Spaces:
Build error
Build error
File size: 30,421 Bytes
011960a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
import requests
import json
import time
import logging
from datetime import datetime
import pandas as pd
from typing import Dict, List, Optional, Union, Any
class ArbiscanClient:
"""
Client to interact with the Arbiscan API for fetching on-chain data from Arbitrum
"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.arbiscan.io/api"
self.rate_limit_delay = 0.2 # Delay between API calls to avoid rate limiting (200ms)
# Add caching to improve performance
self._transaction_cache = {}
self._last_api_call_time = 0
# Configure debug logging - set to True for verbose output, False for minimal output
self.verbose_debug = False
def _make_request(self, params: Dict[str, str]) -> Dict[str, Any]:
"""
Make a request to the Arbiscan API with rate limiting
"""
params["apikey"] = self.api_key
# Implement rate limiting
current_time = time.time()
time_since_last_call = current_time - self._last_api_call_time
if time_since_last_call < self.rate_limit_delay:
time.sleep(self.rate_limit_delay - time_since_last_call)
self._last_api_call_time = time.time()
try:
# Log the request details but only in verbose mode
if self.verbose_debug:
debug_params = params.copy()
debug_params.pop("apikey", None)
logging.debug(f"API Request: {self.base_url}")
logging.debug(f"Params: {json.dumps(debug_params, indent=2)}")
response = requests.get(self.base_url, params=params)
# Print response status and URL only in verbose mode
if self.verbose_debug:
logging.debug(f"Response Status: {response.status_code}")
logging.debug(f"Full URL: {response.url.replace(self.api_key, 'API_KEY_REDACTED')}")
response.raise_for_status()
# Parse the JSON response
json_data = response.json()
# Log the response structure but only in verbose mode
if self.verbose_debug:
result_preview = str(json_data.get('result', ''))[:100] + '...' if len(str(json_data.get('result', ''))) > 100 else str(json_data.get('result', ''))
logging.debug(f"Response Status: {json_data.get('status')}")
logging.debug(f"Response Message: {json_data.get('message', 'No message')}")
logging.debug(f"Result Preview: {result_preview}")
# Check for API-level errors in the response
status = json_data.get('status')
message = json_data.get('message', 'No message')
if status == '0' and message != 'No transactions found':
logging.warning(f"API Error: {message}")
return json_data
except requests.exceptions.HTTPError as e:
logging.error(f"HTTP Error in API Request: {e.response.status_code}")
raise
except requests.exceptions.ConnectionError as e:
logging.error(f"Connection Error in API Request: {str(e)}")
raise
except requests.exceptions.Timeout as e:
logging.error(f"Timeout in API Request: {str(e)}")
raise
except requests.exceptions.RequestException as e:
logging.error(f"API Request failed: {str(e)}")
print(f"ERROR - URL: {self.base_url}")
print(f"ERROR - Method: {params.get('module')}/{params.get('action')}")
return {"status": "0", "message": f"Error: {str(e)}", "result": []}
def get_eth_balance(self, address: str) -> float:
"""
Get the ETH balance of an address
Args:
address: Wallet address
Returns:
ETH balance as a float
"""
params = {
"module": "account",
"action": "balance",
"address": address,
"tag": "latest"
}
result = self._make_request(params)
if result.get("status") == "1":
# Convert wei to ETH
wei_balance = int(result.get("result", "0"))
eth_balance = wei_balance / 10**18
return eth_balance
else:
return 0.0
def get_token_balance(self, address: str, token_address: str) -> float:
"""
Get the token balance of an address for a specific token
Args:
address: Wallet address
token_address: Token contract address
Returns:
Token balance as a float
"""
params = {
"module": "account",
"action": "tokenbalance",
"address": address,
"contractaddress": token_address,
"tag": "latest"
}
result = self._make_request(params)
if result.get("status") == "1":
# Get token decimals and convert to proper amount
decimals = self.get_token_decimals(token_address)
raw_balance = int(result.get("result", "0"))
token_balance = raw_balance / 10**decimals
return token_balance
else:
return 0.0
def get_token_decimals(self, token_address: str) -> int:
"""
Get the number of decimals for a token
Args:
token_address: Token contract address
Returns:
Number of decimals (default: 18)
"""
params = {
"module": "token",
"action": "getToken",
"contractaddress": token_address
}
result = self._make_request(params)
if result.get("status") == "1":
token_info = result.get("result", {})
return int(token_info.get("divisor", "18"))
else:
# Default to 18 decimals (most ERC-20 tokens)
return 18
def get_token_transfers(self,
address: str,
contract_address: Optional[str] = None,
start_block: int = 0,
end_block: int = 99999999,
page: int = 1,
offset: int = 100,
