Spaces:
Sleeping
Sleeping
File size: 17,872 Bytes
15e12f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# main.py
import re
import time
import os
import json
import pathlib
import logging
import unicodedata
import io
import traceback
import unidecode
import pandas as pd
from dotenv import load_dotenv
from fastapi import FastAPI, Request, Form, File, UploadFile, HTTPException, Depends
from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
load_dotenv()
# Configure logging at the top of the file
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Global visual map for replacing visually similar characters.
VISUAL_MAP = {
'А': 'A', 'В': 'B', 'С': 'C', 'Е': 'E', 'Н': 'H', 'К': 'K', 'М': 'M',
'О': 'O', 'Р': 'P', 'Т': 'T', 'Х': 'X',
'а': 'a', 'в': 'b', 'с': 'c', 'е': 'e', 'о': 'o', 'р': 'p', 'х': 'x', 'у': 'y',
'Я': 'R', 'я': 'r',
'ρ': 'p',
'Π': 'P',
# etc...
}
# --- GamblingFilter class (with rule updates) ---
class GamblingFilter:
"""
A high-performance filter for detecting online gambling-related comments.
Features include aggressive Unicode normalization, keyword matching, and pattern detection.
"""
def __init__(self):
logger.info("Initializing GamblingFilter")
self._platform_names = {
'agustoto', 'aero', 'aero88', 'dora', 'dora77', 'dewadora', 'pulau777', 'pulau', '777',
'jptogel', 'mandalika', 'cnd88', 'axl', 'berkah99', 'weton88', 'garuda', 'hoki'
}
self._gambling_terms = {
'jackpot', 'jp', 'wd', 'depo', 'cuan', 'gacor', 'gacir', 'jekpot', 'sultan',
'rezeki nomplok', 'rezeki', 'menang', 'nomplok', 'deposit', 'withdraw', 'maxwin',
'auto sultan', 'jepe', 'jepee', 'bikin nagih', 'berkah'
}
self._ambiguous_terms = {
'auto', 'main', 'bermain', 'hasil', 'dapat', 'dapet', 'berkat'
}
self._safe_indicators = {
'tidak mengandung', 'bukan perjudian', 'tanpa perjudian',
'dokumentasi', 'profesional', 'pembelajaran'
}
self._gambling_contexts = [
r'(main|bermain|coba).{1,30}(dapat|dapet|pro|jadi|langsung|menang|jp|cuan)',
r'(modal|depo).{1,30}(jadi|langsung|wd|cuan)',
r'(jp|jackpot|jekpot).{1,30}(gede|besar|pecah)',
r'(berkat|dari).{1,30}(rezeki|menang|cuan|sultan)',
r'(gacor|gacir).{1,30}(terus|parah|tiap|hari)',
r'(rezeki|cuan).{1,30}(nomplok|datang|mengalir|lancar)',
r'(hari ini).{1,30}(menang|cuan|rezeki|berkat)',
r'(malah|eh).{1,30}(jadi|dapat|dapet|rezeki)',
r'(auto).{1,30}(sultan|cuan|rezeki|kaya)',
r'(0\d:[0-5]\d).{1,30}(menang|rezeki|cuan|gacor)',
r'(iseng|coba).{1,30}(malah|jadi|eh|pro)',
r'(deposit|depo|wd).{1,30}(jadi|langsung)',
r'(langsung|auto).{1,30}(jp|cuan|sultan|rezeki)',
r'bikin\s+nagih',
r'gak\s+ada\s+duanya',
r'berkah.{0,20}rezeki',
r'puji\s+syukur'
]
self._compiled_gambling_contexts = [
re.compile(pattern, re.IGNORECASE | re.DOTALL)
for pattern in self._gambling_contexts
]
self._update_platform_pattern()
self._number_pattern = re.compile(r'(88|777|77|99|7+)')
def _update_platform_pattern(self):
"""Recompile the platform name regex based on current _platform_names."""
platform_patterns = []
for platform in self._platform_names:
chars = list(platform)
segments = [
f'[{c.upper()}{c.lower()}][^a-zA-Z0-9]{{0,3}}'
for c in chars[:-1]
]
segments.append(f'[{chars[-1].upper()}{chars[-1].lower()}]')
strict = ''.join(segments)
platform_patterns.append(strict)
self._platform_pattern = re.compile('|'.join(platform_patterns), re.DOTALL)
def add_rule(self, rule_type: str, rule_value: str):
"""
Add a new rule based on the rule type.
