res = nn.Sequential( - SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])), - ) - def forward(self, x): - out = x + self.Res(x) - return out - - -class KeyValue(nn.Module): - def __init__(self, indim, keydim, valdim): - super(KeyValue, self).__init__() - self.Key = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - self.Value = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - def forward(self, x): - return self.Key(x), self.Value(x) - -class MaskAttention(nn.Module): - def __init__(self, indim): - super(MaskAttention, self).__init__() - self.conv1 = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - self.conv2 = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - self.conv3 = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - self.convCat = nn.Sequential( - SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - def forward(self, x, y, z): - c1 = self.conv1(x) - c2 = self.conv2(y) - c3 = self.conv3(z) - return self.convCat(torch.cat([c1,c2,c3], dim=1)) - -class Query(nn.Module): - def __init__(self, indim, quedim): - super(Query, self).__init__() - self.Query = nn.Sequential( - SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), - ) - def forward(self, x): - return self.Query(x) - -def roi_align_self(input, location, target_size): - test = (target_size.item(),target_size.item()) - return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],test,mode='bilinear',align_corners=False) for i in range(input.size(0))],0) - -class FeatureExtractor(nn.Module): - def __init__(self, ngf = 64, key_scale = 4):# - super().__init__() - - self.key_scale = 4 - self.part_sizes = np.array([80,80,50,110]) # - self.feature_sizes = np.array([256,128,64]) # - - self.conv1 = nn.Sequential( - SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), - ) - self.conv2 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)) - ) - self.res1 = DilateResBlock(ngf, [5,3]) - self.res2 = DilateResBlock(ngf, [5,3]) - - - self.conv3 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), - ) - self.conv4 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)) - ) - self.res3 = DilateResBlock(ngf*2, [3,1]) - self.res4 = DilateResBlock(ngf*2, [3,1]) - - self.conv5 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), - ) - self.conv6 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)) - ) - self.res5 = DilateResBlock(ngf*4, [1,1]) - self.res6 = DilateResBlock(ngf*4, [1,1]) - - self.LE_256_Q = Query(ngf, ngf // self.key_scale) - self.RE_256_Q = Query(ngf, ngf // self.key_scale) - self.MO_256_Q = Query(ngf, ngf // self.key_scale) - self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) - self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) - self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) - self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) - self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) - self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) - - - def forward(self, img, locs): - le_location = locs[:,0,:].int().cpu().numpy() - re_location = locs[:,1,:].int().cpu().numpy() - no_location = locs[:,2,:].int().cpu().numpy() - mo_location = locs[:,3,:].int().cpu().numpy() - - - f1_0 = self.conv1(img) - f1_1 = self.res1(f1_0) - f2_0 = self.conv2(f1_1) - f2_1 = self.res2(f2_0) - - f3_0 = self.conv3(f2_1) - f3_1 = self.res3(f3_0) - f4_0 = self.conv4(f3_1) - f4_1 = self.res4(f4_0) - - f5_0 = self.conv5(f4_1) - f5_1 = self.res5(f5_0) - f6_0 = self.conv6(f5_1) - f6_1 = self.res6(f6_0) - - - ####ROI Align - le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2) - re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2) - mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2) - - le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4) - re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4) - mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4) - - le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8) - re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8) - mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8) - - - le_256_q = self.LE_256_Q(le_part_256) - re_256_q = self.RE_256_Q(re_part_256) - mo_256_q = self.MO_256_Q(mo_part_256) - - le_128_q = self.LE_128_Q(le_part_128) - re_128_q = self.RE_128_Q(re_part_128) - mo_128_q = self.MO_128_Q(mo_part_128) - - le_64_q = self.LE_64_Q(le_part_64) - re_64_q = self.RE_64_Q(re_part_64) - mo_64_q = self.MO_64_Q(mo_part_64) - - return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\ - 'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \ - 'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \ - 'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \ - 'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\ - 'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\ - 'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q} - - -class DMDNet(nn.Module): - def __init__(self, ngf = 64, banks_num = 128): - super().__init__() - self.part_sizes = np.array([80,80,50,110]) # size for 512 - self.feature_sizes = np.array([256,128,64]) # size for 512 - - self.banks_num = banks_num - self.key_scale = 4 - - self.E_lq = FeatureExtractor(key_scale = self.key_scale) - self.E_hq = FeatureExtractor(key_scale = self.key_scale) - - self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) - self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) - self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) - - self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) - self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) - self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) - - self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) - self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) - self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) - - - self.LE_256_Attention = AttentionBlock(64) - self.RE_256_Attention = AttentionBlock(64) - self.MO_256_Attention = AttentionBlock(64) - - self.LE_128_Attention = AttentionBlock(128) - self.RE_128_Attention = AttentionBlock(128) - self.MO_128_Attention = AttentionBlock(128) - - self.LE_64_Attention = AttentionBlock(256) - self.RE_64_Attention = AttentionBlock(256) - self.MO_64_Attention = AttentionBlock(256) - - self.LE_256_Mask = MaskAttention(64) - self.RE_256_Mask = MaskAttention(64) - self.MO_256_Mask = MaskAttention(64) - - self.LE_128_Mask = MaskAttention(128) - self.RE_128_Mask = MaskAttention(128) - self.MO_128_Mask = MaskAttention(128) - - self.LE_64_Mask = MaskAttention(256) - self.RE_64_Mask = MaskAttention(256) - self.MO_64_Mask = MaskAttention(256) - - self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1]) - - self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) # - self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) # - self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) # - self.up4 = nn.Sequential( - SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), - nn.LeakyReLU(0.2), - UpResBlock(ngf), - UpResBlock(ngf), - SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)), - nn.Tanh() - ) - - # define generic memory, revise register_buffer to register_parameter for backward update - self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40)) - self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40)) - self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55)) - self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40)) - self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40)) - self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55)) - - - self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20)) - self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20)) - self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27)) - self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20)) - self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20)) - self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27)) - - self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10)) - self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10)) - self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13)) - self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10)) - self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10)) - self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13)) - - - def readMem(self, k, v, q): - sim = F.conv2d(q, k) - score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128 - sb,sn,sw,sh = score.size() - s_m = score.view(sb, -1).unsqueeze(1)#2*1*M - vb,vn,vw,vh = v.size() - v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h) - mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh) - max_inds = torch.argmax(score, dim=1).squeeze() - return mem_out, max_inds - - - def memorize(self, img, locs): - fs = self.E_hq(img, locs) - LE256_key, LE256_value = self.LE_256_KV(fs['le256']) - RE256_key, RE256_value = self.RE_256_KV(fs['re256']) - MO256_key, MO256_value = self.MO_256_KV(fs['mo256']) - - LE128_key, LE128_value = self.LE_128_KV(fs['le128']) - RE128_key, RE128_value = self.RE_128_KV(fs['re128']) - MO128_key, MO128_value = self.MO_128_KV(fs['mo128']) - - LE64_key, LE64_value = self.LE_64_KV(fs['le64']) - RE64_key, RE64_value = self.RE_64_KV(fs['re64']) - MO64_key, MO64_value = self.MO_64_KV(fs['mo64']) - - Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value} - Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value} - Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value} - - FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']} - FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']} - FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']} - - return Mem256, Mem128, Mem64 - - def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None): - le_256_q = fs_in['le_256_q'] - re_256_q = fs_in['re_256_q'] - mo_256_q = fs_in['mo_256_q'] - - le_128_q = fs_in['le_128_q'] - re_128_q = fs_in['re_128_q'] - mo_128_q = fs_in['mo_128_q'] - - le_64_q = fs_in['le_64_q'] - re_64_q = fs_in['re_64_q'] - mo_64_q = fs_in['mo_64_q'] - - - ####for 256 - le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q) - re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q) - mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q) - - le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q) - re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q) - mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q) - - le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q) - re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q) - mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q) - - if sp_256 is not None and sp_128 is not None and sp_64 is not None: - le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q) - re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q) - mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q) - le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g) - le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g - re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g) - re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g - mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g) - mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g - - le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q) - re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q) - mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q) - le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g) - le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g - re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g) - re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g - mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g) - mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g - - le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q) - re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q) - mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q) - le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g) - le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g - re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g) - re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g - mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g) - mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g - else: - le_256_mem = le_256_mem_g - re_256_mem = re_256_mem_g - mo_256_mem = mo_256_mem_g - le_128_mem = le_128_mem_g - re_128_mem = re_128_mem_g - mo_128_mem = mo_128_mem_g - le_64_mem = le_64_mem_g - re_64_mem = re_64_mem_g - mo_64_mem = mo_64_mem_g - - le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256']) - re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256']) - mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256']) - - ####for 128 - le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128']) - re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128']) - mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128']) - - ####for 64 - le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64']) - re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64']) - mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64']) - - - EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm} - EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm} - EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm} - Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds} - Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds} - Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds} - return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64 - - def reconstruct(self, fs_in, locs, memstar): - le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm'] - le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm'] - le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm'] - - le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256'] - re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256'] - mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256'] - - le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128'] - re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128'] - mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128'] - - le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64'] - re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64'] - mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64'] - - - le_location = locs[:,0,:] - re_location = locs[:,1,:] - mo_location = locs[:,3,:] - - # Somehow with latest Torch it doesn't like numpy wrappers anymore - - # le_location = le_location.cpu().int().numpy() - # re_location = re_location.cpu().int().numpy() - # mo_location = mo_location.cpu().int().numpy() - le_location = le_location.cpu().int() - re_location = re_location.cpu().int() - mo_location = mo_location.cpu().int() - - up_in_256 = fs_in['f256'].clone()# * 0 - up_in_128 = fs_in['f128'].clone()# * 0 - up_in_64 = fs_in['f64'].clone()# * 0 - - for i in range(fs_in['f256'].size(0)): - up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False) - up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False) - up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False) - - up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False) - up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False) - up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False) - - up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False) - up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False) - up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False) - - ms_in_64 = self.MSDilate(fs_in['f64'].clone()) - fea_up1 = self.up1(ms_in_64, up_in_64) - fea_up2 = self.up2(fea_up1, up_in_128) # - fea_up3 = self.up3(fea_up2, up_in_256) # - output = self.up4(fea_up3) # - return output - - def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None): - return self.memorize(sp_imgs, sp_locs) - - def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None): - try: - fs_in = self.E_lq(lq, loc) # low quality images - except Exception as e: - print(e) - - GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in) - GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64]) - if sp_256 is not None and sp_128 is not None and sp_64 is not None: - GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64) - GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64]) - else: - GSOut = None - return GeOut, GSOut - -class UpResBlock(nn.Module): - def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d): - super(UpResBlock, self).