sort: str = "desc") -> List[Dict[str, Any]]:
"""
Get token transfers for an address
Args:
address: Wallet address
contract_address: Optional token contract address to filter by
start_block: Starting block number
end_block: Ending block number
page: Page number
offset: Number of results per page
sort: Sort order ("asc" or "desc")
Returns:
List of token transfers
"""
params = {
"module": "account",
"action": "tokentx",
"address": address,
"startblock": str(start_block),
"endblock": str(end_block),
"page": str(page),
"offset": str(offset),
"sort": sort
}
# Add contract address if specified
if contract_address:
params["contractaddress"] = contract_address
result = self._make_request(params)
if result.get("status") == "1":
return result.get("result", [])
else:
message = result.get("message", "Unknown error")
if "No transactions found" in message:
return []
else:
logging.warning(f"Error fetching token transfers: {message}")
return []
def fetch_all_token_transfers(self,
address: str,
contract_address: Optional[str] = None,
start_block: int = 0,
end_block: int = 99999999,
max_pages: int = 10) -> List[Dict[str, Any]]:
"""
Fetch all token transfers for an address, paginating through results
Args:
address: Wallet address
contract_address: Optional token contract address to filter by
start_block: Starting block number
end_block: Ending block number
max_pages: Maximum number of pages to fetch
Returns:
List of all token transfers
"""
all_transfers = []
offset = 100 # Results per page (API limit)
for page in range(1, max_pages + 1):
try:
transfers = self.get_token_transfers(
address=address,
contract_address=contract_address,
start_block=start_block,
end_block=end_block,
page=page,
offset=offset
)
# No more transfers, break the loop
if not transfers:
break
all_transfers.extend(transfers)
# If we got fewer results than the offset, we've reached the end
if len(transfers) < offset:
break
except Exception as e:
logging.error(f"Error fetching page {page} of token transfers: {str(e)}")
break
return all_transfers
def fetch_whale_transactions(self,
addresses: List[str],
token_address: Optional[str] = None,
min_token_amount: Optional[float] = None,
min_usd_value: Optional[float] = None,
start_block: int = 0,
end_block: int = 99999999,
max_pages: int = 10) -> pd.DataFrame:
"""
Fetch whale transactions for a list of addresses
Args:
addresses: List of wallet addresses
token_address: Optional token contract address to filter by
min_token_amount: Minimum token amount to be considered a whale transaction
min_usd_value: Minimum USD value to be considered a whale transaction
start_block: Starting block number
end_block: Ending block number
max_pages: Maximum number of pages to fetch per address (default: 10)
Returns:
DataFrame of whale transactions
"""
try:
# Create a cache key based on parameters
cache_key = f"{','.join(addresses)}_{token_address}_{min_token_amount}_{min_usd_value}_{start_block}_{end_block}_{max_pages}"
# Check if we have cached results
if cache_key in self._transaction_cache:
logging.info(f"Using cached transactions for {len(addresses)} addresses")
return self._transaction_cache[cache_key]
all_transfers = []
logging.info(f"Fetching whale transactions for {len(addresses)} addresses")
logging.info(f"Token address filter: {token_address if token_address else 'None'}")
logging.info(f"Min token amount: {min_token_amount}")
logging.info(f"Min USD value: {min_usd_value}")
for i, address in enumerate(addresses):
try:
logging.info(f"Processing address {i+1}/{len(addresses)}: {address}")
# Create address-specific cache key
addr_cache_key = f"{address}_{token_address}_{start_block}_{end_block}_{max_pages}"
# Check if we have cached results for this specific address
if addr_cache_key in self._transaction_cache:
transfers = self._transaction_cache[addr_cache_key]
logging.info(f"Using cached {len(transfers)} transfers for address {address}")
else:
transfers = self.fetch_all_token_transfers(
address=address,
contract_address=token_address,
start_block=start_block,
end_block=end_block,
max_pages=max_pages
)
logging.info(f"Found {len(transfers)} transfers for address {address}")
# Cache the results for this address
self._transaction_cache[addr_cache_key] = transfers
all_transfers.extend(transfers)
except Exception as e:
logging.error(f"Failed to fetch transactions for address {address}: {str(e)}")
continue
logging.info(f"Total transfers found: {len(all_transfers)}")
if not all_transfers:
logging.warning("No whale transactions found for the specified addresses")
return pd.DataFrame()
# Convert to DataFrame
logging.info("Converting transfers to DataFrame")
df = pd.DataFrame(all_transfers)
# Log the column names
logging.info(f"DataFrame created with {len(df)} rows and {len(df.columns)} columns")
logging.info(f"Columns: {', '.join(df.columns[:5])}...")
