Whale_Arbitrum / modules /api_client.py
arpit13's picture
Deploy Whale_Arbitrum on HF Spaces
011960a
import requests
import json
import time
import logging
from datetime import datetime
import pandas as pd
from typing import Dict, List, Optional, Union, Any
class ArbiscanClient:
"""
Client to interact with the Arbiscan API for fetching on-chain data from Arbitrum
"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.arbiscan.io/api"
self.rate_limit_delay = 0.2 # Delay between API calls to avoid rate limiting (200ms)
# Add caching to improve performance
self._transaction_cache = {}
self._last_api_call_time = 0
# Configure debug logging - set to True for verbose output, False for minimal output
self.verbose_debug = False
def _make_request(self, params: Dict[str, str]) -> Dict[str, Any]:
"""
Make a request to the Arbiscan API with rate limiting
"""
params["apikey"] = self.api_key
# Implement rate limiting
current_time = time.time()
time_since_last_call = current_time - self._last_api_call_time
if time_since_last_call < self.rate_limit_delay:
time.sleep(self.rate_limit_delay - time_since_last_call)
self._last_api_call_time = time.time()
try:
# Log the request details but only in verbose mode
if self.verbose_debug:
debug_params = params.copy()
debug_params.pop("apikey", None)
logging.debug(f"API Request: {self.base_url}")
logging.debug(f"Params: {json.dumps(debug_params, indent=2)}")
response = requests.get(self.base_url, params=params)
# Print response status and URL only in verbose mode
if self.verbose_debug:
logging.debug(f"Response Status: {response.status_code}")
logging.debug(f"Full URL: {response.url.replace(self.api_key, 'API_KEY_REDACTED')}")
response.raise_for_status()
# Parse the JSON response
json_data = response.json()
# Log the response structure but only in verbose mode
if self.verbose_debug:
result_preview = str(json_data.get('result', ''))[:100] + '...' if len(str(json_data.get('result', ''))) > 100 else str(json_data.get('result', ''))
logging.debug(f"Response Status: {json_data.get('status')}")
logging.debug(f"Response Message: {json_data.get('message', 'No message')}")
logging.debug(f"Result Preview: {result_preview}")
# Check for API-level errors in the response
status = json_data.get('status')
message = json_data.get('message', 'No message')
if status == '0' and message != 'No transactions found':
logging.warning(f"API Error: {message}")
return json_data
except requests.exceptions.HTTPError as e:
logging.error(f"HTTP Error in API Request: {e.response.status_code}")
raise
except requests.exceptions.ConnectionError as e:
logging.error(f"Connection Error in API Request: {str(e)}")
raise
except requests.exceptions.Timeout as e:
logging.error(f"Timeout in API Request: {str(e)}")
raise
except requests.exceptions.RequestException as e:
logging.error(f"API Request failed: {str(e)}")
print(f"ERROR - URL: {self.base_url}")
print(f"ERROR - Method: {params.get('module')}/{params.get('action')}")
return {"status": "0", "message": f"Error: {str(e)}", "result": []}
def get_eth_balance(self, address: str) -> float:
"""
Get the ETH balance of an address
Args:
address: Wallet address
Returns:
ETH balance as a float
"""
params = {
"module": "account",
"action": "balance",
"address": address,
"tag": "latest"
}
result = self._make_request(params)
if result.get("status") == "1":
# Convert wei to ETH
wei_balance = int(result.get("result", "0"))
eth_balance = wei_balance / 10**18
return eth_balance
else:
return 0.0
def get_token_balance(self, address: str, token_address: str) -> float:
"""
Get the token balance of an address for a specific token
Args:
address: Wallet address
token_address: Token contract address
Returns:
Token balance as a float
"""
params = {
"module": "account",
"action": "tokenbalance",
"address": address,
"contractaddress": token_address,
"tag": "latest"
}
result = self._make_request(params)
if result.get("status") == "1":
# Get token decimals and convert to proper amount
decimals = self.get_token_decimals(token_address)
raw_balance = int(result.get("result", "0"))
token_balance = raw_balance / 10**decimals
return token_balance
else:
