ariansyahdedy's picture
First commit
15e12f6
# main.py
import re
import time
import os
import json
import pathlib
import logging
import unicodedata
import io
import traceback
import unidecode
import pandas as pd
from dotenv import load_dotenv
from fastapi import FastAPI, Request, Form, File, UploadFile, HTTPException, Depends
from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
load_dotenv()
# Configure logging at the top of the file
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Global visual map for replacing visually similar characters.
VISUAL_MAP = {
'А': 'A', 'В': 'B', 'С': 'C', 'Е': 'E', 'Н': 'H', 'К': 'K', 'М': 'M',
'О': 'O', 'Р': 'P', 'Т': 'T', 'Х': 'X',
'а': 'a', 'в': 'b', 'с': 'c', 'е': 'e', 'о': 'o', 'р': 'p', 'х': 'x', 'у': 'y',
'Я': 'R', 'я': 'r',
'ρ': 'p',
'Π': 'P',
# etc...
}
# --- GamblingFilter class (with rule updates) ---
class GamblingFilter:
"""
A high-performance filter for detecting online gambling-related comments.
Features include aggressive Unicode normalization, keyword matching, and pattern detection.
"""
def __init__(self):
logger.info("Initializing GamblingFilter")
self._platform_names = {
'agustoto', 'aero', 'aero88', 'dora', 'dora77', 'dewadora', 'pulau777', 'pulau', '777',
'jptogel', 'mandalika', 'cnd88', 'axl', 'berkah99', 'weton88', 'garuda', 'hoki'
}
self._gambling_terms = {
'jackpot', 'jp', 'wd', 'depo', 'cuan', 'gacor', 'gacir', 'jekpot', 'sultan',
'rezeki nomplok', 'rezeki', 'menang', 'nomplok', 'deposit', 'withdraw', 'maxwin',
'auto sultan', 'jepe', 'jepee', 'bikin nagih', 'berkah'
}
self._ambiguous_terms = {
'auto', 'main', 'bermain', 'hasil', 'dapat', 'dapet', 'berkat'
}
self._safe_indicators = {
'tidak mengandung', 'bukan perjudian', 'tanpa perjudian',
'dokumentasi', 'profesional', 'pembelajaran'
}
self._gambling_contexts = [
r'(main|bermain|coba).{1,30}(dapat|dapet|pro|jadi|langsung|menang|jp|cuan)',
r'(modal|depo).{1,30}(jadi|langsung|wd|cuan)',
r'(jp|jackpot|jekpot).{1,30}(gede|besar|pecah)',
r'(berkat|dari).{1,30}(rezeki|menang|cuan|sultan)',
r'(gacor|gacir).{1,30}(terus|parah|tiap|hari)',
r'(rezeki|cuan).{1,30}(nomplok|datang|mengalir|lancar)',
r'(hari ini).{1,30}(menang|cuan|rezeki|berkat)',
r'(malah|eh).{1,30}(jadi|dapat|dapet|rezeki)',
r'(auto).{1,30}(sultan|cuan|rezeki|kaya)',
r'(0\d:[0-5]\d).{1,30}(menang|rezeki|cuan|gacor)',
r'(iseng|coba).{1,30}(malah|jadi|eh|pro)',
r'(deposit|depo|wd).{1,30}(jadi|langsung)',
r'(langsung|auto).{1,30}(jp|cuan|sultan|rezeki)',
r'bikin\s+nagih',
r'gak\s+ada\s+duanya',
r'berkah.{0,20}rezeki',
r'puji\s+syukur'
]
self._compiled_gambling_contexts = [
re.compile(pattern, re.IGNORECASE | re.DOTALL)
for pattern in self._gambling_contexts
]
self._update_platform_pattern()
self._number_pattern = re.compile(r'(88|777|77|99|7+)')
def _update_platform_pattern(self):
"""Recompile the platform name regex based on current _platform_names."""
platform_patterns = []
for platform in self._platform_names:
chars = list(platform)
segments = [
f'[{c.upper()}{c.lower()}][^a-zA-Z0-9]{{0,3}}'
for c in chars[:-1]
]
segments.append(f'[{chars[-1].upper()}{chars[-1].lower()}]')
strict = ''.join(segments)
platform_patterns.append(strict)
self._platform_pattern = re.compile('|'.join(platform_patterns), re.DOTALL)
def add_rule(self, rule_type: str, rule_value: str):
"""
Add a new rule based on the rule type.