__init__() - self.Model = nn.Sequential( - SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), - nn.LeakyReLU(0.2), - SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), - ) - def forward(self, x): - out = x + self.Model(x) - return out diff --git a/roop-unleashed-main/roop/processors/Enhance_GFPGAN.py b/roop-unleashed-main/roop/processors/Enhance_GFPGAN.py deleted file mode 100644 index 0ce3333706fff733e50c3a855ee358d536d69a3e..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Enhance_GFPGAN.py +++ /dev/null @@ -1,73 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.typing import Face, Frame, FaceSet -from roop.utilities import resolve_relative_path - -class Enhance_GFPGAN(): - plugin_options:dict = None - - model_gfpgan = None - name = None - devicename = None - - processorname = 'gfpgan' - type = 'enhance' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_gfpgan is None: - model_path = resolve_relative_path('../models/GFPGANv1.4.onnx') - self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - - self.name = self.model_gfpgan.get_inputs()[0].name - - def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: - # preprocess - input_size = temp_frame.shape[1] - temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) - - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - temp_frame = temp_frame.astype('float32') / 255.0 - temp_frame = (temp_frame - 0.5) / 0.5 - temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) - - io_binding = self.model_gfpgan.io_binding() - io_binding.bind_cpu_input("input", temp_frame) - io_binding.bind_output("1288", self.devicename) - self.model_gfpgan.run_with_iobinding(io_binding) - ort_outs = io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - - # post-process - result = np.clip(result, -1, 1) - result = (result + 1) / 2 - result = result.transpose(1, 2, 0) * 255.0 - result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) - scale_factor = int(result.shape[1] / input_size) - return result.astype(np.uint8), scale_factor - - - def Release(self): - self.model_gfpgan = None - - - - - - - - - - - diff --git a/roop-unleashed-main/roop/processors/Enhance_GPEN.py b/roop-unleashed-main/roop/processors/Enhance_GPEN.py deleted file mode 100644 index 9821e70534e3bddcd2a932548fd7b9250d85a41a..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Enhance_GPEN.py +++ /dev/null @@ -1,63 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.typing import Face, Frame, FaceSet -from roop.utilities import resolve_relative_path - - -class Enhance_GPEN(): - plugin_options:dict = None - - model_gpen = None - name = None - devicename = None - - processorname = 'gpen' - type = 'enhance' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_gpen is None: - model_path = resolve_relative_path('../models/GPEN-BFR-512.onnx') - self.model_gpen = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - - self.name = self.model_gpen.get_inputs()[0].name - - def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: - # preprocess - input_size = temp_frame.shape[1] - temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) - - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - temp_frame = temp_frame.astype('float32') / 255.0 - temp_frame = (temp_frame - 0.5) / 0.5 - temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) - - io_binding = self.model_gpen.io_binding() - io_binding.bind_cpu_input("input", temp_frame) - io_binding.bind_output("output", self.devicename) - self.model_gpen.run_with_iobinding(io_binding) - ort_outs = io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - - # post-process - result = np.clip(result, -1, 1) - result = (result + 1) / 2 - result = result.transpose(1, 2, 0) * 255.0 - result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) - scale_factor = int(result.shape[1] / input_size) - return result.astype(np.uint8), scale_factor - - - def Release(self): - self.model_gpen = None diff --git a/roop-unleashed-main/roop/processors/Enhance_RestoreFormerPPlus.py b/roop-unleashed-main/roop/processors/Enhance_RestoreFormerPPlus.py deleted file mode 100644 index f8d71034573cf1e63be77a4b9acafc854f189536..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Enhance_RestoreFormerPPlus.py +++ /dev/null @@ -1,64 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.typing import Face, Frame, FaceSet -from roop.utilities import resolve_relative_path - -class Enhance_RestoreFormerPPlus(): - plugin_options:dict = None - model_restoreformerpplus = None - devicename = None - name = None - - processorname = 'restoreformer++' - type = 'enhance' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_restoreformerpplus is None: - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - model_path = resolve_relative_path('../models/restoreformer_plus_plus.onnx') - self.model_restoreformerpplus = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_restoreformerpplus.get_inputs() - model_outputs = self.model_restoreformerpplus.get_outputs() - self.io_binding = self.model_restoreformerpplus.io_binding() - self.io_binding.bind_output(model_outputs[0].name, self.devicename) - - def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: - # preprocess - input_size = temp_frame.shape[1] - temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - temp_frame = temp_frame.astype('float32') / 255.0 - temp_frame = (temp_frame - 0.5) / 0.5 - temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) - - self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) # .astype(np.float32) - self.model_restoreformerpplus.run_with_iobinding(self.io_binding) - ort_outs = self.io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - del ort_outs - - result = np.clip(result, -1, 1) - result = (result + 1) / 2 - result = result.transpose(1, 2, 0) * 255.0 - result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) - scale_factor = int(result.shape[1] / input_size) - return result.astype(np.uint8), scale_factor - - - def Release(self): - del self.model_restoreformerpplus - self.model_restoreformerpplus = None - del self.io_binding - self.io_binding = None - diff --git a/roop-unleashed-main/roop/processors/FaceSwapInsightFace.py b/roop-unleashed-main/roop/processors/FaceSwapInsightFace.py deleted file mode 100644 index 64934ab07e1c3596fe856919eee68c22bf00596e..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/FaceSwapInsightFace.py +++ /dev/null @@ -1,60 +0,0 @@ -import roop.globals -import numpy as np -import onnx -import onnxruntime - -from roop.typing import Face, Frame -from roop.utilities import resolve_relative_path - - - -class FaceSwapInsightFace(): - plugin_options:dict = None - model_swap_insightface = None - - processorname = 'faceswap' - type = 'swap' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"] or self.plugin_options["modelname"] != plugin_options["modelname"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_swap_insightface is None: - model_path = resolve_relative_path('../models/' + self.plugin_options["modelname"]) - graph = onnx.load(model_path).graph - self.emap = onnx.numpy_helper.to_array(graph.initializer[-1]) - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - self.input_mean = 0.0 - self.input_std = 255.0 - #cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'} - sess_options = onnxruntime.SessionOptions() - sess_options.enable_cpu_mem_arena = False - self.model_swap_insightface = onnxruntime.InferenceSession(model_path, sess_options, providers=roop.globals.execution_providers) - - - - def Run(self, source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: - latent = source_face.normed_embedding.reshape((1,-1)) - latent = np.dot(latent, self.emap) - latent /= np.linalg.norm(latent) - io_binding = self.model_swap_insightface.io_binding() - io_binding.bind_cpu_input("target", temp_frame) - io_binding.bind_cpu_input("source", latent) - io_binding.bind_output("output", self.devicename) - self.model_swap_insightface.run_with_iobinding(io_binding) - ort_outs = io_binding.copy_outputs_to_cpu()[0] - return ort_outs[0] - - - def Release(self): - del self.model_swap_insightface - self.model_swap_insightface = None - - - - - - diff --git a/roop-unleashed-main/roop/processors/Frame_Colorizer.py b/roop-unleashed-main/roop/processors/Frame_Colorizer.py deleted file mode 100644 index 372f81870b6c47f543707e8eefff3a474532b493..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Frame_Colorizer.py +++ /dev/null @@ -1,70 +0,0 @@ -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.utilities import resolve_relative_path -from roop.typing import Frame - -class Frame_Colorizer(): - plugin_options:dict = None - model_colorizer = None - devicename = None - prev_type = None - - processorname = 'deoldify' - type = 'frame_colorizer' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]: - self.Release() - self.prev_type = self.plugin_options["subtype"] - if self.model_colorizer is None: - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - if self.prev_type == "deoldify_artistic": - model_path = resolve_relative_path('../models/Frame/deoldify_artistic.onnx') - elif self.prev_type == "deoldify_stable": - model_path = resolve_relative_path('../models/Frame/deoldify_stable.onnx') - - onnxruntime.set_default_logger_severity(3) - self.model_colorizer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_colorizer.get_inputs() - model_outputs = self.model_colorizer.get_outputs() - self.io_binding = self.model_colorizer.io_binding() - self.io_binding.bind_output(model_outputs[0].name, self.devicename) - - def Run(self, input_frame: Frame) -> Frame: - temp_frame = cv2.cvtColor(input_frame, cv2.COLOR_BGR2GRAY) - temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) - temp_frame = cv2.resize(temp_frame, (256, 256)) - temp_frame = temp_frame.transpose((2, 0, 1)) - temp_frame = np.expand_dims(temp_frame, axis=0).astype(np.float32) - self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) - self.model_colorizer.run_with_iobinding(self.io_binding) - ort_outs = self.io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - del ort_outs - colorized_frame = result.transpose(1, 2, 0) - colorized_frame = cv2.resize(colorized_frame, (input_frame.shape[1], input_frame.shape[0])) - temp_blue_channel, _, _ = cv2.split(input_frame) - colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2RGB).astype(np.uint8) - colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2LAB) - _, color_green_channel, color_red_channel = cv2.split(colorized_frame) - colorized_frame = cv2.merge((temp_blue_channel, color_green_channel, color_red_channel)) - colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_LAB2BGR) - return colorized_frame.astype(np.uint8) - - - def Release(self): - del self.model_colorizer - self.model_colorizer = None - del self.io_binding - self.io_binding = None - diff --git a/roop-unleashed-main/roop/processors/Frame_Filter.py b/roop-unleashed-main/roop/processors/Frame_Filter.py deleted file mode 100644 index b1405c329167a4e7f4f926ade5cf06ab6166466f..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Frame_Filter.py +++ /dev/null @@ -1,105 +0,0 @@ -import cv2 -import numpy as np - -from roop.typing import Frame - -class Frame_Filter(): - processorname = 'generic_filter' - type = 'frame_processor' - - plugin_options:dict = None - - c64_palette = np.array([ - [0, 0, 0], - [255, 255, 255], - [0x81, 0x33, 0x38], - [0x75, 0xce, 0xc8], - [0x8e, 0x3c, 0x97], - [0x56, 0xac, 0x4d], - [0x2e, 0x2c, 0x9b], - [0xed, 0xf1, 0x71], - [0x8e, 0x50, 0x29], - [0x55, 0x38, 0x00], - [0xc4, 0x6c, 0x71], - [0x4a, 0x4a, 0x4a], - [0x7b, 0x7b, 0x7b], - [0xa9, 0xff, 0x9f], - [0x70, 0x6d, 0xeb], - [0xb2, 0xb2, 0xb2] - ]) - - - def RenderC64Screen(self, image): - # Simply round the color values to the nearest color in the palette - image = cv2.resize(image,(320,200)) - palette = self.c64_palette / 255.0 # Normalize palette - img_normalized = image / 255.0 # Normalize image - - # Calculate the index in the palette that is closest to each pixel in the image - indices = np.sqrt(((img_normalized[:, :, None, :] - palette[None, None, :, :]) ** 2).sum(axis=3)).argmin(axis=2) - # Map the image to the palette colors - mapped_image = palette[indices] - return (mapped_image * 255).astype(np.uint8) # Denormalize and return the image - - - def RenderDetailEnhance(self, image): - return cv2.detailEnhance(image) - - def RenderStylize(self, image): - return cv2.stylization(image) - - def RenderPencilSketch(self, image): - imgray, imout = cv2.pencilSketch(image, sigma_s=60, sigma_r=0.07, shade_factor=0.05) - return imout - - def RenderCartoon(self, image): - numDownSamples = 2 # number of downscaling steps - numBilateralFilters = 7 # number of bilateral filtering steps - - img_color = image - for _ in range(numDownSamples): - img_color = cv2.pyrDown(img_color) - for _ in range(numBilateralFilters): - img_color = cv2.bilateralFilter(img_color, 9, 9, 7) - for _ in range(numDownSamples): - img_color = cv2.pyrUp(img_color) - img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) - img_blur = cv2.medianBlur(img_gray, 7) - img_edge = cv2.adaptiveThreshold(img_blur, 255, - cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2) - img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) - if img_color.shape != image.shape: - img_color = cv2.resize(img_color, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) - if img_color.shape != img_edge.shape: - img_edge = cv2.resize(img_edge, (img_color.shape[1], img_color.shape[0]), interpolation=cv2.INTER_LINEAR) - return cv2.bitwise_and(img_color, img_edge) - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - self.plugin_options = plugin_options - - def Run(self, temp_frame: Frame) -> Frame: - subtype = self.plugin_options["subtype"] - if subtype == "stylize": - return self.RenderStylize(temp_frame).astype(np.uint8) - if subtype == "detailenhance": - return self.RenderDetailEnhance(temp_frame).astype(np.uint8) - if subtype == "pencil": - return self.RenderPencilSketch(temp_frame).astype(np.uint8) - if subtype == "cartoon": - return self.RenderCartoon(temp_frame).astype(np.uint8) - if subtype == "C64": - return self.RenderC64Screen(temp_frame).astype(np.uint8) - - - def Release(self): - pass - - def getProcessedResolution(self, width, height): - if self.plugin_options["subtype"] == "C64": - return (320,200) - return None - diff --git a/roop-unleashed-main/roop/processors/Frame_Masking.py b/roop-unleashed-main/roop/processors/Frame_Masking.py deleted file mode 100644 index 2b4e77fec51854fc67c5274193665fd3555c24bb..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Frame_Masking.py +++ /dev/null @@ -1,71 +0,0 @@ -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.utilities import resolve_relative_path -from roop.typing import Frame - -class Frame_Masking(): - plugin_options:dict = None - model_masking = None - devicename = None - name = None - - processorname = 'removebg' - type = 'frame_masking' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_masking is None: - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"] - self.devicename = self.devicename.replace('mps', 'cpu') - model_path = resolve_relative_path('../models/Frame/isnet-general-use.onnx') - self.model_masking = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_masking.get_inputs() - model_outputs = self.model_masking.get_outputs() - self.io_binding = self.model_masking.io_binding() - self.io_binding.bind_output(model_outputs[0].name, self.devicename) - - def Run(self, temp_frame: Frame) -> Frame: - # Pre process:Resize, BGR->RGB, float32 cast - input_image = cv2.resize(temp_frame, (1024, 1024)) - input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) - mean = [0.5, 0.5, 0.5] - std = [1.0, 1.0, 1.0] - input_image = (input_image / 255.0 - mean) / std - input_image = input_image.transpose(2, 0, 1) - input_image = np.expand_dims(input_image, axis=0) - input_image = input_image.astype('float32') - - self.io_binding.bind_cpu_input(self.model_inputs[0].name, input_image) - self.model_masking.run_with_iobinding(self.io_binding) - ort_outs = self.io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - del ort_outs - # Post process:squeeze, Sigmoid, Normarize, uint8 cast - mask = np.squeeze(result[0]) - min_value = np.min(mask) - max_value = np.max(mask) - mask = (mask - min_value) / (max_value - min_value) - #mask = np.where(mask < score_th, 0, 1) - #mask *= 255 - mask = cv2.resize(mask, (temp_frame.shape[1], temp_frame.shape[0]), interpolation=cv2.INTER_LINEAR) - mask = np.reshape(mask, [mask.shape[0],mask.shape[1],1]) - result = mask * temp_frame.astype(np.float32) - return result.astype(np.uint8) - - - - def Release(self): - del self.model_masking - self.model_masking = None - del self.io_binding - self.io_binding = None - diff --git a/roop-unleashed-main/roop/processors/Frame_Upscale.py b/roop-unleashed-main/roop/processors/Frame_Upscale.py deleted file mode 100644 index f260767e025f57898cd4305b109a440ca020865a..