return 0.0
def get_token_decimals(self, token_address: str) -> int:
"""
Get the number of decimals for a token
Args:
token_address: Token contract address
Returns:
Number of decimals (default: 18)
"""
params = {
"module": "token",
"action": "getToken",
"contractaddress": token_address
}
result = self._make_request(params)
if result.get("status") == "1":
token_info = result.get("result", {})
return int(token_info.get("divisor", "18"))
else:
# Default to 18 decimals (most ERC-20 tokens)
return 18
def get_token_transfers(self,
address: str,
contract_address: Optional[str] = None,
start_block: int = 0,
end_block: int = 99999999,
page: int = 1,
offset: int = 100,
sort: str = "desc") -> List[Dict[str, Any]]:
"""
Get token transfers for an address
Args:
address: Wallet address
contract_address: Optional token contract address to filter by
start_block: Starting block number
end_block: Ending block number
page: Page number
offset: Number of results per page
sort: Sort order ("asc" or "desc")
Returns:
List of token transfers
"""
params = {
"module": "account",
"action": "tokentx",
"address": address,
"startblock": str(start_block),
"endblock": str(end_block),
"page": str(page),
"offset": str(offset),
"sort": sort
}
# Add contract address if specified
if contract_address:
params["contractaddress"] = contract_address
result = self._make_request(params)
if result.get("status") == "1":
return result.get("result", [])
else:
message = result.get("message", "Unknown error")
if "No transactions found" in message:
return []
else:
logging.warning(f"Error fetching token transfers: {message}")
return []
def fetch_all_token_transfers(self,
address: str,
contract_address: Optional[str] = None,
start_block: int = 0,
end_block: int = 99999999,
max_pages: int = 10) -> List[Dict[str, Any]]:
"""
Fetch all token transfers for an address, paginating through results
Args:
address: Wallet address
contract_address: Optional token contract address to filter by
start_block: Starting block number
end_block: Ending block number
max_pages: Maximum number of pages to fetch
Returns:
List of all token transfers
"""
all_transfers = []
offset = 100 # Results per page (API limit)
for page in range(1, max_pages + 1):
try:
transfers = self.get_token_transfers(
address=address,
contract_address=contract_address,
start_block=start_block,
end_block=end_block,
page=page,
offset=offset
)
# No more transfers, break the loop
if not transfers:
break
all_transfers.extend(transfers)
# If we got fewer results than the offset, we've reached the end
if len(transfers) < offset:
break
except Exception as e:
logging.error(f"Error fetching page {page} of token transfers: {str(e)}")
break
return all_transfers
def fetch_whale_transactions(self,
addresses: List[str],
token_address: Optional[str] = None,
min_token_amount: Optional[float] = None,
min_usd_value: Optional[float] = None,
start_block: int = 0,
end_block: int = 99999999,
max_pages: int = 10) -> pd.DataFrame:
"""
Fetch whale transactions for a list of addresses
Args:
addresses: List of wallet addresses
token_address: Optional token contract address to filter by
min_token_amount: Minimum token amount to be considered a whale transaction
min_usd_value: Minimum USD value to be considered a whale transaction
start_block: Starting block number
end_block: Ending block number
max_pages: Maximum number of pages to fetch per address (default: 10)
Returns:
DataFrame of whale transactions
"""
try:
# Create a cache key based on parameters
cache_key = f"{','.join(addresses)}_{token_address}_{min_token_amount}_{min_usd_value}_{start_block}_{end_block}_{max_pages}"
# Check if we have cached results
if cache_key in self._transaction_cache:
logging.info(f"Using cached transactions for {len(addresses)} addresses")
return self._transaction_cache[cache_key]
all_transfers = []
logging.info(f"Fetching whale transactions for {len(addresses)} addresses")
logging.info(f"Token address filter: {token_address if token_address else 'None'}")
logging.info(f"Min token amount: {min_token_amount}")
logging.info(f"Min USD value: {min_usd_value}")
for i, address in enumerate(addresses):
try:
logging.info(f"Processing address {i+1}/{len(addresses)}: {address}")
# Create address-specific cache key
addr_cache_key = f"{address}_{token_address}_{start_block}_{end_block}_{max_pages}"
# Check if we have cached results for this specific address
if addr_cache_key in self._transaction_cache:
transfers = self._transaction_cache[addr_cache_key]
logging.info(f"Using cached {len(transfers)} transfers for address {address}")
else:
transfers = self.fetch_all_token_transfers(
address=address,
contract_address=token_address,
start_block=start_block,
end_block=end_block,
max_pages=max_pages
)
logging.info(f"Found {len(transfers)} transfers for address {address}")
# Cache the results for this address
self._transaction_cache[addr_cache_key] = transfers
all_transfers.extend(transfers)
except Exception as e:
logging.error(f"Failed to fetch transactions for address {address}: {str(e)}")
continue
logging.info(f"Total transfers found: {len(all_transfers)}")
if not all_transfers:
logging.warning("No whale transactions found for the specified addresses")
return pd.DataFrame()
# Convert to DataFrame
logging.info("Converting transfers to DataFrame")
df = pd.DataFrame(all_transfers)
# Log the column names
logging.info(f"DataFrame created with {len(df)} rows and {len(df.columns)} columns")
logging.info(f"Columns: {', '.join(df.columns[:5])}...")
# Apply token amount filter if specified
if min_token_amount is not None:
logging.info(f"Applying min token amount filter: {min_token_amount}")
# Convert to float and then filter
df['tokenAmount'] = df['value'].astype(float) / (10 ** df['tokenDecimal'].astype(int))
df = df[df['tokenAmount'] >= min_token_amount]
logging.info(f"After token amount filtering: {len(df)}/{len(all_transfers)} rows remain")
# Apply USD value filter if specified (this would require price data)
if min_usd_value is not None and 'tokenAmount' in df.columns:
logging.info(f"USD value filtering is not implemented yet")
# This would require token price data, which we don't have yet
# df = df[df['usd_value'] >= min_usd_value]
# Convert timestamp to datetime
if 'timeStamp' in df.columns:
logging.info("Converting timestamp to datetime")
try:
df['timeStamp'] = pd.to_datetime(df['timeStamp'].astype(float), unit='s')
except Exception as e:
logging.error(f"Error converting timestamp: {str(e)}")
logging.info(f"Final DataFrame has {len(df)} rows")
# Cache the final result
self._transaction_cache[cache_key] = df
return df
except Exception as e:
logging.error(f"Error fetching whale transactions: {str(e)}")
return pd.DataFrame()
def get_internal_transactions(self,
address: str,
start_block: int = 0,
end_block: int = 99999999,
page: int = 1,
offset: int = 100,
sort: str = "desc") -> List[Dict[str, Any]]:
"""
Get internal transactions for an address
Args:
address: Wallet address
start_block: Starting block number
end_block: Ending block number
page: Page number
offset: Number of results per page
sort: Sort order ("asc" or "desc")
Returns:
List of internal transactions
"""
params = {
"module": "account",
"action": "txlistinternal",
"address": address,
"startblock": str(start_block),
"endblock": str(end_block),
"page": str(page),
"offset": str(offset),
"sort": sort
}
result = self._make_request(params)
if result.get("status") == "1":
return result.get("result", [])
else:
message = result.get("message", "Unknown error")
if "No transactions found" in message:
return []
else:
logging.warning(f"Error fetching internal transactions: {message}")
return []
class GeminiClient:
"""
Client to interact with the Gemini API for fetching token prices
"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.gemini.com/v1"
# Add caching to avoid repetitive API calls
self._price_cache = {}
# Track API errors to avoid flooding logs
self._error_count = {}
self._last_api_call = 0 # For rate limiting
def get_current_price(self, symbol: str) -> Optional[float]:
"""
Get the current price of a token
Args:
symbol: Token symbol (e.g., "ETHUSD")
Returns:
Current price as a float or None if not found
"""
try:
url = f"{self.base_url}/pubticker/{symbol}"
response = requests.get(url)
response.raise_for_status()