Allowed types: 'platform', 'gambling_term', 'safe_indicator', 'gambling_context', 'ambiguous_term'
"""
rule_type = rule_type.lower()
if rule_type == 'platform':
self._platform_names.add(rule_value)
self._update_platform_pattern()
elif rule_type == 'gambling_term':
self._gambling_terms.add(rule_value)
elif rule_type == 'safe_indicator':
self._safe_indicators.add(rule_value)
elif rule_type == 'gambling_context':
self._gambling_contexts.append(rule_value)
self._compiled_gambling_contexts.append(re.compile(rule_value, re.IGNORECASE | re.DOTALL))
elif rule_type == 'ambiguous_term':
self._ambiguous_terms.add(rule_value)
else:
raise ValueError("Unsupported rule type")
def _strip_all_formatting(self, text: str) -> str:
return ''.join(c.lower() for c in text if c.isalnum() or c.isspace())
def _robust_normalize(self, text: str) -> str:
# Step 1: custom mapping for visually similar characters
mapped_text = ''.join(VISUAL_MAP.get(ch, ch) for ch in text)
# Step 2: Unicode normalization + unidecode
decomposed = unicodedata.normalize('NFKD', mapped_text)
ascii_equiv = unidecode.unidecode(decomposed)
return ascii_equiv.lower()
def _extract_platform_names(self, text: str) -> list:
matches = []
pattern_matches = self._platform_pattern.findall(text)
if pattern_matches:
pattern_matches = [m for sublist in pattern_matches for m in sublist if m]
matches.extend(pattern_matches)
normalized = self._robust_normalize(text)
stripped = self._strip_all_formatting(text)
for platform in self._platform_names:
if platform in normalized or platform in stripped:
if not any(platform in m.lower() for m in matches):
matches.append(platform)
if '88' in text or '88' in normalized:
if not any('88' in m for m in matches):
matches.append('88')
if '777' in text or '777' in normalized:
if not any('777' in m for m in matches):
matches.append('777')
return matches
def normalize_text(self, text: str) -> str:
normalized = unicodedata.normalize('NFKD', text)
normalized = ''.join(c for c in normalized if ord(c) < 128 or c.isspace())
return normalized.lower()
def is_gambling_comment(self, text: str, threshold: float = 0.55) -> tuple:
start_time = time.time()
logger.info(f"Analyzing comment for gambling content: {text[:100]}...")
metrics = {
'platform_matches': [],
'gambling_term_matches': [],
'context_matches': [],
'safe_indicators': [],
'has_numbers': False,
'confidence_score': 0.0,
'processing_time_ms': 0
}
normalized_text = self.normalize_text(text)
stripped_text = self._strip_all_formatting(text)
aggressive_text = self._robust_normalize(text)
for indicator in self._safe_indicators:
if indicator in normalized_text:
metrics['safe_indicators'].append(indicator)
if metrics['safe_indicators']:
metrics['confidence_score'] = 0.0
metrics['processing_time_ms'] = (time.time() - start_time) * 1000
return False, metrics
platform_matches = self._extract_platform_names(text)
if platform_matches:
metrics['platform_matches'] = platform_matches
for term in self._gambling_terms:
if term in normalized_text or term in stripped_text or term in aggressive_text:
metrics['gambling_term_matches'].append(term)
if self._number_pattern.search(normalized_text):
metrics['has_numbers'] = True
for pattern in self._compiled_gambling_contexts:
match = pattern.search(normalized_text)
if match:
metrics['context_matches'].append(match.group(0))
match = pattern.search(aggressive_text)
if match and match.group(0) not in metrics['context_matches']:
metrics['context_matches'].append(match.group(0))
platform_score = min(len(metrics['platform_matches']) * 1.0, 1)
term_score = min(len(metrics['gambling_term_matches']) * 0.2, 0.4)
context_score = min(len(metrics['context_matches']) * 0.2, 0.4)
number_score = 0.1 if metrics['has_numbers'] else 0
if platform_score > 0 and (term_score > 0 or context_score > 0):
total_score = platform_score + term_score + context_score + number_score
elif context_score > 0.2 and term_score > 0:
total_score = context_score + term_score + number_score
else:
total_score = max(platform_score, term_score, context_score) * 0.8
metrics['confidence_score'] = min(total_score, 1.0)
if ("berkah" in normalized_text or "berkah" in aggressive_text) and \