# Apply token amount filter if specified
if min_token_amount is not None:
logging.info(f"Applying min token amount filter: {min_token_amount}")
# Convert to float and then filter
df['tokenAmount'] = df['value'].astype(float) / (10 ** df['tokenDecimal'].astype(int))
df = df[df['tokenAmount'] >= min_token_amount]
logging.info(f"After token amount filtering: {len(df)}/{len(all_transfers)} rows remain")
# Apply USD value filter if specified (this would require price data)
if min_usd_value is not None and 'tokenAmount' in df.columns:
logging.info(f"USD value filtering is not implemented yet")
# This would require token price data, which we don't have yet
# df = df[df['usd_value'] >= min_usd_value]
# Convert timestamp to datetime
if 'timeStamp' in df.columns:
logging.info("Converting timestamp to datetime")
try:
df['timeStamp'] = pd.to_datetime(df['timeStamp'].astype(float), unit='s')
except Exception as e:
logging.error(f"Error converting timestamp: {str(e)}")
logging.info(f"Final DataFrame has {len(df)} rows")
# Cache the final result
self._transaction_cache[cache_key] = df
return df
except Exception as e:
logging.error(f"Error fetching whale transactions: {str(e)}")
return pd.DataFrame()
def get_internal_transactions(self,
address: str,
start_block: int = 0,
end_block: int = 99999999,
page: int = 1,
offset: int = 100,
sort: str = "desc") -> List[Dict[str, Any]]:
"""
Get internal transactions for an address
Args:
address: Wallet address
start_block: Starting block number
end_block: Ending block number
page: Page number
offset: Number of results per page
sort: Sort order ("asc" or "desc")
Returns:
List of internal transactions
"""
params = {
"module": "account",
"action": "txlistinternal",
"address": address,
"startblock": str(start_block),
"endblock": str(end_block),
"page": str(page),
"offset": str(offset),
"sort": sort
}
result = self._make_request(params)
if result.get("status") == "1":
return result.get("result", [])
else:
message = result.get("message", "Unknown error")
if "No transactions found" in message:
return []
else:
logging.warning(f"Error fetching internal transactions: {message}")
return []
class GeminiClient:
"""
Client to interact with the Gemini API for fetching token prices
"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.gemini.com/v1"
# Add caching to avoid repetitive API calls
self._price_cache = {}
# Track API errors to avoid flooding logs
self._error_count = {}
self._last_api_call = 0 # For rate limiting
def get_current_price(self, symbol: str) -> Optional[float]:
"""
Get the current price of a token
Args:
symbol: Token symbol (e.g., "ETHUSD")
Returns:
Current price as a float or None if not found
"""
try:
url = f"{self.base_url}/pubticker/{symbol}"
response = requests.get(url)
response.raise_for_status()
data = response.json()
return float(data.get("last", 0))
except requests.exceptions.RequestException as e:
logging.error(f"Error fetching price from Gemini API: {e}")
return None
def get_historical_prices(self,
symbol: str,
start_time: datetime,
end_time: datetime) -> Optional[pd.DataFrame]:
"""
Get historical prices for a token within a time range
Args:
symbol: Token symbol (e.g., "ETHUSD")
start_time: Start datetime
end_time: End datetime
Returns:
DataFrame of historical prices with timestamps
"""
# Implement simple rate limiting
current_time = time.time()
if current_time - self._last_api_call < 0.05: # 50ms minimum between calls
time.sleep(0.05)
self._last_api_call = current_time
# Create a cache key based on the parameters
cache_key = f"{symbol}_{int(start_time.timestamp())}_{int(end_time.timestamp())}"
# Check if we already have this data cached
if cache_key in self._price_cache:
return self._price_cache[cache_key]