data = response.json()
return float(data.get("last", 0))
except requests.exceptions.RequestException as e:
logging.error(f"Error fetching price from Gemini API: {e}")
return None
def get_historical_prices(self,
symbol: str,
start_time: datetime,
end_time: datetime) -> Optional[pd.DataFrame]:
"""
Get historical prices for a token within a time range
Args:
symbol: Token symbol (e.g., "ETHUSD")
start_time: Start datetime
end_time: End datetime
Returns:
DataFrame of historical prices with timestamps
"""
# Implement simple rate limiting
current_time = time.time()
if current_time - self._last_api_call < 0.05: # 50ms minimum between calls
time.sleep(0.05)
self._last_api_call = current_time
# Create a cache key based on the parameters
cache_key = f"{symbol}_{int(start_time.timestamp())}_{int(end_time.timestamp())}"
# Check if we already have this data cached
if cache_key in self._price_cache:
return self._price_cache[cache_key]
try:
# Convert datetime to milliseconds
start_ms = int(start_time.timestamp() * 1000)
end_ms = int(end_time.timestamp() * 1000)
url = f"{self.base_url}/trades/{symbol}"
params = {
"limit_trades": 500,
"timestamp": start_ms
}
# Check if we've seen too many errors for this symbol
error_key = f"error_{symbol}"
if self._error_count.get(error_key, 0) > 10:
# If we've already had too many errors for this symbol, don't try again
return None
response = requests.get(url, params=params)
response.raise_for_status()
trades = response.json()
# Reset error count on success
self._error_count[error_key] = 0
# Filter trades within the time range
filtered_trades = [
trade for trade in trades
if start_ms <= trade.get("timestampms", 0) <= end_ms
]
if not filtered_trades:
# Cache negative result to avoid future lookups
self._price_cache[cache_key] = None
return None
# Convert to DataFrame
df = pd.DataFrame(filtered_trades)
# Convert timestamp to datetime
df['timestamp'] = pd.to_datetime(df['timestampms'], unit='ms')
# Select and rename columns
result_df = df[['timestamp', 'price', 'amount']].copy()
result_df.columns = ['Timestamp', 'Price', 'Amount']
# Convert price to float
result_df['Price'] = result_df['Price'].astype(float)
# Cache the result
self._price_cache[cache_key] = result_df
return result_df
except requests.exceptions.HTTPError as e:
# Handle HTTP errors more efficiently
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
# Only log the first few occurrences of each error
if self._error_count[error_key] <= 3:
logging.warning(f"HTTP error fetching price for {symbol}: {e.response.status_code}")
return None
except Exception as e:
# For other errors, use a similar approach
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
if self._error_count[error_key] <= 3:
logging.error(f"Error fetching prices for {symbol}: {str(e)}")
return None
def get_price_at_time(self,
symbol: str,
timestamp: datetime) -> Optional[float]:
"""
Get the approximate price of a token at a specific time
Args:
symbol: Token symbol (e.g., "ETHUSD")
timestamp: Target datetime
Returns:
Price at the specified time as a float or None if not found
"""
# Look for prices 5 minutes before and after the target time
start_time = timestamp - pd.Timedelta(minutes=5)
end_time = timestamp + pd.Timedelta(minutes=5)
prices_df = self.get_historical_prices(symbol, start_time, end_time)
if prices_df is None or prices_df.empty:
return None
# Find the closest price
prices_df['time_diff'] = abs(prices_df['Timestamp'] - timestamp)
closest_price = prices_df.loc[prices_df['time_diff'].idxmin(), 'Price']
return closest_price
def get_price_impact(self,
symbol: str,
transaction_time: datetime,
lookback_minutes: int = 5,
lookahead_minutes: int = 5) -> Dict[str, Any]:
"""
Analyze the price impact before and after a transaction
Args:
symbol: Token symbol (e.g., "ETHUSD")
transaction_time: Transaction datetime
lookback_minutes: Minutes to look back before the transaction
lookahead_minutes: Minutes to look ahead after the transaction
Returns:
Dictionary with price impact metrics
"""
start_time = transaction_time - pd.Timedelta(minutes=lookback_minutes)
end_time = transaction_time + pd.Timedelta(minutes=lookahead_minutes)