Allowed types: 'platform', 'gambling_term', 'safe_indicator', 'gambling_context', 'ambiguous_term'
"""
rule_type = rule_type.lower()
if rule_type == 'platform':
self._platform_names.add(rule_value)
self._update_platform_pattern()
elif rule_type == 'gambling_term':
self._gambling_terms.add(rule_value)
elif rule_type == 'safe_indicator':
self._safe_indicators.add(rule_value)
elif rule_type == 'gambling_context':
self._gambling_contexts.append(rule_value)
self._compiled_gambling_contexts.append(re.compile(rule_value, re.IGNORECASE | re.DOTALL))
elif rule_type == 'ambiguous_term':
self._ambiguous_terms.add(rule_value)
else:
raise ValueError("Unsupported rule type")
def _strip_all_formatting(self, text: str) -> str:
return ''.join(c.lower() for c in text if c.isalnum() or c.isspace())
def _robust_normalize(self, text: str) -> str:
# Step 1: custom mapping for visually similar characters
mapped_text = ''.join(VISUAL_MAP.get(ch, ch) for ch in text)
# Step 2: Unicode normalization + unidecode
decomposed = unicodedata.normalize('NFKD', mapped_text)
ascii_equiv = unidecode.unidecode(decomposed)
return ascii_equiv.lower()
def _extract_platform_names(self, text: str) -> list:
matches = []
pattern_matches = self._platform_pattern.findall(text)
if pattern_matches:
pattern_matches = [m for sublist in pattern_matches for m in sublist if m]
matches.extend(pattern_matches)
normalized = self._robust_normalize(text)
stripped = self._strip_all_formatting(text)
for platform in self._platform_names:
if platform in normalized or platform in stripped:
if not any(platform in m.lower() for m in matches):
matches.append(platform)
if '88' in text or '88' in normalized:
if not any('88' in m for m in matches):
matches.append('88')
if '777' in text or '777' in normalized:
if not any('777' in m for m in matches):
matches.append('777')
return matches
def normalize_text(self, text: str) -> str:
normalized = unicodedata.normalize('NFKD', text)
normalized = ''.join(c for c in normalized if ord(c) < 128 or c.isspace())
return normalized.lower()
def is_gambling_comment(self, text: str, threshold: float = 0.55) -> tuple:
start_time = time.time()
logger.info(f"Analyzing comment for gambling content: {text[:100]}...")
metrics = {
'platform_matches': [],
'gambling_term_matches': [],
'context_matches': [],
'safe_indicators': [],
'has_numbers': False,
'confidence_score': 0.0,
'processing_time_ms': 0
}
normalized_text = self.normalize_text(text)
stripped_text = self._strip_all_formatting(text)
aggressive_text = self._robust_normalize(text)
for indicator in self._safe_indicators:
if indicator in normalized_text:
metrics['safe_indicators'].append(indicator)
if metrics['safe_indicators']:
metrics['confidence_score'] = 0.0
metrics['processing_time_ms'] = (time.time() - start_time) * 1000
return False, metrics
platform_matches = self._extract_platform_names(text)
if platform_matches:
metrics['platform_matches'] = platform_matches
for term in self._gambling_terms:
if term in normalized_text or term in stripped_text or term in aggressive_text:
metrics['gambling_term_matches'].append(term)
if self._number_pattern.search(normalized_text):
metrics['has_numbers'] = True
for pattern in self._compiled_gambling_contexts:
match = pattern.search(normalized_text)
if match:
metrics['context_matches'].append(match.group(0))
match = pattern.search(aggressive_text)
if match and match.group(0) not in metrics['context_matches']:
metrics['context_matches'].append(match.group(0))
platform_score = min(len(metrics['platform_matches']) * 1.0, 1)
term_score = min(len(metrics['gambling_term_matches']) * 0.2, 0.4)
context_score = min(len(metrics['context_matches']) * 0.2, 0.4)
number_score = 0.1 if metrics['has_numbers'] else 0
if platform_score > 0 and (term_score > 0 or context_score > 0):
total_score = platform_score + term_score + context_score + number_score
elif context_score > 0.2 and term_score > 0:
total_score = context_score + term_score + number_score
else:
total_score = max(platform_score, term_score, context_score) * 0.8
metrics['confidence_score'] = min(total_score, 1.0)
if ("berkah" in normalized_text or "berkah" in aggressive_text) and \
("rezeki" in normalized_text or "rezeki" in aggressive_text) and \
metrics['platform_matches']:
metrics['confidence_score'] = max(metrics['confidence_score'], 0.7)