try:
# Convert datetime to milliseconds
start_ms = int(start_time.timestamp() * 1000)
end_ms = int(end_time.timestamp() * 1000)
url = f"{self.base_url}/trades/{symbol}"
params = {
"limit_trades": 500,
"timestamp": start_ms
}
# Check if we've seen too many errors for this symbol
error_key = f"error_{symbol}"
if self._error_count.get(error_key, 0) > 10:
# If we've already had too many errors for this symbol, don't try again
return None
response = requests.get(url, params=params)
response.raise_for_status()
trades = response.json()
# Reset error count on success
self._error_count[error_key] = 0
# Filter trades within the time range
filtered_trades = [
trade for trade in trades
if start_ms <= trade.get("timestampms", 0) <= end_ms
]
if not filtered_trades:
# Cache negative result to avoid future lookups
self._price_cache[cache_key] = None
return None
# Convert to DataFrame
df = pd.DataFrame(filtered_trades)
# Convert timestamp to datetime
df['timestamp'] = pd.to_datetime(df['timestampms'], unit='ms')
# Select and rename columns
result_df = df[['timestamp', 'price', 'amount']].copy()
result_df.columns = ['Timestamp', 'Price', 'Amount']
# Convert price to float
result_df['Price'] = result_df['Price'].astype(float)
# Cache the result
self._price_cache[cache_key] = result_df
return result_df
except requests.exceptions.HTTPError as e:
# Handle HTTP errors more efficiently
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
# Only log the first few occurrences of each error
if self._error_count[error_key] <= 3:
logging.warning(f"HTTP error fetching price for {symbol}: {e.response.status_code}")
return None
except Exception as e:
# For other errors, use a similar approach
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
if self._error_count[error_key] <= 3:
logging.error(f"Error fetching prices for {symbol}: {str(e)}")
return None
def get_price_at_time(self,
symbol: str,
timestamp: datetime) -> Optional[float]:
"""
Get the approximate price of a token at a specific time
Args:
symbol: Token symbol (e.g., "ETHUSD")
timestamp: Target datetime
Returns:
Price at the specified time as a float or None if not found
"""
# Look for prices 5 minutes before and after the target time
start_time = timestamp - pd.Timedelta(minutes=5)
end_time = timestamp + pd.Timedelta(minutes=5)
prices_df = self.get_historical_prices(symbol, start_time, end_time)
if prices_df is None or prices_df.empty:
return None
# Find the closest price
prices_df['time_diff'] = abs(prices_df['Timestamp'] - timestamp)
closest_price = prices_df.loc[prices_df['time_diff'].idxmin(), 'Price']
return closest_price
def get_price_impact(self,
symbol: str,
transaction_time: datetime,
lookback_minutes: int = 5,
lookahead_minutes: int = 5) -> Dict[str, Any]:
"""
Analyze the price impact before and after a transaction
Args:
symbol: Token symbol (e.g., "ETHUSD")
transaction_time: Transaction datetime
lookback_minutes: Minutes to look back before the transaction
lookahead_minutes: Minutes to look ahead after the transaction
Returns:
Dictionary with price impact metrics
"""
start_time = transaction_time - pd.Timedelta(minutes=lookback_minutes)
end_time = transaction_time + pd.Timedelta(minutes=lookahead_minutes)
prices_df = self.get_historical_prices(symbol, start_time, end_time)
if prices_df is None or prices_df.empty:
return {
"pre_price": None,
"post_price": None,
"impact_pct": None,
"prices_df": None
}
# Find pre and post transaction prices
pre_prices = prices_df[prices_df['Timestamp'] < transaction_time]
post_prices = prices_df[prices_df['Timestamp'] >= transaction_time]
pre_price = pre_prices['Price'].iloc[-1] if not pre_prices.empty else None