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Frame_Upscale.py +++ /dev/null @@ -1,129 +0,0 @@ -import cv2 -import numpy as np -import onnxruntime -import roop.globals - -from roop.utilities import resolve_relative_path, conditional_thread_semaphore -from roop.typing import Frame - - -class Frame_Upscale(): - plugin_options:dict = None - model_upscale = None - devicename = None - prev_type = None - - processorname = 'upscale' - type = 'frame_enhancer' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]: - self.Release() - self.prev_type = self.plugin_options["subtype"] - if self.model_upscale is None: - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - if self.prev_type == "esrganx4": - model_path = resolve_relative_path('../models/Frame/real_esrgan_x4.onnx') - self.scale = 4 - elif self.prev_type == "esrganx2": - model_path = resolve_relative_path('../models/Frame/real_esrgan_x2.onnx') - self.scale = 2 - elif self.prev_type == "lsdirx4": - model_path = resolve_relative_path('../models/Frame/lsdir_x4.onnx') - self.scale = 4 - onnxruntime.set_default_logger_severity(3) - self.model_upscale = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_upscale.get_inputs() - model_outputs = self.model_upscale.get_outputs() - self.io_binding = self.model_upscale.io_binding() - self.io_binding.bind_output(model_outputs[0].name, self.devicename) - - def getProcessedResolution(self, width, height): - return (width * self.scale, height * self.scale) - -# borrowed from facefusion -> https://github.com/facefusion/facefusion - def prepare_tile_frame(self, tile_frame : Frame) -> Frame: - tile_frame = np.expand_dims(tile_frame[:, :, ::-1], axis = 0) - tile_frame = tile_frame.transpose(0, 3, 1, 2) - tile_frame = tile_frame.astype(np.float32) / 255 - return tile_frame - - - def normalize_tile_frame(self, tile_frame : Frame) -> Frame: - tile_frame = tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255 - tile_frame = tile_frame.clip(0, 255).astype(np.uint8)[:, :, ::-1] - return tile_frame - - def create_tile_frames(self, input_frame : Frame, size): - input_frame = np.pad(input_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0))) - tile_width = size[0] - 2 * size[2] - pad_size_bottom = size[2] + tile_width - input_frame.shape[0] % tile_width - pad_size_right = size[2] + tile_width - input_frame.shape[1] % tile_width - pad_vision_frame = np.pad(input_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0))) - pad_height, pad_width = pad_vision_frame.shape[:2] - row_range = range(size[2], pad_height - size[2], tile_width) - col_range = range(size[2], pad_width - size[2], tile_width) - tile_frames = [] - - for row_frame in row_range: - top = row_frame - size[2] - bottom = row_frame + size[2] + tile_width - for column_vision_frame in col_range: - left = column_vision_frame - size[2] - right = column_vision_frame + size[2] + tile_width - tile_frames.append(pad_vision_frame[top:bottom, left:right, :]) - return tile_frames, pad_width, pad_height - - - def merge_tile_frames(self, tile_frames, temp_width : int, temp_height : int, pad_width : int, pad_height : int, size) -> Frame: - merge_frame = np.zeros((pad_height, pad_width, 3)).astype(np.uint8) - tile_width = tile_frames[0].shape[1] - 2 * size[2] - tiles_per_row = min(pad_width // tile_width, len(tile_frames)) - - for index, tile_frame in enumerate(tile_frames): - tile_frame = tile_frame[size[2]:-size[2], size[2]:-size[2]] - row_index = index // tiles_per_row - col_index = index % tiles_per_row - top = row_index * tile_frame.shape[0] - bottom = top + tile_frame.shape[0] - left = col_index * tile_frame.shape[1] - right = left + tile_frame.shape[1] - merge_frame[top:bottom, left:right, :] = tile_frame - merge_frame = merge_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :] - return merge_frame - - - def Run(self, temp_frame: Frame) -> Frame: - size = (128, 8, 2) - temp_height, temp_width = temp_frame.shape[:2] - upscale_tile_frames, pad_width, pad_height = self.create_tile_frames(temp_frame, size) - - for index, tile_frame in enumerate(upscale_tile_frames): - tile_frame = self.prepare_tile_frame(tile_frame) - with conditional_thread_semaphore(): - self.io_binding.bind_cpu_input(self.model_inputs[0].name, tile_frame) - self.model_upscale.run_with_iobinding(self.io_binding) - ort_outs = self.io_binding.copy_outputs_to_cpu() - result = ort_outs[0] - upscale_tile_frames[index] = self.normalize_tile_frame(result) - final_frame = self.merge_tile_frames(upscale_tile_frames, temp_width * self.scale - , temp_height * self.scale - , pad_width * self.scale, pad_height * self.scale - , (size[0] * self.scale, size[1] * self.scale, size[2] * self.scale)) - return final_frame.astype(np.uint8) - - - - def Release(self): - del self.model_upscale - self.model_upscale = None - del self.io_binding - self.io_binding = None - diff --git a/roop-unleashed-main/roop/processors/Mask_Clip2Seg.py b/roop-unleashed-main/roop/processors/Mask_Clip2Seg.py deleted file mode 100644 index 5df3b3e37ea10eb2440828a08e129d8c62f98086..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Mask_Clip2Seg.py +++ /dev/null @@ -1,94 +0,0 @@ -import cv2 -import numpy as np -import torch -import threading -from torchvision import transforms -from clip.clipseg import CLIPDensePredT -import numpy as np - -from roop.typing import Frame - -THREAD_LOCK_CLIP = threading.Lock() - - -class Mask_Clip2Seg(): - plugin_options:dict = None - model_clip = None - - processorname = 'clip2seg' - type = 'mask' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_clip is None: - self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True) - self.model_clip.eval(); - self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False) - - device = torch.device(self.plugin_options["devicename"]) - self.model_clip.to(device) - - - def Run(self, img1, keywords:str) -> Frame: - if keywords is None or len(keywords) < 1 or img1 is None: - return img1 - - source_image_small = cv2.resize(img1, (256,256)) - - img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32) - mask_border = 1 - l = 0 - t = 0 - r = 1 - b = 1 - - mask_blur = 5 - clip_blur = 5 - - img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)), - (256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1) - img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0) - img_mask /= 255 - - - input_image = source_image_small - - transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), - transforms.Resize((256, 256)), - ]) - img = transform(input_image).unsqueeze(0) - - thresh = 0.5 - prompts = keywords.split(',') - with THREAD_LOCK_CLIP: - with torch.no_grad(): - preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0] - clip_mask = torch.sigmoid(preds[0][0]) - for i in range(len(prompts)-1): - clip_mask += torch.sigmoid(preds[i+1][0]) - - clip_mask = clip_mask.data.cpu().numpy() - np.clip(clip_mask, 0, 1) - - clip_mask[clip_mask>thresh] = 1.0 - clip_mask[clip_mask<=thresh] = 0.0 - kernel = np.ones((5, 5), np.float32) - clip_mask = cv2.dilate(clip_mask, kernel, iterations=1) - clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0) - - img_mask *= clip_mask - img_mask[img_mask<0.0] = 0.0 - return img_mask - - - - def Release(self): - self.model_clip = None - diff --git a/roop-unleashed-main/roop/processors/Mask_XSeg.py b/roop-unleashed-main/roop/processors/Mask_XSeg.py deleted file mode 100644 index 12fab6540354dd2e898ede41eb6f3a53281636a9..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/processors/Mask_XSeg.py +++ /dev/null @@ -1,58 +0,0 @@ -import numpy as np -import cv2 -import onnxruntime -import roop.globals - -from roop.typing import Frame -from roop.utilities import resolve_relative_path, conditional_thread_semaphore - - - -class Mask_XSeg(): - plugin_options:dict = None - - model_xseg = None - - processorname = 'mask_xseg' - type = 'mask' - - - def Initialize(self, plugin_options:dict): - if self.plugin_options is not None: - if self.plugin_options["devicename"] != plugin_options["devicename"]: - self.Release() - - self.plugin_options = plugin_options - if self.model_xseg is None: - model_path = resolve_relative_path('../models/xseg.onnx') - onnxruntime.set_default_logger_severity(3) - self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) - self.model_inputs = self.model_xseg.get_inputs() - self.model_outputs = self.model_xseg.get_outputs() - - # replace Mac mps with cpu for the moment - self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') - - - def Run(self, img1, keywords:str) -> Frame: - temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC) - temp_frame = temp_frame.astype('float32') / 255.0 - temp_frame = temp_frame[None, ...] - io_binding = self.model_xseg.io_binding() - io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) - io_binding.bind_output(self.model_outputs[0].name, self.devicename) - self.model_xseg.run_with_iobinding(io_binding) - ort_outs = io_binding.copy_outputs_to_cpu() - result = ort_outs[0][0] - result = np.clip(result, 0, 1.0) - result[result < 0.1] = 0 - # invert values to mask areas to keep - result = 1.0 - result - return result - - - def Release(self): - del self.model_xseg - self.model_xseg = None - - diff --git a/roop-unleashed-main/roop/processors/__init__.py b/roop-unleashed-main/roop/processors/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/roop-unleashed-main/roop/template_parser.py b/roop-unleashed-main/roop/template_parser.py deleted file mode 100644 index a51113b69830119fc84fd15c2a428321ac1d8010..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/template_parser.py +++ /dev/null @@ -1,23 +0,0 @@ -import re -from datetime import datetime - -template_functions = { - "timestamp": lambda data: str(int(datetime.now().timestamp())), - "i": lambda data: data.get("index", False), - "file": lambda data: data.get("file", False), - "date": lambda data: datetime.now().strftime("%Y-%m-%d"), - "time": lambda data: datetime.now().strftime("%H-%M-%S"), -} - - -def parse(text: str, data: dict): - pattern = r"\{([^}]+)\}" - - matches = re.findall(pattern, text) - - for match in matches: - replacement = template_functions[match](data) - if replacement is not False: - text = text.replace(f"{{{match}}}", replacement) - - return text diff --git a/roop-unleashed-main/roop/typing.py b/roop-unleashed-main/roop/typing.py deleted file mode 100644 index 263f1b5b0331332dfab9f682438b364c612cfdf8..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/typing.py +++ /dev/null @@ -1,9 +0,0 @@ -from typing import Any - -from insightface.app.common import Face -from roop.FaceSet import FaceSet -import numpy - -Face = Face -FaceSet = FaceSet -Frame = numpy.ndarray[Any, Any] diff --git a/roop-unleashed-main/roop/util_ffmpeg.py b/roop-unleashed-main/roop/util_ffmpeg.py deleted file mode 100644 index 87012995169d2a6319d1d978333076ba8acbac98..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/util_ffmpeg.py +++ /dev/null @@ -1,130 +0,0 @@ - -import os -import subprocess -import roop.globals -import roop.utilities as util - -from typing import List, Any - -def run_ffmpeg(args: List[str]) -> bool: - commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-y', '-loglevel', roop.globals.log_level] - commands.extend(args) - print ("Running ffmpeg") - try: - subprocess.check_output(commands, stderr=subprocess.STDOUT) - return True - except Exception as e: - print("Running ffmpeg failed! Commandline:") - print (" ".join(commands)) - return False - - - -def cut_video(original_video: str, cut_video: str, start_frame: int, end_frame: int, reencode: bool): - fps = util.detect_fps(original_video) - start_time = start_frame / fps - num_frames = end_frame - start_frame - - if reencode: - run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-c:v', roop.globals.video_encoder, '-c:a', 'aac', '-frames:v', str(num_frames), cut_video]) - else: - run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-frames:v', str(num_frames), '-c:v' ,'copy','-c:a' ,'copy', cut_video]) - -def join_videos(videos: List[str], dest_filename: str, simple: bool): - if simple: - txtfilename = util.resolve_relative_path('../temp') - txtfilename = os.path.join(txtfilename, 'joinvids.txt') - with open(txtfilename, "w", encoding="utf-8") as f: - for v in videos: - v = v.replace('\\', '/') - f.write(f"file {v}\n") - commands = ['-f', 'concat', '-safe', '0', '-i', f'{txtfilename}', '-vcodec', 'copy', f'{dest_filename}'] - run_ffmpeg(commands) - - else: - inputs = [] - filter = '' - for i,v in enumerate(videos): - inputs.append('-i') - inputs.append(v) - filter += f'[{i}:v:0][{i}:a:0]' - run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename]) - - # filter += f'[{i}:v:0][{i}:a:0]' - # run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename]) - - - -def extract_frames(target_path : str, trim_frame_start, trim_frame_end, fps : float) -> bool: - util.create_temp(target_path) - temp_directory_path = util.get_temp_directory_path(target_path) - commands = ['-i', target_path, '-q:v', '1', '-pix_fmt', 'rgb24', ] - if trim_frame_start is not None and trim_frame_end is not None: - commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ]) - commands.extend(['-vsync', '0', os.path.join(temp_directory_path, '%06d.' + roop.globals.CFG.output_image_format)]) - return run_ffmpeg(commands) - - -def create_video(target_path: str, dest_filename: str, fps: float = 24.0, temp_directory_path: str = None) -> None: - if temp_directory_path is None: - temp_directory_path = util.get_temp_directory_path(target_path) - run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, f'%06d.{roop.globals.CFG.output_image_format}'), '-c:v', roop.globals.video_encoder, '-crf', str(roop.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', dest_filename]) - return dest_filename - - -def create_gif_from_video(video_path: str, gif_path): - from roop.capturer import get_video_frame, release_video - - fps = util.detect_fps(video_path) - frame = get_video_frame(video_path) - release_video() - - scalex = frame.shape[0] - scaley = frame.shape[1] - - if scalex >= scaley: - scaley = -1 - else: - scalex = -1 - - run_ffmpeg(['-i', video_path, '-vf', f'fps={fps},scale={int(scalex)}:{int(scaley)}:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse', '-loop', '0', gif_path]) - - - -def create_video_from_gif(gif_path: str, output_path): - fps = util.detect_fps(gif_path) - filter = """scale='trunc(in_w/2)*2':'trunc(in_h/2)*2',format=yuv420p,fps=10""" - run_ffmpeg(['-i', gif_path, '-vf', f'"{filter}"', '-movflags', '+faststart', '-shortest', output_path]) - - -def repair_video(original_video: str, final_video : str): - run_ffmpeg(['-i', original_video, '-movflags', 'faststart', '-acodec', 'copy', '-vcodec', 'copy', final_video]) - - -def restore_audio(intermediate_video: str, original_video: str, trim_frame_start, trim_frame_end, final_video : str) -> None: - fps = util.detect_fps(original_video) - commands = [ '-i', intermediate_video ] - if trim_frame_start is None and trim_frame_end is None: - commands.extend([ '-c:a', 'copy' ]) - else: - # if trim_frame_start is not None: - # start_time = trim_frame_start / fps - # commands.extend([ '-ss', format(start_time, ".2f")]) - # else: - # commands.extend([ '-ss', '0' ]) - # if trim_frame_end is not None: - # end_time = trim_frame_end / fps - # commands.extend([ '-to', format(end_time, ".2f")]) - # commands.extend([ '-c:a', 'aac' ]) - if trim_frame_start is not None: - start_time = trim_frame_start / fps - commands.extend([ '-ss', format(start_time, ".2f")]) - else: - commands.extend([ '-ss', '0' ]) - if trim_frame_end is not None: - end_time = trim_frame_end / fps - commands.extend([ '-to', format(end_time, ".2f")]) - commands.extend([ '-i', original_video, "-c", "copy" ]) - - commands.extend([ '-map', '0:v:0', '-map', '1:a:0?', '-shortest', final_video ]) - run_ffmpeg(commands) diff --git a/roop-unleashed-main/roop/utilities.py b/roop-unleashed-main/roop/utilities.py deleted file mode 100644 index 4d24df931f218c3553bc986abb681f877cdeae1e..