prices_df = self.get_historical_prices(symbol, start_time, end_time)
if prices_df is None or prices_df.empty:
return {
"pre_price": None,
"post_price": None,
"impact_pct": None,
"prices_df": None
}
# Find pre and post transaction prices
pre_prices = prices_df[prices_df['Timestamp'] < transaction_time]
post_prices = prices_df[prices_df['Timestamp'] >= transaction_time]
pre_price = pre_prices['Price'].iloc[-1] if not pre_prices.empty else None
post_price = post_prices['Price'].iloc[0] if not post_prices.empty else None
# Calculate impact percentage
impact_pct = None
if pre_price is not None and post_price is not None:
impact_pct = ((post_price - pre_price) / pre_price) * 100
return {
"pre_price": pre_price,
"post_price": post_price,
"impact_pct": impact_pct,
"prices_df": prices_df
}
def fetch_historical_prices(self, token_symbol: str, timestamp) -> Dict[str, Any]:
"""Fetch historical price data for a token at a specific timestamp
Args:
token_symbol: Token symbol (e.g., "ETH")
timestamp: Timestamp (can be int, float, datetime, or pandas Timestamp)
Returns:
Dictionary with price data
"""
# Convert timestamp to integer if it's not already
timestamp_value = 0
try:
# Handle different timestamp types
if isinstance(timestamp, (int, float)):
timestamp_value = int(timestamp)
elif isinstance(timestamp, pd.Timestamp):
timestamp_value = int(timestamp.timestamp())
elif isinstance(timestamp, datetime):
timestamp_value = int(timestamp.timestamp())
elif isinstance(timestamp, str):
# Try to parse string as timestamp
dt = pd.to_datetime(timestamp)
timestamp_value = int(dt.timestamp())
else:
# Default to current time if invalid type
logging.warning(f"Invalid timestamp type: {type(timestamp)}, using current time")
timestamp_value = int(time.time())
except Exception as e:
logging.warning(f"Error converting timestamp {timestamp}: {str(e)}, using current time")
timestamp_value = int(time.time())
# Check cache first
cache_key = f"{token_symbol}_{timestamp_value}"
if cache_key in self._price_cache:
return self._price_cache[cache_key]
# Implement rate limiting
current_time = time.time()
if current_time - self._last_api_call < 0.05: # 50ms minimum between calls
time.sleep(0.05)
self._last_api_call = current_time
# Check error count for this symbol
error_key = f"error_{token_symbol}"
if self._error_count.get(error_key, 0) > 10:
# Too many errors, return cached failure
return {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'error',
'error': 'Too many previous errors'
}
try:
url = f"{self.base_url}/trades/{token_symbol}USD"
params = {
'limit_trades': 500,
'timestamp': timestamp_value * 1000 # Convert to milliseconds
}
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
# Reset error count on success
self._error_count[error_key] = 0
# Calculate average price from recent trades
if data:
prices = [float(trade['price']) for trade in data]
avg_price = sum(prices) / len(prices)
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': avg_price,
'status': 'success'
}
# Cache success
self._price_cache[cache_key] = result
return result
else:
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'no_data'
}
# Cache no data
self._price_cache[cache_key] = result
return result
except requests.exceptions.HTTPError as e:
# Handle HTTP errors efficiently
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
# Only log first few occurrences
if self._error_count[error_key] <= 3:
logging.warning(f"HTTP error fetching price for {token_symbol}: {e.response.status_code}")
elif self._error_count[error_key] == 10:
logging.warning(f"Suppressing further logs for {token_symbol} errors")
result = {
'symbol': token_symbol,
'timestamp': timestamp,
'price': None,
'status': 'error',
'error': f"HTTP {e.response.status_code}"
}
self._price_cache[cache_key] = result
return result
except Exception as e:
# For other errors
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
if self._error_count[error_key] <= 3:
logging.error(f"Error fetching prices for {token_symbol}: {str(e)}")
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'error',
'error': str(e)
}
self._price_cache[cache_key] = result
return result