if "Special case: berkah+rezeki+platform" not in metrics['context_matches']:
metrics['context_matches'].append("Special case: berkah+rezeki+platform")
elif ("puji" in normalized_text or "puji" in aggressive_text) and \
("syukur" in normalized_text or "syukur" in aggressive_text) and \
metrics['platform_matches']:
metrics['confidence_score'] = max(metrics['confidence_score'], 0.7)
if "Special case: puji+syukur+platform" not in metrics['context_matches']:
metrics['context_matches'].append("Special case: puji+syukur+platform")
metrics['processing_time_ms'] = (time.time() - start_time) * 1000
is_gambling = metrics['confidence_score'] >= threshold
return is_gambling, metrics
def filter_comments(self, comments: list, threshold: float = 0.55) -> dict:
result = {
'gambling_comments': [],
'safe_comments': [],
'metrics': []
}
for comment in comments:
is_gambling, metrics = self.is_gambling_comment(comment, threshold)
if is_gambling:
result['gambling_comments'].append(comment)
else:
result['safe_comments'].append(comment)
metrics["original_text"] = comment
result["metrics"].append(metrics)
return result
# --- FastAPI application setup ---
app = FastAPI()
templates = Jinja2Templates(directory="templates")
# Create a single instance of the GamblingFilter
filter_instance = GamblingFilter()
from jinja2 import Undefined
def pretty_json(value):
if isinstance(value, Undefined):
return ""
return json.dumps(value, ensure_ascii=False, indent=2)
templates.env.filters["pretty_json"] = pretty_json
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {
"request": request,
"result": None,
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.get("/classify", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {
"request": request,
"result": None,
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/classify", response_class=HTMLResponse)
async def classify_comment(request: Request, comment: str = Form(...)):
is_gambling, metrics = filter_instance.is_gambling_comment(comment)
result = {"is_gambling": is_gambling, "metrics": metrics}
print(result['metrics'])
return templates.TemplateResponse("index.html", {
"request": request,
"result": result,
"comment": comment,
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/add_rule", response_class=HTMLResponse)
async def add_rule(request: Request, rule_type: str = Form(...), rule_value: str = Form(...)):
try:
filter_instance.add_rule(rule_type, rule_value)
message = f"Added rule '{rule_value}' as type '{rule_type}'."
except ValueError as e:
message = str(e)
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": message},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/upload", response_class=HTMLResponse)
async def upload_file(request: Request, file: UploadFile = File(...), column: str = Form("comment")):
content = await file.read()
try:
if file.filename.endswith('.csv'):
df = pd.read_csv(io.BytesIO(content))
elif file.filename.endswith(('.xls', '.xlsx')):
df = pd.read_excel(io.BytesIO(content))
else:
raise ValueError("Unsupported file type.")
except Exception as e:
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": f"Error reading file: {e}"},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
if column not in df.columns:
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": f"Column '{column}' not found. Available columns: {list(df.columns)}"},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
comments = df[column].astype(str).tolist()
results = filter_instance.filter_comments(comments)
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"upload_result": results},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
@app.post("/add_visual_char")
async def add_visual_char(request: Request, char: str = Form(...), ascii_equiv: str = Form(...)):
VISUAL_MAP[char] = ascii_equiv
message = f"Added visual map entry '{char}' -> '{ascii_equiv}'."
return templates.TemplateResponse("index.html", {
"request": request,
"result": {"message": message},
"comment": "",
"rules": {
"platform": sorted(list(filter_instance._platform_names)),
"gambling_term": sorted(list(filter_instance._gambling_terms)),
"safe_indicator": sorted(list(filter_instance._safe_indicators)),
"gambling_context": sorted(list(filter_instance._gambling_contexts)),
"ambiguous_term": sorted(list(filter_instance._ambiguous_terms))
}
})
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|