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/utilities.py +++ /dev/null @@ -1,393 +0,0 @@ -import glob -import mimetypes -import os -import platform -import shutil -import ssl -import subprocess -import sys -import urllib -import torch -import gradio -import tempfile -import cv2 -import zipfile -import traceback -import threading -import threading -import random - -from typing import Union, Any -from contextlib import nullcontext - -from pathlib import Path -from typing import List, Any -from tqdm import tqdm -from scipy.spatial import distance - -import roop.template_parser as template_parser - -import roop.globals - -TEMP_FILE = "temp.mp4" -TEMP_DIRECTORY = "temp" - -THREAD_SEMAPHORE = threading.Semaphore() -NULL_CONTEXT = nullcontext() - - -# monkey patch ssl for mac -if platform.system().lower() == "darwin": - ssl._create_default_https_context = ssl._create_unverified_context - - -# https://github.com/facefusion/facefusion/blob/master/facefusion -def detect_fps(target_path: str) -> float: - fps = 24.0 - cap = cv2.VideoCapture(target_path) - if cap.isOpened(): - fps = cap.get(cv2.CAP_PROP_FPS) - cap.release() - return fps - - -# Gradio wants Images in RGB -def convert_to_gradio(image): - if image is None: - return None - return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) - - -def sort_filenames_ignore_path(filenames): - """Sorts a list of filenames containing a complete path by their filename, - while retaining their original path. - - Args: - filenames: A list of filenames containing a complete path. - - Returns: - A sorted list of filenames containing a complete path. - """ - filename_path_tuples = [ - (os.path.split(filename)[1], filename) for filename in filenames - ] - sorted_filename_path_tuples = sorted(filename_path_tuples, key=lambda x: x[0]) - return [ - filename_path_tuple[1] for filename_path_tuple in sorted_filename_path_tuples - ] - - -def sort_rename_frames(path: str): - filenames = os.listdir(path) - filenames.sort() - for i in range(len(filenames)): - of = os.path.join(path, filenames[i]) - newidx = i + 1 - new_filename = os.path.join( - path, f"{newidx:06d}." + roop.globals.CFG.output_image_format - ) - os.rename(of, new_filename) - - -def get_temp_frame_paths(target_path: str) -> List[str]: - temp_directory_path = get_temp_directory_path(target_path) - return glob.glob( - ( - os.path.join( - glob.escape(temp_directory_path), - f"*.{roop.globals.CFG.output_image_format}", - ) - ) - ) - - -def get_temp_directory_path(target_path: str) -> str: - target_name, _ = os.path.splitext(os.path.basename(target_path)) - target_directory_path = os.path.dirname(target_path) - return os.path.join(target_directory_path, TEMP_DIRECTORY, target_name) - - -def get_temp_output_path(target_path: str) -> str: - temp_directory_path = get_temp_directory_path(target_path) - return os.path.join(temp_directory_path, TEMP_FILE) - - -def normalize_output_path(source_path: str, target_path: str, output_path: str) -> Any: - if source_path and target_path: - source_name, _ = os.path.splitext(os.path.basename(source_path)) - target_name, target_extension = os.path.splitext(os.path.basename(target_path)) - if os.path.isdir(output_path): - return os.path.join( - output_path, source_name + "-" + target_name + target_extension - ) - return output_path - - -def get_destfilename_from_path( - srcfilepath: str, destfilepath: str, extension: str -) -> str: - fn, ext = os.path.splitext(os.path.basename(srcfilepath)) - if "." in extension: - return os.path.join(destfilepath, f"{fn}{extension}") - return os.path.join(destfilepath, f"{fn}{extension}{ext}") - - -def replace_template(file_path: str, index: int = 0) -> str: - fn, ext = os.path.splitext(os.path.basename(file_path)) - - # Remove the "__temp" placeholder that was used as a temporary filename - fn = fn.replace("__temp", "") - - template = roop.globals.CFG.output_template - replaced_filename = template_parser.parse( - template, {"index": str(index), "file": fn} - ) - - return os.path.join(roop.globals.output_path, f"{replaced_filename}{ext}") - - -def create_temp(target_path: str) -> None: - temp_directory_path = get_temp_directory_path(target_path) - Path(temp_directory_path).mkdir(parents=True, exist_ok=True) - - -def move_temp(target_path: str, output_path: str) -> None: - temp_output_path = get_temp_output_path(target_path) - if os.path.isfile(temp_output_path): - if os.path.isfile(output_path): - os.remove(output_path) - shutil.move(temp_output_path, output_path) - - -def clean_temp(target_path: str) -> None: - temp_directory_path = get_temp_directory_path(target_path) - parent_directory_path = os.path.dirname(temp_directory_path) - if not roop.globals.keep_frames and os.path.isdir(temp_directory_path): - shutil.rmtree(temp_directory_path) - if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path): - os.rmdir(parent_directory_path) - - -def delete_temp_frames(filename: str) -> None: - dir = os.path.dirname(os.path.dirname(filename)) - shutil.rmtree(dir) - - -def has_image_extension(image_path: str) -> bool: - return image_path.lower().endswith(("png", "jpg", "jpeg", "webp")) - - -def has_extension(filepath: str, extensions: List[str]) -> bool: - return filepath.lower().endswith(tuple(extensions)) - - -def is_image(image_path: str) -> bool: - if image_path and os.path.isfile(image_path): - if image_path.endswith(".webp"): - return True - mimetype, _ = mimetypes.guess_type(image_path) - return bool(mimetype and mimetype.startswith("image/")) - return False - - -def is_video(video_path: str) -> bool: - if video_path and os.path.isfile(video_path): - mimetype, _ = mimetypes.guess_type(video_path) - return bool(mimetype and mimetype.startswith("video/")) - return False - - -def conditional_download(download_directory_path: str, urls: List[str]) -> None: - if not os.path.exists(download_directory_path): - os.makedirs(download_directory_path) - for url in urls: - download_file_path = os.path.join( - download_directory_path, os.path.basename(url) - ) - if not os.path.exists(download_file_path): - request = urllib.request.urlopen(url) # type: ignore[attr-defined] - total = int(request.headers.get("Content-Length", 0)) - with tqdm( - total=total, - desc=f"Downloading {url}", - unit="B", - unit_scale=True, - unit_divisor=1024, - ) as progress: - urllib.request.urlretrieve(url, download_file_path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined] - - -def get_local_files_from_folder(folder: str) -> List[str]: - if not os.path.exists(folder) or not os.path.isdir(folder): - return None - files = [ - os.path.join(folder, f) - for f in os.listdir(folder) - if os.path.isfile(os.path.join(folder, f)) - ] - return files - - -def resolve_relative_path(path: str) -> str: - return os.path.abspath(os.path.join(os.path.dirname(__file__), path)) - - -def get_device() -> str: - if len(roop.globals.execution_providers) < 1: - roop.globals.execution_providers = ["CPUExecutionProvider"] - - prov = roop.globals.execution_providers[0] - if "CoreMLExecutionProvider" in prov: - return "mps" - if "CUDAExecutionProvider" in prov or "ROCMExecutionProvider" in prov: - return "cuda" - if "OpenVINOExecutionProvider" in prov: - return "mkl" - return "cpu" - - -def str_to_class(module_name, class_name) -> Any: - from importlib import import_module - - class_ = None - try: - module_ = import_module(module_name) - try: - class_ = getattr(module_, class_name)() - except AttributeError: - print(f"Class {class_name} does not exist") - except ImportError: - print(f"Module {module_name} does not exist") - return class_ - -def is_installed(name:str) -> bool: - return shutil.which(name); - -# Taken from https://stackoverflow.com/a/68842705 -def get_platform() -> str: - if sys.platform == "linux": - try: - proc_version = open("/proc/version").read() - if "Microsoft" in proc_version: - return "wsl" - except: - pass - return sys.platform - -def open_with_default_app(filename:str): - if filename == None: - return - platform = get_platform() - if platform == "darwin": - subprocess.call(("open", filename)) - elif platform in ["win64", "win32"]: os.startfile(filename.replace("/", "\\")) - elif platform == "wsl": - subprocess.call("cmd.exe /C start".split() + [filename]) - else: # linux variants - subprocess.call("xdg-open", filename) - - -def prepare_for_batch(target_files) -> str: - print("Preparing temp files") - tempfolder = os.path.join(tempfile.gettempdir(), "rooptmp") - if os.path.exists(tempfolder): - shutil.rmtree(tempfolder) - Path(tempfolder).mkdir(parents=True, exist_ok=True) - for f in target_files: - newname = os.path.basename(f.name) - shutil.move(f.name, os.path.join(tempfolder, newname)) - return tempfolder - - -def zip(files, zipname): - with zipfile.ZipFile(zipname, "w") as zip_file: - for f in files: - zip_file.write(f, os.path.basename(f)) - - -def unzip(zipfilename: str, target_path: str): - with zipfile.ZipFile(zipfilename, "r") as zip_file: - zip_file.extractall(target_path) - - -def mkdir_with_umask(directory): - oldmask = os.umask(0) - # mode needs octal - os.makedirs(directory, mode=0o775, exist_ok=True) - os.umask(oldmask) - - -def open_folder(path: str): - platform = get_platform() - try: - if platform == "darwin": - subprocess.call(("open", path)) - elif platform in ["win64", "win32"]: - open_with_default_app(path) - elif platform == "wsl": - subprocess.call("cmd.exe /C start".split() + [path]) - else: # linux variants - subprocess.Popen(["xdg-open", path]) - except Exception as e: - traceback.print_exc() - pass - # import webbrowser - # webbrowser.open(url) - - -def create_version_html() -> str: - python_version = ".".join([str(x) for x in sys.version_info[0:3]]) - versions_html = f""" -python: {python_version} -โ€ข -torch: {getattr(torch, '__long_version__',torch.__version__)} -โ€ข -gradio: {gradio.__version__} -""" - return versions_html - - -def compute_cosine_distance(emb1, emb2) -> float: - return distance.cosine(emb1, emb2) - -def has_cuda_device(): - return torch.cuda is not None and torch.cuda.is_available() - - -def print_cuda_info(): - try: - print(f'Number of CUDA devices: {torch.cuda.device_count()} Currently used Id: {torch.cuda.current_device()} Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}') - except: - print('No CUDA device found!') - -def clean_dir(path: str): - contents = os.listdir(path) - for item in contents: - item_path = os.path.join(path, item) - try: - if os.path.isfile(item_path): - os.remove(item_path) - elif os.path.isdir(item_path): - shutil.rmtree(item_path) - except Exception as e: - print(e) - - -def conditional_thread_semaphore() -> Union[Any, Any]: - if 'DmlExecutionProvider' in roop.globals.execution_providers or 'ROCMExecutionProvider' in roop.globals.execution_providers: - return THREAD_SEMAPHORE - return NULL_CONTEXT - -def shuffle_array(arr): - """ - Shuffles the given array in place using the Fisher-Yates shuffle algorithm. - - Args: - arr: The array to be shuffled. - - Returns: - None. The array is shuffled in place. - """ - for i in range(len(arr) - 1, 0, -1): - j = random.randint(0, i) - arr[i], arr[j] = arr[j], arr[i] diff --git a/roop-unleashed-main/roop/virtualcam.py b/roop-unleashed-main/roop/virtualcam.py deleted file mode 100644 index b4ad76d6ecf5baea7022f900becf35edb3edbf32..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/virtualcam.py +++ /dev/null @@ -1,88 +0,0 @@ -import cv2 -import roop.globals -import ui.globals -import pyvirtualcam -import threading -import platform - - -cam_active = False -cam_thread = None -vcam = None - -def virtualcamera(swap_model, streamobs, use_xseg, use_mouthrestore, cam_num,width,height): - from roop.ProcessOptions import ProcessOptions - from roop.core import live_swap, get_processing_plugins - - global cam_active - - #time.sleep(2) - print('Starting capture') - cap = cv2.VideoCapture(cam_num, cv2.CAP_DSHOW if platform.system() != 'Darwin' else cv2.CAP_AVFOUNDATION) - if not cap.isOpened(): - print("Cannot open camera") - cap.release() - del cap - return - - pref_width = width - pref_height = height - pref_fps_in = 30 - cap.set(cv2.CAP_PROP_FRAME_WIDTH, pref_width) - cap.set(cv2.CAP_PROP_FRAME_HEIGHT, pref_height) - cap.set(cv2.CAP_PROP_FPS, pref_fps_in) - cam_active = True - - # native format UYVY - - cam = None - if streamobs: - print('Detecting virtual cam devices') - cam = pyvirtualcam.Camera(width=pref_width, height=pref_height, fps=pref_fps_in, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False) - if cam: - print(f'Using virtual camera: {cam.device}') - print(f'Using {cam.native_fmt}') - else: - print(f'Not streaming to virtual camera!') - subsample_size = roop.globals.subsample_size - - - options = ProcessOptions(swap_model, get_processing_plugins("mask_xseg" if use_xseg else None), roop.globals.distance_threshold, roop.globals.blend_ratio, - "all", 0, None, None, 1, subsample_size, False, use_mouthrestore) - while cam_active: - ret, frame = cap.read() - if not ret: - break - - if len(roop.globals.INPUT_FACESETS) > 0: - frame = live_swap(frame, options) - if cam: - cam.send(frame) - cam.sleep_until_next_frame() - ui.globals.ui_camera_frame = frame - - if cam: - cam.close() - cap.release() - print('Camera stopped') - - - -def start_virtual_cam(swap_model, streamobs, use_xseg, use_mouthrestore, cam_number, resolution): - global cam_thread, cam_active - - if not cam_active: - width, height = map(int, resolution.split('x')) - cam_thread = threading.Thread(target=virtualcamera, args=[swap_model, streamobs, use_xseg, use_mouthrestore, cam_number, width, height]) - cam_thread.start() - - - -def stop_virtual_cam(): - global cam_active, cam_thread - - if cam_active: - cam_active = False - cam_thread.join() - - diff --git a/roop-unleashed-main/roop/vr_util.py b/roop-unleashed-main/roop/vr_util.py deleted file mode 100644 index a72845e3c2c3cc89f6567ebfc13bf77d306710ff..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/roop/vr_util.py +++ /dev/null @@ -1,57 +0,0 @@ -import cv2 -import numpy as np - -# VR Lense Distortion -# Taken from https://github.com/g0kuvonlange/vrswap - - -def get_perspective(img, FOV, THETA, PHI, height, width): - # - # THETA is left/right angle, PHI is up/down angle, both in degree - # - [orig_width, orig_height, _] = img.shape - equ_h = orig_height - equ_w = orig_width - equ_cx = (equ_w - 1) / 2.0 - equ_cy = (equ_h - 1) / 2.0 - - wFOV = FOV - hFOV = float(height) / width * wFOV - - w_len = np.tan(np.radians(wFOV / 2.0)) - h_len = np.tan(np.radians(hFOV / 2.0)) - - x_map = np.ones([height, width], np.float32) - y_map = np.tile(np.linspace(-w_len, w_len, width), [height, 1]) - z_map = -np.tile(np.linspace(-h_len, h_len, height), [width, 1]).T - - D = np.sqrt(x_map**2 + y_map**2 + z_map**2) - xyz = np.stack((x_map, y_map, z_map), axis=2) / np.repeat( - D[:, :, np.newaxis], 3, axis=2 - ) - - y_axis = np.array([0.0, 1.0, 0.0], np.float32) - z_axis = np.array([0.0, 0.0, 1.0], np.float32) - [R1, _] = cv2.Rodrigues(z_axis * np.radians(THETA)) - [R2, _] = cv2.Rodrigues(np.dot(R1, y_axis) * np.radians(-PHI)) - - xyz = xyz.reshape([height * width, 3]).T - xyz = np.dot(R1, xyz) - xyz = np.dot(R2, xyz).T - lat = np.arcsin(xyz[:, 2]) - lon = np.arctan2(xyz[:, 1], xyz[:, 0]) - - lon = lon.reshape([height, width]) / np.pi * 180 - lat = -lat.reshape([height, width]) / np.pi * 180 - - lon = lon / 180 * equ_cx + equ_cx - lat = lat / 90 * equ_cy + equ_cy - - persp = cv2.remap( - img, - lon.astype(np.float32), - lat.astype(np.float32), - cv2.INTER_CUBIC, - borderMode=cv2.BORDER_WRAP, - ) - return persp diff --git a/roop-unleashed-main/run.py b/roop-unleashed-main/run.py deleted file mode 100644 index b52e5cc4a8ea9ce5cadd4e7111fb15531f380314..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/run.py +++ /dev/null @@ -1,6 +0,0 @@ -#!/usr/bin/env python3 - -from roop import core - -if __name__ == '__main__': - core.run() diff --git a/roop-unleashed-main/runMacOS.sh b/roop-unleashed-main/runMacOS.sh deleted file mode 100644 index c72ac8d76e177d087d5641128553ae1aeae1ae20..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/runMacOS.sh +++ /dev/null @@ -1,48 +0,0 @@ -#!/bin/bash - -# Check if we are in the correct repository directory -if [ ! -f "run.py" ]; then - echo "run.py not found!" - exit 1 -fi - -# Create a hidden Python 3.11 virtual environment in the .venv folder -VENV_DIR=".venv" - -# Check if Python 3.11 is installed -if ! brew list --versions python@3.11 >/dev/null; then - echo "Python 3.11 is not installed. Please install it first." - exit 1 -fi - -# Use Python 3.11 to create the virtual environment -echo "Creating a virtual environment using Python 3.11..." -python3.11 -m venv $VENV_DIR - -# Activate the virtual environment -echo "Activating the virtual environment..." -source "$VENV_DIR/bin/activate" - -# Check if the activation was successful -if [ "$VIRTUAL_ENV" != "" ]; then - echo "Virtual environment activated successfully." -else - echo "Failed to activate the virtual environment." - exit 1 -fi - -# Install dependencies from requirements.txt -if [ -f "requirements.txt" ]; then - echo "Installing dependencies from requirements.txt..." - pip install -r requirements.txt -else - echo "requirements.txt not found. Skipping dependency installation." -fi - -# Run roop-unleashed. This can take a while - especially at first startup... -echo "Running the run.py script..." -python run.py - -# Deactivate the virtual environment after execution -echo "Deactivating the virtual environment..." -deactivate \ No newline at end of file diff --git a/roop-unleashed-main/settings.py b/roop-unleashed-main/settings.py deleted file mode 100644 index c13de94b7ac4d9d921969281800605077870a5d0..