("rezeki" in normalized_text or "rezeki" in aggressive_text) and \
metrics['platform_matches']:
metrics['confidence_score'] = max(metrics['confidence_score'], 0.7)
if "Special case: berkah+rezeki+platform" not in metrics['context_matches']:
metrics['context_matches'].append("Special case: berkah+rezeki+platform")
elif ("puji" in normalized_text or "puji" in aggressive_text) and \
("syukur" in normalized_text or "syukur" in aggressive_text) and \
metrics['platform_matches']:
metrics['confidence_score'] = max(metrics['confidence_score'], 0.7)
if "Special case: puji+syukur+platform" not in metrics['context_matches']:
metrics['context_matches'].append("Special case: puji+syukur+platform")
metrics['processing_time_ms'] = (time.time() - start_time) * 1000
is_gambling = metrics['confidence_score'] >= threshold
return is_gambling, metrics
def filter_comments(self, comments: list, threshold: float = 0.55) -> dict:
result = {
'gambling_comments': [],
'safe_comments': [],
'metrics': []
}
for comment in comments:
is_gambling, metrics = self.is_gambling_comment(comment, threshold)
if is_gambling:
result['gambling_comments'].append(comment)
else:
result['safe_comments'].append(comment)
metrics["original_text"] = comment
result["metrics"].append(metrics)
return result
# --- FastAPI application setup ---
app = FastAPI()
templates = Jinja2Templates(directory="templates")
# Create a single instance of the GamblingFilter
filter_instance = GamblingFilter()
from jinja2 import Undefined
def pretty_json(value):
if isinstance(value, Undefined):
return ""
return json.dumps(value, ensure_ascii=False, indent=2)
templates.env.filters["pretty_json"] = pretty_json
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {
"request": request,
"result": None,
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.get("/classify", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {
"request": request,
"result": None,
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/classify", response_class=HTMLResponse)
async def classify_comment(request: Request, comment: str = Form(...)):
is_gambling, metrics = filter_instance.is_gambling_comment(comment)
result = {"is_gambling": is_gambling, "metrics": metrics}
print(result['metrics'])
return templates.TemplateResponse("index.html", {
"request": request,
"result": result,
"comment": comment,
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/add_rule", response_class=HTMLResponse)
async def add_rule(request: Request, rule_type: str = Form(...), rule_value: str = Form(...)):
try:
filter_instance.add_rule(rule_type, rule_value)
message = f"Added rule '{rule_value}' as type '{rule_type}'."
except ValueError as e:
message = str(e)
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": message},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/upload", response_class=HTMLResponse)
async def upload_file(request: Request, file: UploadFile = File(...), column: str = Form("comment")):
content = await file.read()
try:
if file.filename.endswith('.csv'):
df = pd.read_csv(io.BytesIO(content))
elif file.filename.endswith(('.xls', '.xlsx')):
df = pd.read_excel(io.BytesIO(content))
else:
raise ValueError("Unsupported file type.")
except Exception as e:
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": f"Error reading file: {e}"},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
if column not in df.columns:
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": f"Column '{column}' not found. Available columns: {list(df.columns)}"},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
comments = df[column].astype(str).tolist()
results = filter_instance.filter_comments(comments)
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"upload_result": results},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/add_visual_char")
async def add_visual_char(request: Request, char: str = Form(...), ascii_equiv: str = Form(...)):
VISUAL_MAP[char] = ascii_equiv
message = f"Added visual map entry '{char}' -> '{ascii_equiv}'."
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": message},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)