post_price = post_prices['Price'].iloc[0] if not post_prices.empty else None
# Calculate impact percentage
impact_pct = None
if pre_price is not None and post_price is not None:
impact_pct = ((post_price - pre_price) / pre_price) * 100
return {
"pre_price": pre_price,
"post_price": post_price,
"impact_pct": impact_pct,
"prices_df": prices_df
}
def fetch_historical_prices(self, token_symbol: str, timestamp) -> Dict[str, Any]:
"""Fetch historical price data for a token at a specific timestamp
Args:
token_symbol: Token symbol (e.g., "ETH")
timestamp: Timestamp (can be int, float, datetime, or pandas Timestamp)
Returns:
Dictionary with price data
"""
# Convert timestamp to integer if it's not already
timestamp_value = 0
try:
# Handle different timestamp types
if isinstance(timestamp, (int, float)):
timestamp_value = int(timestamp)
elif isinstance(timestamp, pd.Timestamp):
timestamp_value = int(timestamp.timestamp())
elif isinstance(timestamp, datetime):
timestamp_value = int(timestamp.timestamp())
elif isinstance(timestamp, str):
# Try to parse string as timestamp
dt = pd.to_datetime(timestamp)
timestamp_value = int(dt.timestamp())
else:
# Default to current time if invalid type
logging.warning(f"Invalid timestamp type: {type(timestamp)}, using current time")
timestamp_value = int(time.time())
except Exception as e:
logging.warning(f"Error converting timestamp {timestamp}: {str(e)}, using current time")
timestamp_value = int(time.time())
# Check cache first
cache_key = f"{token_symbol}_{timestamp_value}"
if cache_key in self._price_cache:
return self._price_cache[cache_key]
# Implement rate limiting
current_time = time.time()
if current_time - self._last_api_call < 0.05: # 50ms minimum between calls
time.sleep(0.05)
self._last_api_call = current_time
# Check error count for this symbol
error_key = f"error_{token_symbol}"
if self._error_count.get(error_key, 0) > 10:
# Too many errors, return cached failure
return {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'error',
'error': 'Too many previous errors'
}
try:
url = f"{self.base_url}/trades/{token_symbol}USD"
params = {
'limit_trades': 500,
'timestamp': timestamp_value * 1000 # Convert to milliseconds
}
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
# Reset error count on success
self._error_count[error_key] = 0
# Calculate average price from recent trades
if data:
prices = [float(trade['price']) for trade in data]
avg_price = sum(prices) / len(prices)
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': avg_price,
'status': 'success'
}
# Cache success
self._price_cache[cache_key] = result
return result
else:
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'no_data'
}
# Cache no data
self._price_cache[cache_key] = result
return result
except requests.exceptions.HTTPError as e:
# Handle HTTP errors efficiently
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
# Only log first few occurrences
if self._error_count[error_key] <= 3:
logging.warning(f"HTTP error fetching price for {token_symbol}: {e.response.status_code}")
elif self._error_count[error_key] == 10:
logging.warning(f"Suppressing further logs for {token_symbol} errors")
result = {
'symbol': token_symbol,
'timestamp': timestamp,
'price': None,
'status': 'error',
'error': f"HTTP {e.response.status_code}"
}
self._price_cache[cache_key] = result
return result
except Exception as e:
# For other errors
self._error_count[error_key] = self._error_count.get(error_key, 0) + 1
if self._error_count[error_key] <= 3:
logging.error(f"Error fetching prices for {token_symbol}: {str(e)}")
result = {
'symbol': token_symbol,
'timestamp': timestamp_value,
'price': None,
'status': 'error',
'error': str(e)
}
self._price_cache[cache_key] = result
return result
|