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/settings.py +++ /dev/null @@ -1,69 +0,0 @@ -import yaml - -class Settings: - def __init__(self, config_file): - self.config_file = config_file - self.load() - - def default_get(_, data, name, default): - value = default - try: - value = data.get(name, default) - except: - pass - return value - - - def load(self): - try: - with open(self.config_file, 'r') as f: - data = yaml.load(f, Loader=yaml.FullLoader) - except: - data = None - - self.selected_theme = self.default_get(data, 'selected_theme', "Default") - self.server_name = self.default_get(data, 'server_name', "") - self.server_port = self.default_get(data, 'server_port', 0) - self.server_share = self.default_get(data, 'server_share', False) - self.output_image_format = self.default_get(data, 'output_image_format', 'png') - self.output_video_format = self.default_get(data, 'output_video_format', 'mp4') - self.output_video_codec = self.default_get(data, 'output_video_codec', 'libx264') - self.video_quality = self.default_get(data, 'video_quality', 14) - self.clear_output = self.default_get(data, 'clear_output', True) - self.max_threads = self.default_get(data, 'max_threads', 2) - self.memory_limit = self.default_get(data, 'memory_limit', 0) - self.provider = self.default_get(data, 'provider', 'cuda') - self.force_cpu = self.default_get(data, 'force_cpu', False) - self.output_template = self.default_get(data, 'output_template', '{file}_{time}') - self.use_os_temp_folder = self.default_get(data, 'use_os_temp_folder', False) - self.output_show_video = self.default_get(data, 'output_show_video', True) - self.launch_browser = self.default_get(data, 'launch_browser', True) - - - - - - def save(self): - data = { - 'selected_theme': self.selected_theme, - 'server_name': self.server_name, - 'server_port': self.server_port, - 'server_share': self.server_share, - 'output_image_format' : self.output_image_format, - 'output_video_format' : self.output_video_format, - 'output_video_codec' : self.output_video_codec, - 'video_quality' : self.video_quality, - 'clear_output' : self.clear_output, - 'max_threads' : self.max_threads, - 'memory_limit' : self.memory_limit, - 'provider' : self.provider, - 'force_cpu' : self.force_cpu, - 'output_template' : self.output_template, - 'use_os_temp_folder' : self.use_os_temp_folder, - 'output_show_video' : self.output_show_video - } - with open(self.config_file, 'w') as f: - yaml.dump(data, f) - - - diff --git a/roop-unleashed-main/ui/globals.py b/roop-unleashed-main/ui/globals.py deleted file mode 100644 index dc9495e2ee58f86f6d8a642013d372898e78bcdf..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/globals.py +++ /dev/null @@ -1,17 +0,0 @@ -ui_restart_server = False - -SELECTION_FACES_DATA = None -ui_SELECTED_INPUT_FACE_INDEX = 0 - -ui_selected_enhancer = None -ui_upscale = None -ui_blend_ratio = None -ui_input_thumbs = [] -ui_target_thumbs = [] -ui_camera_frame = None -ui_selected_swap_model = None - - - - - diff --git a/roop-unleashed-main/ui/main.py b/roop-unleashed-main/ui/main.py deleted file mode 100644 index 94cab10f1887fc100451b6f18078f4822196ae0d..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/main.py +++ /dev/null @@ -1,96 +0,0 @@ -import os -import time -import gradio as gr -import roop.globals -import roop.metadata -import roop.utilities as util -import ui.globals as uii - -from ui.tabs.faceswap_tab import faceswap_tab -from ui.tabs.livecam_tab import livecam_tab -from ui.tabs.facemgr_tab import facemgr_tab -from ui.tabs.extras_tab import extras_tab -from ui.tabs.settings_tab import settings_tab - -roop.globals.keep_fps = None -roop.globals.keep_frames = None -roop.globals.skip_audio = None -roop.globals.use_batch = None - - -def prepare_environment(): - roop.globals.output_path = os.path.abspath(os.path.join(os.getcwd(), "output")) - os.makedirs(roop.globals.output_path, exist_ok=True) - if not roop.globals.CFG.use_os_temp_folder: - os.environ["TEMP"] = os.environ["TMP"] = os.path.abspath(os.path.join(os.getcwd(), "temp")) - os.makedirs(os.environ["TEMP"], exist_ok=True) - os.environ["GRADIO_TEMP_DIR"] = os.environ["TEMP"] - os.environ['GRADIO_ANALYTICS_ENABLED'] = '0' - -def run(): - from roop.core import decode_execution_providers, set_display_ui - - prepare_environment() - - set_display_ui(show_msg) - if roop.globals.CFG.provider == "cuda" and util.has_cuda_device() == False: - roop.globals.CFG.provider = "cpu" - - roop.globals.execution_providers = decode_execution_providers([roop.globals.CFG.provider]) - gputype = util.get_device() - if gputype == 'cuda': - util.print_cuda_info() - - print(f'Using provider {roop.globals.execution_providers} - Device:{gputype}') - - run_server = True - uii.ui_restart_server = False - mycss = """ - span {color: var(--block-info-text-color)} - #fixedheight { - max-height: 238.4px; - overflow-y: auto !important; - } - .image-container.svelte-1l6wqyv {height: 100%} - - """ - - while run_server: - server_name = roop.globals.CFG.server_name - if server_name is None or len(server_name) < 1: - server_name = None - server_port = roop.globals.CFG.server_port - if server_port <= 0: - server_port = None - ssl_verify = False if server_name == '0.0.0.0' else True - with gr.Blocks(title=f'{roop.metadata.name} {roop.metadata.version}', theme=roop.globals.CFG.selected_theme, css=mycss, delete_cache=(60, 86400)) as ui: - with gr.Row(variant='compact'): - gr.Markdown(f"### [{roop.metadata.name} {roop.metadata.version}](https://github.com/C0untFloyd/roop-unleashed)") - gr.HTML(util.create_version_html(), elem_id="versions") - faceswap_tab() - livecam_tab() - facemgr_tab() - extras_tab() - settings_tab() - launch_browser = roop.globals.CFG.launch_browser - - uii.ui_restart_server = False - try: - ui.queue().launch(inbrowser=launch_browser, server_name=server_name, server_port=server_port, share=roop.globals.CFG.server_share, ssl_verify=ssl_verify, prevent_thread_lock=True, show_error=True) - except Exception as e: - print(f'Exception {e} when launching Gradio Server!') - uii.ui_restart_server = True - run_server = False - try: - while uii.ui_restart_server == False: - time.sleep(1.0) - - except (KeyboardInterrupt, OSError): - print("Keyboard interruption in main thread... closing server.") - run_server = False - ui.close() - - -def show_msg(msg: str): - gr.Info(msg) - diff --git a/roop-unleashed-main/ui/tabs/extras_tab.py b/roop-unleashed-main/ui/tabs/extras_tab.py deleted file mode 100644 index 7a1eb25c446fc1be59b32a2808d98008d55fbba9..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/tabs/extras_tab.py +++ /dev/null @@ -1,245 +0,0 @@ -import os -import gradio as gr -import shutil -import roop.utilities as util -import roop.util_ffmpeg as ffmpeg -import roop.globals -from roop.utilities import clean_dir - -frame_filters_map = { - "Colorize B/W Images (Deoldify Artistic)" : {"colorizer" : {"subtype": "deoldify_artistic"}}, - "Colorize B/W Images (Deoldify Stable)" : {"colorizer" : {"subtype": "deoldify_stable"}}, - "Background remove" : {"removebg" : {"subtype": ""}}, - "Filter Stylize" : {"filter_generic" : {"subtype" : "stylize" }}, - "Filter Detail Enhance" : {"filter_generic" : {"subtype" : "detailenhance" }}, - "Filter Pencil Sketch" : {"filter_generic" : {"subtype" : "pencil" }}, - "Filter Cartoon" : {"filter_generic" : {"subtype" : "cartoon" }}, - "Filter C64" : {"filter_generic" : {"subtype" : "C64" }} - } - -frame_upscalers_map = { - "ESRGAN x2" : {"upscale" : {"subtype": "esrganx2"}}, - "ESRGAN x4" : {"upscale" : {"subtype": "esrganx4"}}, - "LSDIR x4" : {"upscale" : {"subtype": "lsdirx4"}} -} - -def extras_tab(): - filternames = ["None"] - for f in frame_filters_map.keys(): - filternames.append(f) - upscalernames = ["None"] - for f in frame_upscalers_map.keys(): - upscalernames.append(f) - - with gr.Tab("๐ŸŽ‰ Extras"): - with gr.Row(): - files_to_process = gr.Files(label='File(s) to process', file_count="multiple", file_types=["image", "video"]) - with gr.Row(variant='panel'): - with gr.Accordion(label="Video/GIF", open=False): - with gr.Row(variant='panel'): - with gr.Column(): - gr.Markdown(""" - # Poor man's video editor - Re-encoding uses your configuration from the Settings Tab. - """) - with gr.Column(): - cut_start_time = gr.Slider(0, 1000000, value=0, label="Start Frame", step=1.0, interactive=True) - with gr.Column(): - cut_end_time = gr.Slider(1, 1000000, value=1, label="End Frame", step=1.0, interactive=True) - with gr.Column(): - extras_chk_encode = gr.Checkbox(label='Re-encode videos (necessary for videos with different codecs)', value=False) - start_cut_video = gr.Button("Cut video") - start_extract_frames = gr.Button("Extract frames") - start_join_videos = gr.Button("Join videos") - - with gr.Row(variant='panel'): - with gr.Column(): - gr.Markdown(""" - # Create video/gif from images - """) - with gr.Column(): - extras_fps = gr.Slider(minimum=0, maximum=120, value=30, label="Video FPS", step=1.0, interactive=True) - extras_images_folder = gr.Textbox(show_label=False, placeholder="/content/", interactive=True) - with gr.Column(): - extras_chk_creategif = gr.Checkbox(label='Create GIF from video', value=False) - extras_create_video=gr.Button("Create") - with gr.Row(variant='panel'): - with gr.Column(): - gr.Markdown(""" - # Create video from gif - """) - with gr.Column(): - extras_video_fps = gr.Slider(minimum=0, maximum=120, value=0, label="Video FPS", step=1.0, interactive=True) - with gr.Column(): - extras_create_video_from_gif=gr.Button("Create") - with gr.Row(variant='panel'): - with gr.Column(scale=2): - gr.Markdown(""" - # Repair video - - Uses FFMpeg to fix corrupt videos. - """) - with gr.Column(): - extras_repair_video=gr.Button("Repair") - - - with gr.Row(variant='panel'): - with gr.Accordion(label="Full frame processing", open=True): - with gr.Row(variant='panel'): - filterselection = gr.Dropdown(filternames, value="None", label="Colorizer/FilterFX", interactive=True) - upscalerselection = gr.Dropdown(upscalernames, value="None", label="Enhancer", interactive=True) - with gr.Row(variant='panel'): - start_frame_process=gr.Button("Start processing") - - with gr.Row(): - gr.Button("๐Ÿ‘€ Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path)) - with gr.Row(): - extra_files_output = gr.Files(label='Resulting output files', file_count="multiple") - - start_cut_video.click(fn=on_cut_video, inputs=[files_to_process, cut_start_time, cut_end_time, extras_chk_encode], outputs=[extra_files_output]) - start_extract_frames.click(fn=on_extras_extract_frames, inputs=[files_to_process], outputs=[extra_files_output]) - start_join_videos.click(fn=on_join_videos, inputs=[files_to_process, extras_chk_encode], outputs=[extra_files_output]) - extras_create_video.click(fn=on_extras_create_video, inputs=[files_to_process, extras_images_folder, extras_fps, extras_chk_creategif], outputs=[extra_files_output]) - extras_create_video_from_gif.click(fn=on_extras_create_video_from_gif, inputs=[files_to_process, extras_video_fps], outputs=[extra_files_output]) - extras_repair_video.click(fn=on_extras_repair_video, inputs=[files_to_process], outputs=[extra_files_output]) - start_frame_process.click(fn=on_frame_process, inputs=[files_to_process, filterselection, upscalerselection], outputs=[extra_files_output]) - - -def on_cut_video(files, cut_start_frame, cut_end_frame, reencode): - if files is None: - return None - - resultfiles = [] - for tf in files: - f = tf.name - destfile = util.get_destfilename_from_path(f, roop.globals.output_path, '_cut') - ffmpeg.cut_video(f, destfile, cut_start_frame, cut_end_frame, reencode) - if os.path.isfile(destfile): - resultfiles.append(destfile) - else: - gr.Error('Cutting video failed!') - return resultfiles - - -def on_join_videos(files, chk_encode): - if files is None: - return None - - filenames = [] - for f in files: - filenames.append(f.name) - destfile = util.get_destfilename_from_path(filenames[0], roop.globals.output_path, '_join') - sorted_filenames = util.sort_filenames_ignore_path(filenames) - ffmpeg.join_videos(sorted_filenames, destfile, not chk_encode) - resultfiles = [] - if os.path.isfile(destfile): - resultfiles.append(destfile) - else: - gr.Error('Joining videos failed!') - return resultfiles - -def on_extras_create_video_from_gif(files,fps): - if files is None: - return None - - filenames = [] - resultfiles = [] - for f in files: - filenames.append(f.name) - - destfilename = os.path.join(roop.globals.output_path, "img2video." + roop.globals.CFG.output_video_format) - ffmpeg.create_video_from_gif(filenames[0], destfilename) - if os.path.isfile(destfilename): - resultfiles.append(destfilename) - return resultfiles - - -def on_extras_repair_video(files): - if files is None: - return None - - resultfiles = [] - for tf in files: - f = tf.name - destfile = util.get_destfilename_from_path(f, roop.globals.output_path, '_repair') - ffmpeg.repair_video(f, destfile) - if os.path.isfile(destfile): - resultfiles.append(destfile) - else: - gr.Error('Repairing video failed!') - return resultfiles - - - - - -def on_extras_create_video(files, images_path,fps, create_gif): - if images_path is None: - return None - resultfiles = [] - if len(files) > 0 and util.is_video(files[0]) and create_gif: - destfilename = files[0] - else: - util.sort_rename_frames(os.path.dirname(images_path)) - destfilename = os.path.join(roop.globals.output_path, "img2video." + roop.globals.CFG.output_video_format) - ffmpeg.create_video('', destfilename, fps, images_path) - if os.path.isfile(destfilename): - resultfiles.append(destfilename) - else: - return None - if create_gif: - gifname = util.get_destfilename_from_path(destfilename, './output', '.gif') - ffmpeg.create_gif_from_video(destfilename, gifname) - if os.path.isfile(destfilename): - resultfiles.append(gifname) - return resultfiles - - -def on_extras_extract_frames(files): - if files is None: - return None - - resultfiles = [] - for tf in files: - f = tf.name - resfolder = ffmpeg.extract_frames(f) - for file in os.listdir(resfolder): - outfile = os.path.join(resfolder, file) - if os.path.isfile(outfile): - resultfiles.append(outfile) - return resultfiles - - -def on_frame_process(files, filterselection, upscaleselection): - import pathlib - from roop.core import batch_process_with_options - from roop.ProcessEntry import ProcessEntry - from roop.ProcessOptions import ProcessOptions - from ui.main import prepare_environment - - - if files is None: - return None - - if roop.globals.CFG.clear_output: - clean_dir(roop.globals.output_path) - prepare_environment() - list_files_process : list[ProcessEntry] = [] - - for tf in files: - list_files_process.append(ProcessEntry(tf.name, 0,0, 0)) - - processoroptions = {} - filter = next((x for x in frame_filters_map.keys() if x == filterselection), None) - if filter is not None: - processoroptions.update(frame_filters_map[filter]) - filter = next((x for x in frame_upscalers_map.keys() if x == upscaleselection), None) - if filter is not None: - processoroptions.update(frame_upscalers_map[filter]) - options = ProcessOptions(processoroptions, 0, 0, "all", 0, None, None, 0, 128, False, False) - batch_process_with_options(list_files_process, options, None) - outdir = pathlib.Path(roop.globals.output_path) - outfiles = [str(item) for item in outdir.rglob("*") if item.is_file()] - return outfiles - - diff --git a/roop-unleashed-main/ui/tabs/facemgr_tab.py b/roop-unleashed-main/ui/tabs/facemgr_tab.py deleted file mode 100644 index fa3ecc94e9b57ffd891190755f77f5061f171611..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/tabs/facemgr_tab.py +++ /dev/null @@ -1,187 +0,0 @@ -import os -import shutil -import cv2 -import gradio as gr -import roop.utilities as util -import roop.globals -from roop.face_util import extract_face_images -from roop.capturer import get_video_frame, get_video_frame_total -from typing import List, Tuple, Optional -from roop.typing import Frame, Face, FaceSet - -selected_face_index = -1 -thumbs = [] -images = [] - - -def facemgr_tab() -> None: - with gr.Tab("๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ Face Management"): - with gr.Row(): - gr.Markdown(""" - # Create blending facesets - Add multiple reference images into a faceset file. - """) - with gr.Row(): - videoimagefst = gr.Image(label="Cut face from video frame", height=576, interactive=False, visible=True, format="jpeg") - with gr.Row(): - frame_num_fst = gr.Slider(1, 1, value=1, label="Frame Number", info='0:00:00', step=1.0, interactive=False) - fb_cutfromframe = gr.Button("Use faces from this frame", variant='secondary', interactive=False) - with gr.Row(): - fb_facesetfile = gr.Files(label='Faceset', file_count='single', file_types=['.fsz'], interactive=True) - fb_files = gr.Files(label='Input Files', file_count="multiple", file_types=["image", "video"], interactive=True) - with gr.Row(): - with gr.Column(): - gr.Button("๐Ÿ‘€ Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path)) - with gr.Column(): - gr.Markdown(' ') - with gr.Row(): - faces = gr.Gallery(label="Faces in this Faceset", allow_preview=True, preview=True, height=128, object_fit="scale-down") - with gr.Row(): - fb_remove = gr.Button("Remove selected", variant='secondary') - fb_update = gr.Button("Create/Update Faceset file", variant='primary') - fb_clear = gr.Button("Clear all", variant='stop') - - fb_facesetfile.change(fn=on_faceset_changed, inputs=[fb_facesetfile], outputs=[faces]) - fb_files.change(fn=on_fb_files_changed, inputs=[fb_files], outputs=[faces, videoimagefst, frame_num_fst, fb_cutfromframe]) - fb_update.click(fn=on_update_clicked, outputs=[fb_facesetfile]) - fb_remove.click(fn=on_remove_clicked, outputs=[faces]) - fb_clear.click(fn=on_clear_clicked, outputs=[faces, fb_files, fb_facesetfile]) - fb_cutfromframe.click(fn=on_cutfromframe_clicked, inputs=[fb_files, frame_num_fst], outputs=[faces]) - frame_num_fst.release(fn=on_frame_num_fst_changed, inputs=[fb_files, frame_num_fst], outputs=[videoimagefst]) - faces.select(fn=on_face_selected) - - -def on_faceset_changed(faceset, progress=gr.Progress()) -> List[Frame]: - global thumbs, images - - if faceset is None: - return thumbs - - thumbs.clear() - filename = faceset.name - - if filename.lower().endswith('fsz'): - progress(0, desc="Retrieving faces from Faceset File", ) - unzipfolder = os.path.join(os.environ["TEMP"], 'faceset') - if os.path.isdir(unzipfolder): - shutil.rmtree(unzipfolder) - util.mkdir_with_umask(unzipfolder) - util.unzip(filename, unzipfolder) - for file in os.listdir(unzipfolder): - if file.endswith(".png"): - SELECTION_FACES_DATA = extract_face_images(os.path.join(unzipfolder,file), (False, 0), 0.5) - if len(SELECTION_FACES_DATA) < 1: - gr.Warning(f"No face detected in {file}!") - for f in SELECTION_FACES_DATA: - image = f[1] - images.append(image) - thumbs.append(util.convert_to_gradio(image)) - - return thumbs - - -def on_fb_files_changed(inputfiles, progress=gr.Progress()) -> Tuple[List[Frame], Optional[gr.Image], Optional[gr.Slider], Optional[gr.Button]]: - global thumbs, images, total_frames, current_video_fps - - if inputfiles is None or len(inputfiles) < 1: - return thumbs, None, None, None - - progress(0, desc="Retrieving faces from images", ) - slider = None - video_image = None - cut_button = None - for f in inputfiles: - source_path = f.name - if util.has_image_extension(source_path): - slider = gr.Slider(interactive=False) - video_image = gr.Image(interactive=False) - cut_button = gr.Button(interactive=False) - roop.globals.source_path = source_path - SELECTION_FACES_DATA = extract_face_images(roop.globals.source_path, (False, 0), 0.5) - for f in SELECTION_FACES_DATA: - image = f[1] - images.append(image) - thumbs.append(util.convert_to_gradio(image)) - elif util.is_video(source_path) or source_path.lower().endswith('gif'): - total_frames = get_video_frame_total(source_path) - current_video_fps = util.detect_fps(source_path) - cut_button = gr.Button(interactive=True) - video_image, slider = display_video_frame(source_path, 1, total_frames) - - return thumbs, video_image, slider, cut_button - - -def display_video_frame(filename: str, frame_num: int, total: int=0) -> Tuple[gr.Image, gr.Slider]: - global current_video_fps - - current_frame = get_video_frame(filename, frame_num) - if current_video_fps == 0: - current_video_fps = 1 - secs = (frame_num - 1) / current_video_fps - minutes = secs / 60 - secs = secs % 60 - hours = minutes / 60 - minutes = minutes % 60 - milliseconds = (secs - int(secs)) * 1000 - timeinfo = f"{int(hours):0>2}:{int(minutes):0>2}:{int(secs):0>2}.{int(milliseconds):0>3}" - if total > 0: - return gr.Image(value=util.convert_to_gradio(current_frame), interactive=True), gr.Slider(info=timeinfo, minimum=1, maximum=total, interactive=True) - return gr.Image(value=util.convert_to_gradio(current_frame), interactive=True), gr.Slider(info=timeinfo, interactive=True) - - -def on_face_selected(evt: gr.SelectData) -> None: - global selected_face_index - - if evt is not None: - selected_face_index = evt.index - -def on_frame_num_fst_changed(inputfiles: List[gr.Files], frame_num: int) -> Frame: - filename = inputfiles[0].name - video_image, _ = display_video_frame(filename, frame_num, 0) - return video_image - - -def on_cutfromframe_clicked(inputfiles: List[gr.Files], frame_num: int) -> List[Frame]: - global thumbs - - filename = inputfiles[0].name - SELECTION_FACES_DATA = extract_face_images(filename, (True, frame_num), 0.5) - for f in SELECTION_FACES_DATA: - image = f[1] - images.append(image) - thumbs.append(util.convert_to_gradio(image)) - return thumbs - - -def on_remove_clicked() -> List[Frame]: - global thumbs, images, selected_face_index - - if len(thumbs) > selected_face_index: - f = thumbs.pop(selected_face_index) - del f - f = images.pop(selected_face_index) - del f - return thumbs - -def on_clear_clicked() -> Tuple[List[Frame], None, None]: - global thumbs, images - - thumbs.clear() - images.clear() - return thumbs, None, None - - -def on_update_clicked() -> Optional[str]: - if len(images) < 1: - gr.Warning(f"No faces to create faceset from!") - return None - - imgnames = [] - for index,img in enumerate(images): - filename = os.path.join(roop.globals.output_path, f'{index}.png') - cv2.imwrite(filename, img) - imgnames.append(filename) - - finalzip = os.path.join(roop.globals.output_path, 'faceset.fsz') - util.zip(imgnames, finalzip) - return finalzip diff --git a/roop-unleashed-main/ui/tabs/faceswap_tab.py b/roop-unleashed-main/ui/tabs/faceswap_tab.py deleted file mode 100644 index a5fdeeaa2b163e4c294e6bb94ca6d175344d7aee..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/tabs/faceswap_tab.py +++ /dev/null @@ -1,835 +0,0 @@ -import os -import shutil -import pathlib -import gradio as gr -import roop.utilities as util -import roop.globals -import ui.globals -from roop.face_util import extract_face_images, create_blank_image -from roop.capturer import get_video_frame, get_video_frame_total, get_image_frame -from roop.ProcessEntry import ProcessEntry -from roop.ProcessOptions import ProcessOptions -from roop.FaceSet import FaceSet -from roop.utilities import clean_dir - -last_image = None - - -IS_INPUT = True -SELECTED_FACE_INDEX = 0 - -SELECTED_INPUT_FACE_INDEX = 0 -SELECTED_TARGET_FACE_INDEX = 0 - -input_faces = None -target_faces = None -face_selection = None -previewimage = None - -selected_preview_index = 0 - -is_processing = False - -list_files_process : list[ProcessEntry] = [] -model_swap_choices = ["InSwapper 128", "ReSwapper 128", "ReSwapper 256"] - -no_face_choices = ["Use untouched original frame","Retry rotated", "Skip Frame", "Skip Frame if no similar face", "Use last swapped"] -swap_choices = ["First found", "All input faces", "All input faces (random)", "All female", "All male", "All faces", "Selected face"] - -current_video_fps = 50 - -manual_masking = False - - -def faceswap_tab(): - global no_face_choices, previewimage - - with gr.Tab("๐ŸŽญ Face Swap"): - with gr.Row(variant='panel'): - with gr.Column(scale=2): - with gr.Row(): - input_faces = gr.Gallery(label="Input faces gallery", allow_preview=False, preview=False, height=138, columns=64, object_fit="scale-down", interactive=False) - target_faces = gr.Gallery(label="Target faces gallery", allow_preview=False, preview=False, height=138, columns=64, object_fit="scale-down", interactive=False) - with gr.Row(): - bt_move_left_input = gr.Button("โฌ… Move left", size='sm') - bt_move_right_input = gr.Button("โžก Move right", size='sm') - bt_move_left_target = gr.Button("โฌ… Move left", size='sm') - bt_move_right_target = gr.Button("โžก Move right", size='sm') - with gr.Row(): - bt_remove_selected_input_face = gr.Button("โŒ Remove selected", size='sm') - bt_clear_input_faces = gr.Button("๐Ÿ’ฅ Clear all", variant='stop', size='sm') - bt_remove_selected_target_face = gr.Button("โŒ Remove selected", size='sm') - bt_add_local = gr.Button('Add local files from', size='sm') - - with gr.Row(): - with gr.Column(scale=2): - with gr.Accordion(label="Advanced Masking", open=False): - chk_showmaskoffsets = gr.Checkbox( - label="Show mask overlay in preview", - value=False, - interactive=True, - ) - chk_restoreoriginalmouth = gr.Checkbox( - label="Restore original mouth area", - value=False, - interactive=True, - ) - mask_top = gr.Slider( - 0, - 1.0, - value=0, - label="Offset Face Top", - step=0.01, - interactive=True, - ) - mask_bottom = gr.Slider( - 0, - 1.0, - value=0, - label="Offset Face Bottom", - step=0.01, - interactive=True, - ) - mask_left = gr.Slider( - 0, - 1.0, - value=0, - label="Offset Face Left", - step=0.01, - interactive=True, - ) - mask_right = gr.Slider( - 0, - 1.0, - value=0, - label="Offset Face Right", - step=0.01, - interactive=True, - ) - mask_erosion = gr.Slider( - 1.0, - 3.0, - value=1.0, - label="Erosion Iterations", - step=1.00, - interactive=True, - ) - mask_blur = gr.Slider( - 10.0, - 50.0, - value=20.0, - label="Blur size", - step=1.00, - interactive=True, - ) - bt_toggle_masking = gr.Button( - "Toggle manual masking", variant="secondary", size="sm" - ) - selected_mask_engine = gr.Dropdown( - ["None", "Clip2Seg", "DFL XSeg"], - value="None", - label="Face masking engine", - ) - clip_text = gr.Textbox( - label="List of objects to mask and restore back on fake face", - value="cup,hands,hair,banana", - interactive=False, - ) - bt_preview_mask = gr.Button( - "๐Ÿ‘ฅ Show Mask Preview", variant="secondary" - ) - with gr.Column(scale=2): - local_folder = gr.Textbox(show_label=False, placeholder="/content/", interactive=True) - with gr.Row(variant='panel'): - bt_srcfiles = gr.Files(label='Source Images or Facesets', file_count="multiple", file_types=["image", ".fsz", ".webp"], elem_id='filelist', height=233) - bt_destfiles = gr.Files(label='Target File(s)', file_count="multiple", file_types=["image", "video", ".webp"], elem_id='filelist', height=233) - with gr.Row(variant='panel'): - ui.globals.ui_selected_swap_model = gr.Dropdown(model_swap_choices, value=model_swap_choices[0], label="Specify Face Swap Model") - forced_fps = gr.Slider(minimum=0, maximum=120, value=0, label="Video FPS", info='Overrides detected fps if not 0', step=1.0, interactive=True, container=True) - - with gr.Column(scale=2): - previewimage = gr.Image(label="Preview Image", height=576, interactive=False, visible=True, format=get_gradio_output_format()) - maskimage = gr.ImageEditor(label="Manual mask Image", sources=["clipboard"], transforms="", type="numpy", - brush=gr.Brush(color_mode="fixed", colors=["rgba(255, 255, 255, 1"]), interactive=True, visible=False) - with gr.Row(variant='panel'): - fake_preview = gr.Checkbox(label="Face swap frames", value=False) - bt_refresh_preview = gr.Button("๐Ÿ”„ Refresh", variant='secondary', size='sm') - bt_use_face_from_preview = gr.Button("Use Face from this Frame", variant='primary', size='sm') - with gr.Row(): - preview_frame_num = gr.Slider(1, 1, value=1, label="Frame Number", info='0:00:00', step=1.0, interactive=True) - with gr.Row(): - text_frame_clip = gr.Markdown('Processing frame range [0 - 0]') - set_frame_start = gr.Button("โฌ… Set as Start", size='sm') - set_frame_end = gr.Button("โžก Set as End", size='sm') - with gr.Row(visible=False) as dynamic_face_selection: - with gr.Column(scale=2): - face_selection = gr.Gallery(label="Detected faces", allow_preview=False, preview=False, height=138, object_fit="cover", columns=32) - with gr.Column(): - bt_faceselect = gr.Button("โ˜‘ Use selected face", size='sm') - bt_cancelfaceselect = gr.Button("Done", size='sm') - with gr.Column(): - gr.Markdown(' ') - - with gr.Row(variant='panel'): - with gr.Column(scale=1): - selected_face_detection = gr.Dropdown(swap_choices, value="First found", label="Specify face selection for swapping") - with gr.Column(scale=1): - num_swap_steps = gr.Slider(1, 5, value=1, step=1.0, label="Number of swapping steps", info="More steps may increase likeness") - with gr.Column(scale=2): - ui.globals.ui_selected_enhancer = gr.Dropdown(["None", "Codeformer", "DMDNet", "GFPGAN", "GPEN", "Restoreformer++"], value="None", label="Select post-processing") - - with gr.Row(variant='panel'): - with gr.Column(scale=1): - max_face_distance = gr.Slider(0.01, 1.0, value=0.65, label="Max Face Similarity Threshold", info="0.0 = identical 1.0 = no similarity") - with gr.Column(scale=1): - ui.globals.ui_upscale = gr.Dropdown(["128px", "256px", "512px"], value="128px", label="Subsample upscale to", interactive=True) - with gr.Column(scale=2): - ui.globals.ui_blend_ratio = gr.Slider(0.0, 1.0, value=0.65, label="Original/Enhanced image blend ratio", info="Only used with active post-processing") - - with gr.Row(variant='panel'): - with gr.Column(scale=1): - video_swapping_method = gr.Dropdown(["Extract Frames to media","In-Memory processing"], value="In-Memory processing", label="Select video processing method", interactive=True) - no_face_action = gr.Dropdown(choices=no_face_choices, value=no_face_choices[0], label="Action on no face detected", interactive=True) - vr_mode = gr.Checkbox(label="VR Mode", value=False) - with gr.Column(scale=1): - with gr.Group(): - autorotate = gr.Checkbox(label="Auto rotate horizontal Faces", value=True) - roop.globals.skip_audio = gr.Checkbox(label="Skip audio", value=False) - roop.globals.keep_frames = gr.Checkbox(label="Keep Frames (relevant only when extracting frames)", value=False) - roop.globals.wait_after_extraction = gr.Checkbox(label="Wait for user key press before creating video ", value=False) - - with gr.Row(variant='panel'): - with gr.Column(): - bt_start = gr.Button("โ–ถ Start", variant='primary') - with gr.Column(): - bt_stop = gr.Button("โน Stop", variant='secondary', interactive=False) - gr.Button("๐Ÿ‘€ Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path)) - with gr.Column(scale=2): - output_method = gr.Dropdown(["File","Virtual Camera", "Both"], value="File", label="Select Output Method", interactive=True) - with gr.Row(variant='panel'): - with gr.Column(): - resultfiles = gr.Files(label='Processed File(s)', interactive=False) - with gr.Column(): - resultimage = gr.Image(type='filepath', label='Final Image', interactive=False ) - resultvideo = gr.Video(label='Final Video', interactive=False, visible=False) - - previewinputs = [ui.globals.ui_selected_swap_model, preview_frame_num, bt_destfiles, fake_preview, ui.globals.ui_selected_enhancer, selected_face_detection, - max_face_distance, ui.globals.ui_blend_ratio, selected_mask_engine, clip_text, no_face_action, vr_mode, autorotate, maskimage, chk_showmaskoffsets, chk_restoreoriginalmouth, num_swap_steps, ui.globals.ui_upscale] - previewoutputs = [previewimage, maskimage, preview_frame_num] - input_faces.select(on_select_input_face, None, None).success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs) - - bt_move_left_input.click(fn=move_selected_input, inputs=[bt_move_left_input], outputs=[input_faces]) - bt_move_right_input.click(fn=move_selected_input, inputs=[bt_move_right_input], outputs=[input_faces]) - bt_move_left_target.click(fn=move_selected_target, inputs=[bt_move_left_target], outputs=[target_faces]) - bt_move_right_target.click(fn=move_selected_target, inputs=[bt_move_right_target], outputs=[target_faces]) - - bt_remove_selected_input_face.click(fn=remove_selected_input_face, outputs=[input_faces]) - bt_srcfiles.change(fn=on_srcfile_changed, show_progress='full', inputs=bt_srcfiles, outputs=[dynamic_face_selection, face_selection, input_faces, bt_srcfiles]) - - mask_top.release(fn=on_mask_top_changed, inputs=[mask_top], show_progress='hidden') - mask_bottom.release(fn=on_mask_bottom_changed, inputs=[mask_bottom], show_progress='hidden') - mask_left.release(fn=on_mask_left_changed, inputs=[mask_left], show_progress='hidden') - mask_right.release(fn=on_mask_right_changed, inputs=[mask_right], show_progress='hidden') - mask_erosion.release(fn=on_mask_erosion_changed, inputs=[mask_erosion], show_progress='hidden') - mask_blur.release(fn=on_mask_blur_changed, inputs=[mask_blur], show_progress='hidden') - selected_mask_engine.change(fn=on_mask_engine_changed, inputs=[selected_mask_engine], outputs=[clip_text], show_progress='hidden') - - target_faces.select(on_select_target_face, None, None) - bt_remove_selected_target_face.click(fn=remove_selected_target_face, outputs=[target_faces]) - - forced_fps.change(fn=on_fps_changed, inputs=[forced_fps], show_progress='hidden') - bt_destfiles.change(fn=on_destfiles_changed, inputs=[bt_destfiles], outputs=[preview_frame_num, text_frame_clip], show_progress='hidden').success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden') - bt_destfiles.select(fn=on_destfiles_selected, outputs=[preview_frame_num, text_frame_clip, forced_fps], show_progress='hidden').success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden') - bt_destfiles.clear(fn=on_clear_destfiles, outputs=[target_faces, selected_face_detection]) - resultfiles.select(fn=on_resultfiles_selected, inputs=[resultfiles], outputs=[resultimage, resultvideo]) - - face_selection.select(on_select_face, None, None) - bt_faceselect.click(fn=on_selected_face, outputs=[input_faces, target_faces, selected_face_detection]) - bt_cancelfaceselect.click(fn=on_end_face_selection, outputs=[dynamic_face_selection, face_selection]) - - bt_clear_input_faces.click(fn=on_clear_input_faces, outputs=[input_faces]) - - bt_add_local.click(fn=on_add_local_folder, inputs=[local_folder], outputs=[bt_destfiles]) - bt_preview_mask.click(fn=on_preview_mask, inputs=[preview_frame_num, bt_destfiles, clip_text, selected_mask_engine], outputs=[previewimage]) - - start_event = bt_start.click(fn=start_swap, - inputs=[ui.globals.ui_selected_swap_model, output_method, ui.globals.ui_selected_enhancer, selected_face_detection, roop.globals.keep_frames, roop.globals.wait_after_extraction, - roop.globals.skip_audio, max_face_distance, ui.globals.ui_blend_ratio, selected_mask_engine, clip_text,video_swapping_method, no_face_action, vr_mode, autorotate, chk_restoreoriginalmouth, num_swap_steps, ui.globals.ui_upscale, maskimage], - outputs=[bt_start, bt_stop, resultfiles], show_progress='full') - after_swap_event = start_event.success(fn=on_resultfiles_finished, inputs=[resultfiles], outputs=[resultimage, resultvideo]) - - bt_stop.click(fn=stop_swap, cancels=[start_event, after_swap_event], outputs=[bt_start, bt_stop], queue=False) - - bt_refresh_preview.click(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs) - bt_toggle_masking.click(fn=on_toggle_masking, inputs=[previewimage, maskimage], outputs=[previewimage, maskimage]) - fake_preview.change(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs) - preview_frame_num.release(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden', ) - bt_use_face_from_preview.click(fn=on_use_face_from_selected, show_progress='full', inputs=[bt_destfiles, preview_frame_num], outputs=[dynamic_face_selection, face_selection, target_faces, selected_face_detection]) - set_frame_start.click(fn=on_set_frame, inputs=[set_frame_start, preview_frame_num], outputs=[text_frame_clip]) - set_frame_end.click(fn=on_set_frame, inputs=[set_frame_end, preview_frame_num], outputs=[text_frame_clip]) - - -def on_mask_top_changed(mask_offset): - set_mask_offset(0, mask_offset) - -def on_mask_bottom_changed(mask_offset): - set_mask_offset(1, mask_offset) - -def on_mask_left_changed(mask_offset): - set_mask_offset(2, mask_offset) - -def on_mask_right_changed(mask_offset): - set_mask_offset(3, mask_offset) - -def on_mask_erosion_changed(mask_offset): - set_mask_offset(4, mask_offset) -def on_mask_blur_changed(mask_offset): - set_mask_offset(5, mask_offset) - - -def set_mask_offset(index, mask_offset): - global SELECTED_INPUT_FACE_INDEX - - if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX: - offs = roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets - offs[index] = mask_offset - if offs[0] + offs[1] > 0.99: - offs[0] = 0.99 - offs[1] = 0.0 - if offs[2] + offs[3] > 0.99: - offs[2] = 0.99 - offs[3] = 0.0 - roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets = offs - -def on_mask_engine_changed(mask_engine): - if mask_engine == "Clip2Seg": - return gr.Textbox(interactive=True) - return gr.Textbox(interactive=False) - - -def on_add_local_folder(folder): - files = util.get_local_files_from_folder(folder) - if files is None: - gr.Warning("Empty folder or folder not found!") - return files - - -def on_srcfile_changed(srcfiles, progress=gr.Progress()): - global SELECTION_FACES_DATA, IS_INPUT, input_faces, face_selection, last_image - - IS_INPUT = True - - if srcfiles is None or len(srcfiles) < 1: - return gr.Column(visible=False), None, ui.globals.ui_input_thumbs, None - - for f in srcfiles: - source_path = f.name - if source_path.lower().endswith('fsz'): - progress(0, desc="Retrieving faces from Faceset File") - unzipfolder = os.path.join(os.environ["TEMP"], 'faceset') - if os.path.isdir(unzipfolder): - files = os.listdir(unzipfolder) - for file in files: - os.remove(os.path.join(unzipfolder, file)) - else: - os.makedirs(unzipfolder) - util.mkdir_with_umask(unzipfolder) - util.unzip(source_path, unzipfolder) - is_first = True - face_set = FaceSet() - for file in os.listdir(unzipfolder): - if file.endswith(".png"): - filename = os.path.join(unzipfolder,file) - progress(0, desc="Extracting faceset") - SELECTION_FACES_DATA = extract_face_images(filename, (False, 0)) - for f in SELECTION_FACES_DATA: - face = f[0] - face.mask_offsets = (0,0,0,0,1,20) - face_set.faces.append(face) - if is_first: - image = util.convert_to_gradio(f[1]) - ui.globals.ui_input_thumbs.append(image) - is_first = False - face_set.ref_images.append(get_image_frame(filename)) - if len(face_set.faces) > 0: - if len(face_set.faces) > 1: - face_set.AverageEmbeddings() - roop.globals.INPUT_FACESETS.append(face_set) - - elif util.has_image_extension(source_path): - progress(0, desc="Retrieving faces from image") - roop.globals.source_path = source_path - SELECTION_FACES_DATA = extract_face_images(roop.globals.source_path, (False, 0)) - progress(0.5, desc="Retrieving faces from image") - for f in SELECTION_FACES_DATA: - face_set = FaceSet() - face = f[0] - face.mask_offsets = (0,0,0,0,1,20) - face_set.faces.append(face) - image = util.convert_to_gradio(f[1]) - ui.globals.ui_input_thumbs.append(image) - roop.globals.INPUT_FACESETS.append(face_set) - - progress(1.0) - return gr.Column(visible=False), None, ui.globals.ui_input_thumbs,None - - -def on_select_input_face(evt: gr.SelectData): - global SELECTED_INPUT_FACE_INDEX - - SELECTED_INPUT_FACE_INDEX = evt.index - - -def remove_selected_input_face(): - global SELECTED_INPUT_FACE_INDEX - - if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX: - f = roop.globals.INPUT_FACESETS.pop(SELECTED_INPUT_FACE_INDEX) - del f - if len(ui.globals.ui_input_thumbs) > SELECTED_INPUT_FACE_INDEX: - f = ui.globals.ui_input_thumbs.pop(SELECTED_INPUT_FACE_INDEX) - del f - - return ui.globals.ui_input_thumbs - -def move_selected_input(button_text): - global SELECTED_INPUT_FACE_INDEX - - if button_text == "โฌ… Move left": - if SELECTED_INPUT_FACE_INDEX <= 0: - return ui.globals.ui_input_thumbs - offset = -1 - else: - if len(ui.globals.ui_input_thumbs) <= SELECTED_INPUT_FACE_INDEX: - return ui.globals.ui_input_thumbs - offset = 1 - - f = roop.globals.INPUT_FACESETS.pop(SELECTED_INPUT_FACE_INDEX) - roop.globals.INPUT_FACESETS.insert(SELECTED_INPUT_FACE_INDEX + offset, f) - f = ui.globals.ui_input_thumbs.pop(SELECTED_INPUT_FACE_INDEX) - ui.globals.ui_input_thumbs.insert(SELECTED_INPUT_FACE_INDEX + offset, f) - return ui.globals.ui_input_thumbs - - -def move_selected_target(button_text): - global SELECTED_TARGET_FACE_INDEX - - if button_text == "โฌ… Move left": - if SELECTED_TARGET_FACE_INDEX <= 0: - return ui.globals.ui_target_thumbs - offset = -1 - else: - if len(ui.globals.ui_target_thumbs) <= SELECTED_TARGET_FACE_INDEX: - return ui.globals.ui_target_thumbs - offset = 1 - - f = roop.globals.TARGET_FACES.pop(SELECTED_TARGET_FACE_INDEX) - roop.globals.TARGET_FACES.insert(SELECTED_TARGET_FACE_INDEX + offset, f) - f = ui.globals.ui_target_thumbs.pop(SELECTED_TARGET_FACE_INDEX) - ui.globals.ui_target_thumbs.insert(SELECTED_TARGET_FACE_INDEX + offset, f) - return ui.globals.ui_target_thumbs - - - - -def on_select_target_face(evt: gr.SelectData): - global SELECTED_TARGET_FACE_INDEX - - SELECTED_TARGET_FACE_INDEX = evt.index - -def remove_selected_target_face(): - if len(ui.globals.ui_target_thumbs) > SELECTED_TARGET_FACE_INDEX: - f = roop.globals.TARGET_FACES.pop(SELECTED_TARGET_FACE_INDEX) - del f - if len(ui.globals.ui_target_thumbs) > SELECTED_TARGET_FACE_INDEX: - f = ui.globals.ui_target_thumbs.pop(SELECTED_TARGET_FACE_INDEX) - del f - return ui.globals.ui_target_thumbs - - -def on_use_face_from_selected(files, frame_num): - global IS_INPUT, SELECTION_FACES_DATA - - IS_INPUT = False - thumbs = [] - - roop.globals.target_path = files[selected_preview_index].name - if util.is_image(roop.globals.target_path) and not roop.globals.target_path.lower().endswith(('gif')): - SELECTION_FACES_DATA = extract_face_images(roop.globals.target_path, (False, 0)) - if len(SELECTION_FACES_DATA) > 0: - for f in SELECTION_FACES_DATA: - image = util.convert_to_gradio(f[1]) - thumbs.append(image) - else: - gr.Info('No faces detected!') - roop.globals.target_path = None - - elif util.is_video(roop.globals.target_path) or roop.globals.target_path.lower().endswith(('gif')): - selected_frame = frame_num - SELECTION_FACES_DATA = extract_face_images(roop.globals.target_path, (True, selected_frame)) - if len(SELECTION_FACES_DATA) > 0: - for f in SELECTION_FACES_DATA: - image = util.convert_to_gradio(f[1]) - thumbs.append(image) - else: - gr.Info('No faces detected!') - roop.globals.target_path = None - else: - gr.Info('Unknown image/video type!') - roop.globals.target_path = None - - if len(thumbs) == 1: - roop.globals.TARGET_FACES.append(SELECTION_FACES_DATA[0][0]) - ui.globals.ui_target_thumbs.append(thumbs[0]) - return gr.Row(visible=False), None, ui.globals.ui_target_thumbs, gr.Dropdown(value='Selected face') - - return gr.Row(visible=True), thumbs, gr.Gallery(visible=True), gr.Dropdown(visible=True) - - -def on_select_face(evt: gr.SelectData): # SelectData is a subclass of EventData - global SELECTED_FACE_INDEX - SELECTED_FACE_INDEX = evt.index - - -def on_selected_face(): - global IS_INPUT, SELECTED_FACE_INDEX, SELECTION_FACES_DATA - - fd = SELECTION_FACES_DATA[SELECTED_FACE_INDEX] - image = util.convert_to_gradio(fd[1]) - if IS_INPUT: - face_set = FaceSet() - fd[0].mask_offsets = (0,0,0,0,1,20) - face_set.faces.append(fd[0]) - roop.globals.INPUT_FACESETS.append(face_set) - ui.globals.ui_input_thumbs.append(image) - return ui.globals.ui_input_thumbs, gr.Gallery(visible=True), gr.Dropdown(visible=True) - else: - roop.globals.TARGET_FACES.append(fd[0]) - ui.globals.ui_target_thumbs.append(image) - return gr.Gallery(visible=True), ui.globals.ui_target_thumbs, gr.Dropdown(value='Selected face') - -# bt_faceselect.click(fn=on_selected_face, outputs=[dynamic_face_selection, face_selection, input_faces, target_faces]) - -def on_end_face_selection(): - return gr.Column(visible=False), None - - -def on_preview_frame_changed(swap_model, frame_num, files, fake_preview, enhancer, detection, face_distance, blend_ratio, - selected_mask_engine, clip_text, no_face_action, vr_mode, auto_rotate, maskimage, show_face_area, restore_original_mouth, num_steps, upsample): - global SELECTED_INPUT_FACE_INDEX, manual_masking, current_video_fps - - from roop.core import live_swap, get_processing_plugins - - manual_masking = False - mask_offsets = (0,0,0,0) - if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX: - if not hasattr(roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0], 'mask_offsets'): - roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets = mask_offsets - mask_offsets = roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets - - timeinfo = '0:00:00' - if files is None or selected_preview_index >= len(files) or frame_num is None: - return None,None, gr.Slider(info=timeinfo) - - filename = files[selected_preview_index].name - if util.is_video(filename) or filename.lower().endswith('gif'): - current_frame = get_video_frame(filename, frame_num) - if current_video_fps == 0: - current_video_fps = 1 - secs = (frame_num - 1) / current_video_fps - minutes = secs / 60 - secs = secs % 60 - hours = minutes / 60 - minutes = minutes % 60 - milliseconds = (secs - int(secs)) * 1000 - timeinfo = f"{int(hours):0>2}:{int(minutes):0>2}:{int(secs):0>2}.{int(milliseconds):0>3}" - else: - current_frame = get_image_frame(filename) - if current_frame is None: - return None, None, gr.Slider(info=timeinfo) - - layers = None - if maskimage is not None: - layers = maskimage["layers"] - - if not fake_preview or len(roop.globals.INPUT_FACESETS) < 1: - return gr.Image(value=util.convert_to_gradio(current_frame), visible=True), gr.ImageEditor(visible=False), gr.Slider(info=timeinfo) - - roop.globals.face_swap_mode = translate_swap_mode(detection) - roop.globals.selected_enhancer = enhancer - roop.globals.distance_threshold = face_distance - roop.globals.blend_ratio = blend_ratio - roop.globals.no_face_action = index_of_no_face_action(no_face_action) - roop.globals.vr_mode = vr_mode - roop.globals.autorotate_faces = auto_rotate - roop.globals.subsample_size = int(upsample[:3]) - - - mask_engine = map_mask_engine(selected_mask_engine, clip_text) - - roop.globals.execution_threads = roop.globals.CFG.max_threads - mask = layers[0] if layers is not None else None - face_index = SELECTED_INPUT_FACE_INDEX - if len(roop.globals.INPUT_FACESETS) <= face_index: - face_index = 0 - - options = ProcessOptions(swap_model, get_processing_plugins(mask_engine), roop.globals.distance_threshold, roop.globals.blend_ratio, - roop.globals.face_swap_mode, face_index, clip_text, maskimage, num_steps, roop.globals.subsample_size, show_face_area, restore_original_mouth) - - current_frame = live_swap(current_frame, options) - if current_frame is None: - return gr.Image(visible=True), None, gr.Slider(info=timeinfo) - return gr.Image(value=util.convert_to_gradio(current_frame), visible=True), gr.ImageEditor(visible=False), gr.Slider(info=timeinfo) - -def map_mask_engine(selected_mask_engine, clip_text): - if selected_mask_engine == "Clip2Seg": - mask_engine = "mask_clip2seg" - if clip_text is None or len(clip_text) < 1: - mask_engine = None - elif selected_mask_engine == "DFL XSeg": - mask_engine = "mask_xseg" - else: - mask_engine = None - return mask_engine - - -def on_toggle_masking(previewimage, mask): - global manual_masking - - manual_masking = not manual_masking - if manual_masking: - layers = mask["layers"] - if len(layers) == 1: - layers = [create_blank_image(previewimage.shape[1],previewimage.shape[0])] - return gr.Image(visible=False), gr.ImageEditor(value={"background": previewimage, "layers": layers, "composite": None}, visible=True) - return gr.Image(visible=True), gr.ImageEditor(visible=False) - -def gen_processing_text(start, end): - return f'Processing frame range [{start} - {end}]' - -def on_set_frame(sender:str, frame_num): - global selected_preview_index, list_files_process - - idx = selected_preview_index - if list_files_process[idx].endframe == 0: - return gen_processing_text(0,0) - - start = list_files_process[idx].startframe - end = list_files_process[idx].endframe - if sender.lower().endswith('start'): - list_files_process[idx].startframe = min(frame_num, end) - else: - list_files_process[idx].endframe = max(frame_num, start) - - return gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe) - - -def on_preview_mask(frame_num, files, clip_text, mask_engine): - from roop.core import live_swap, get_processing_plugins - global is_processing - - if is_processing or files is None or selected_preview_index >= len(files) or clip_text is None or frame_num is None: - return None - - filename = files[selected_preview_index].name - if util.is_video(filename) or filename.lower().endswith('gif'): - current_frame = get_video_frame(filename, frame_num - ) - else: - current_frame = get_image_frame(filename) - if current_frame is None or mask_engine is None: - return None - if mask_engine == "Clip2Seg": - mask_engine = "mask_clip2seg" - if clip_text is None or len(clip_text) < 1: - mask_engine = None - elif mask_engine == "DFL XSeg": - mask_engine = "mask_xseg" - options = ProcessOptions(get_processing_plugins(mask_engine), roop.globals.distance_threshold, roop.globals.blend_ratio, - "all", 0, clip_text, None, 0, 128, False, False, True) - - current_frame = live_swap(current_frame, options) - return util.convert_to_gradio(current_frame) - - -def on_clear_input_faces(): - ui.globals.ui_input_thumbs.clear() - roop.globals.INPUT_FACESETS.clear() - return ui.globals.ui_input_thumbs - -def on_clear_destfiles(): - roop.globals.TARGET_FACES.clear() - ui.globals.ui_target_thumbs.clear() - return ui.globals.ui_target_thumbs, gr.Dropdown(value="First found") - - -def index_of_no_face_action(dropdown_text): - global no_face_choices - - return no_face_choices.index(dropdown_text) - -def translate_swap_mode(dropdown_text): - if dropdown_text == "Selected face": - return "selected" - elif dropdown_text == "First found": - return "first" - elif dropdown_text == "All input faces": - return "all_input" - elif dropdown_text == "All input faces (random)": - return "all_random" - elif dropdown_text == "All female": - return "all_female" - elif dropdown_text == "All male": - return "all_male" - - return "all" - - -def start_swap( swap_model, output_method, enhancer, detection, keep_frames, wait_after_extraction, skip_audio, face_distance, blend_ratio, - selected_mask_engine, clip_text, processing_method, no_face_action, vr_mode, autorotate, restore_original_mouth, num_swap_steps, upsample, imagemask, progress=gr.Progress()): - from ui.main import prepare_environment - from roop.core import batch_process_regular - global is_processing, list_files_process - - if list_files_process is None or len(list_files_process) <= 0: - return gr.Button(variant="primary"), None, None - - if roop.globals.CFG.clear_output: - clean_dir(roop.globals.output_path) - - if not util.is_installed("ffmpeg"): - msg = "ffmpeg is not installed! No video processing possible." - gr.Warning(msg) - - prepare_environment() - - roop.globals.selected_enhancer = enhancer - roop.globals.target_path = None - roop.globals.distance_threshold = face_distance - roop.globals.blend_ratio = blend_ratio - roop.globals.keep_frames = keep_frames - roop.globals.wait_after_extraction = wait_after_extraction - roop.globals.skip_audio = skip_audio - roop.globals.face_swap_mode = translate_swap_mode(detection) - roop.globals.no_face_action = index_of_no_face_action(no_face_action) - roop.globals.vr_mode = vr_mode - roop.globals.autorotate_faces = autorotate - roop.globals.subsample_size = int(upsample[:3]) - mask_engine = map_mask_engine(selected_mask_engine, clip_text) - - if roop.globals.face_swap_mode == 'selected': - if len(roop.globals.TARGET_FACES) < 1: - gr.Error('No Target Face selected!') - return gr.Button(variant="primary"), None, None - - is_processing = True - yield gr.Button(variant="secondary", interactive=False), gr.Button(variant="primary", interactive=True), None - roop.globals.execution_threads = roop.globals.CFG.max_threads - roop.globals.video_encoder = roop.globals.CFG.output_video_codec - roop.globals.video_quality = roop.globals.CFG.video_quality - roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None - - batch_process_regular(swap_model, output_method, list_files_process, mask_engine, clip_text, processing_method == "In-Memory processing", imagemask, restore_original_mouth, num_swap_steps, progress, SELECTED_INPUT_FACE_INDEX) - is_processing = False - outdir = pathlib.Path(roop.globals.output_path) - outfiles = [str(item) for item in outdir.rglob("*") if item.is_file()] - if len(outfiles) > 0: - yield gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),gr.Files(value=outfiles) - else: - yield gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),None - - -def stop_swap(): - roop.globals.processing = False - gr.Info('Aborting processing - please wait for the remaining threads to be stopped') - return gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),None - - -def on_fps_changed(fps): - global selected_preview_index, list_files_process - - if len(list_files_process) < 1 or list_files_process[selected_preview_index].endframe < 1: - return - list_files_process[selected_preview_index].fps = fps - - -def on_destfiles_changed(destfiles): - global selected_preview_index, list_files_process, current_video_fps - - if destfiles is None or len(destfiles) < 1: - list_files_process.clear() - return gr.Slider(value=1, maximum=1, info='0:00:00'), '' - - for f in destfiles: - list_files_process.append(ProcessEntry(f.name, 0,0, 0)) - - selected_preview_index = 0 - idx = selected_preview_index - - filename = list_files_process[idx].filename - - if util.is_video(filename) or filename.lower().endswith('gif'): - total_frames = get_video_frame_total(filename) - if total_frames is None or total_frames < 1: - total_frames = 1 - gr.Warning(f"Corrupted video {filename}, can't detect number of frames!") - else: - current_video_fps = util.detect_fps(filename) - else: - total_frames = 1 - list_files_process[idx].endframe = total_frames - if total_frames > 1: - return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe) - return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), '' - - -def on_destfiles_selected(evt: gr.SelectData): - global selected_preview_index, list_files_process, current_video_fps - - if evt is not None: - selected_preview_index = evt.index - idx = selected_preview_index - filename = list_files_process[idx].filename - fps = list_files_process[idx].fps - if util.is_video(filename) or filename.lower().endswith('gif'): - total_frames = get_video_frame_total(filename) - current_video_fps = util.detect_fps(filename) - if list_files_process[idx].endframe == 0: - list_files_process[idx].endframe = total_frames - else: - total_frames = 1 - - if total_frames > 1: - return gr.Slider(value=list_files_process[idx].startframe, maximum=total_frames, info='0:00:00'), gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe), fps - return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), gen_processing_text(0,0), fps - - -def on_resultfiles_selected(evt: gr.SelectData, files): - selected_index = evt.index - filename = files[selected_index].name - return display_output(filename) - -def on_resultfiles_finished(files): - selected_index = 0 - if files is None or len(files) < 1: - return None, None - - filename = files[selected_index].name - return display_output(filename) - - -def get_gradio_output_format(): - if roop.globals.CFG.output_image_format == "jpg": - return "jpeg" - return roop.globals.CFG.output_image_format - - -def display_output(filename): - if util.is_video(filename) and roop.globals.CFG.output_show_video: - return gr.Image(visible=False), gr.Video(visible=True, value=filename) - else: - if util.is_video(filename) or filename.lower().endswith('gif'): - current_frame = get_video_frame(filename) - else: - current_frame = get_image_frame(filename) - return gr.Image(visible=True, value=util.convert_to_gradio(current_frame)), gr.Video(visible=False) diff --git a/roop-unleashed-main/ui/tabs/livecam_tab.py b/roop-unleashed-main/ui/tabs/livecam_tab.py deleted file mode 100644 index a9985cc6b6d85b2bbb5b6bc708e356f01bc916b9..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/tabs/livecam_tab.py +++ /dev/null @@ -1,57 +0,0 @@ -import gradio as gr -import roop.globals -import ui.globals - - -camera_frame = None - -def livecam_tab(): - with gr.Tab("๐ŸŽฅ Live Cam"): - with gr.Row(variant='panel'): - gr.Markdown(""" - This feature will allow you to use your physical webcam and apply the selected faces to the stream. - You can also forward the stream to a virtual camera, which can be used in video calls or streaming software.
- Supported are: v4l2loopback (linux), OBS Virtual Camera (macOS/Windows) and unitycapture (Windows).
- **Please note:** to change the face or any other settings you need to stop and restart a running live cam. - """) - - with gr.Row(variant='panel'): - with gr.Column(): - bt_start = gr.Button("โ–ถ Start", variant='primary') - with gr.Column(): - bt_stop = gr.Button("โน Stop", variant='secondary', interactive=False) - with gr.Column(): - camera_num = gr.Slider(0, 8, value=0, label="Camera Number", step=1.0, interactive=True) - cb_obs = gr.Checkbox(label="Forward stream to virtual camera", interactive=True) - with gr.Column(): - dd_reso = gr.Dropdown(choices=["640x480","1280x720", "1920x1080"], value="1280x720", label="Fake Camera Resolution", interactive=True) - cb_xseg = gr.Checkbox(label="Use DFL Xseg masking", interactive=True, value=True) - cb_mouthrestore = gr.Checkbox(label="Restore original mouth area", interactive=True, value=False) - - with gr.Row(): - fake_cam_image = gr.Image(label='Fake Camera Output', interactive=False, format="jpeg") - - start_event = bt_start.click(fn=start_cam, inputs=[ui.globals.ui_selected_swap_model, cb_obs, cb_xseg, cb_mouthrestore, camera_num, dd_reso, ui.globals.ui_selected_enhancer, ui.globals.ui_blend_ratio, ui.globals.ui_upscale],outputs=[bt_start, bt_stop,fake_cam_image]) - bt_stop.click(fn=stop_swap, cancels=[start_event], outputs=[bt_start, bt_stop], queue=False) - - -def start_cam(swap_model, stream_to_obs, use_xseg, use_mouthrestore, cam, reso, enhancer, blend_ratio, upscale): - from roop.virtualcam import start_virtual_cam - from roop.utilities import convert_to_gradio - - roop.globals.selected_enhancer = enhancer - roop.globals.blend_ratio = blend_ratio - roop.globals.subsample_size = int(upscale[:3]) - start_virtual_cam(swap_model, stream_to_obs, use_xseg, use_mouthrestore, cam, reso) - while True: - yield gr.Button(interactive=False), gr.Button(interactive=True), convert_to_gradio(ui.globals.ui_camera_frame) - - -def stop_swap(): - from roop.virtualcam import stop_virtual_cam - stop_virtual_cam() - return gr.Button(interactive=True), gr.Button(interactive=False) - - - - diff --git a/roop-unleashed-main/ui/tabs/settings_tab.py b/roop-unleashed-main/ui/tabs/settings_tab.py deleted file mode 100644 index 2cbe02793cb60d5a606743904fe876d8c2ec93b5..0000000000000000000000000000000000000000 --- a/roop-unleashed-main/ui/tabs/settings_tab.py +++ /dev/null @@ -1,129 +0,0 @@ -import shutil -import os -import gradio as gr -import roop.globals -import ui.globals -from roop.utilities import clean_dir - -available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] -image_formats = ['jpg','png', 'webp'] -video_formats = ['avi','mkv', 'mp4', 'webm'] -video_codecs = ['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc'] -providerlist = None - -settings_controls = [] - -def settings_tab(): - from roop.core import suggest_execution_providers - global providerlist - - providerlist = suggest_execution_providers() - with gr.Tab("โš™ Settings"): - with gr.Row(): - with gr.Column(): - themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=roop.globals.CFG.selected_theme) - with gr.Column(): - settings_controls.append(gr.Checkbox(label="Public Server", value=roop.globals.CFG.server_share, elem_id='server_share', interactive=True)) - settings_controls.append(gr.Checkbox(label='Clear output folder before each run', value=roop.globals.CFG.clear_output, elem_id='clear_output', interactive=True)) - output_template = gr.Textbox(label="Filename Output Template", info="(file extension is added automatically)", lines=1, placeholder='{file}_{time}', value=roop.globals.CFG.output_template) - with gr.Column(): - input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=roop.globals.CFG.server_name) - with gr.Column(): - input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=roop.globals.CFG.server_port) - with gr.Row(): - with gr.Column(): - settings_controls.append(gr.Dropdown(providerlist, label="Provider", value=roop.globals.CFG.provider, elem_id='provider', interactive=True)) - chk_det_size = gr.Checkbox(label="Use default Det-Size", value=True, elem_id='default_det_size', interactive=True) - settings_controls.append(gr.Checkbox(label="Force CPU for Face Analyser", value=roop.globals.CFG.force_cpu, elem_id='force_cpu', interactive=True)) - max_threads = gr.Slider(1, 32, value=roop.globals.CFG.max_threads, label="Max. Number of Threads", info='default: 3', step=1.0, interactive=True) - with gr.Column(): - memory_limit = gr.Slider(0, 128, value=roop.globals.CFG.memory_limit, label="Max. Memory to use (Gb)", info='0 meaning no limit', step=1.0, interactive=True) - settings_controls.append(gr.Dropdown(image_formats, label="Image Output Format", info='default: png', value=roop.globals.CFG.output_image_format, elem_id='output_image_format', interactive=True)) - with gr.Column(): - settings_controls.append(gr.Dropdown(video_codecs, label="Video Codec", info='default: libx264', value=roop.globals.CFG.output_video_codec, elem_id='output_video_codec', interactive=True)) - settings_controls.append(gr.Dropdown(video_formats, label="Video Output Format", info='default: mp4', value=roop.globals.CFG.output_video_format, elem_id='output_video_format', interactive=True)) - video_quality = gr.Slider(0, 100, value=roop.globals.CFG.video_quality, label="Video Quality (crf)", info='default: 14', step=1.0, interactive=True) - with gr.Column(): - with gr.Group(): - settings_controls.append(gr.Checkbox(label='Use OS temp folder', value=roop.globals.CFG.use_os_temp_folder, elem_id='use_os_temp_folder', interactive=True)) - settings_controls.append(gr.Checkbox(label='Show video in browser (re-encodes output)', value=roop.globals.CFG.output_show_video, elem_id='output_show_video', interactive=True)) - button_apply_restart = gr.Button("Restart Server", variant='primary') - button_clean_temp = gr.Button("Clean temp folder") - button_apply_settings = gr.Button("Apply Settings") - - chk_det_size.select(fn=on_option_changed) - - # Settings - for s in settings_controls: - s.select(fn=on_settings_changed) - max_threads.input(fn=lambda a,b='max_threads':on_settings_changed_misc(a,b), inputs=[max_threads]) - memory_limit.input(fn=lambda a,b='memory_limit':on_settings_changed_misc(a,b), inputs=[memory_limit]) - video_quality.input(fn=lambda a,b='video_quality':on_settings_changed_misc(a,b), inputs=[video_quality]) - - # button_clean_temp.click(fn=clean_temp, outputs=[bt_srcfiles, input_faces, target_faces, bt_destfiles]) - button_clean_temp.click(fn=clean_temp) - button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, output_template]) - button_apply_restart.click(restart) - - -def on_option_changed(evt: gr.SelectData): - attribname = evt.target.elem_id - if isinstance(evt.target, gr.Checkbox): - if hasattr(roop.globals, attribname): - setattr(roop.globals, attribname, evt.selected) - return - elif isinstance(evt.target, gr.Dropdown): - if hasattr(roop.globals, attribname): - setattr(roop.globals, attribname, evt.value) - return - raise gr.Error(f'Unhandled Setting for {evt.target}') - - -def on_settings_changed_misc(new_val, attribname): - if hasattr(roop.globals.CFG, attribname): - setattr(roop.globals.CFG, attribname, new_val) - else: - print("Didn't find attrib!") - - - -def on_settings_changed(evt: gr.SelectData): - attribname = evt.target.elem_id - if isinstance(evt.target, gr.Checkbox): - if hasattr(roop.globals.CFG, attribname): - setattr(roop.globals.CFG, attribname, evt.selected) - return - elif isinstance(evt.target, gr.Dropdown): - if hasattr(roop.globals.CFG, attribname): - setattr(roop.globals.CFG, attribname, evt.value) - return - - raise gr.Error(f'Unhandled Setting for {evt.target}') - -def clean_temp(): - from ui.main import prepare_environment - - ui.globals.ui_input_thumbs.clear() - roop.globals.INPUT_FACESETS.clear() - roop.globals.TARGET_FACES.clear() - ui.globals.ui_target_thumbs = [] - if not roop.globals.CFG.use_os_temp_folder: - clean_dir(os.environ["TEMP"]) - prepare_environment() - gr.Info('Temp Files removed') - return None,None,None,None - - -def apply_settings(themes, input_server_name, input_server_port, output_template): - from ui.main import show_msg - - roop.globals.CFG.selected_theme = themes - roop.globals.CFG.server_name = input_server_name - roop.globals.CFG.server_port = input_server_port - roop.globals.CFG.output_template = output_template - roop.globals.CFG.save() - show_msg('Settings saved') - - -def restart(): - ui.globals.ui_restart_server = True