Spaces:
Running
on
Zero
Running
on
Zero
Zero GPU
#50
by
chargoddard
- opened
- README.md +1 -1
- app.py +108 -47
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -3,10 +3,9 @@ import pathlib
|
|
3 |
import random
|
4 |
import string
|
5 |
import tempfile
|
6 |
-
import time
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
from typing import Iterable, List
|
9 |
|
|
|
10 |
import gradio as gr
|
11 |
import huggingface_hub
|
12 |
import torch
|
@@ -16,44 +15,14 @@ from mergekit.config import MergeConfiguration
|
|
16 |
|
17 |
from clean_community_org import garbage_collect_empty_models
|
18 |
from apscheduler.schedulers.background import BackgroundScheduler
|
19 |
-
from datetime import
|
20 |
-
|
21 |
-
has_gpu = torch.cuda.is_available()
|
22 |
-
|
23 |
-
# Running directly from Python doesn't work well with Gradio+run_process because of:
|
24 |
-
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
|
25 |
-
# Let's use the CLI instead.
|
26 |
-
#
|
27 |
-
# import mergekit.merge
|
28 |
-
# from mergekit.common import parse_kmb
|
29 |
-
# from mergekit.options import MergeOptions
|
30 |
-
#
|
31 |
-
# merge_options = (
|
32 |
-
# MergeOptions(
|
33 |
-
# copy_tokenizer=True,
|
34 |
-
# cuda=True,
|
35 |
-
# low_cpu_memory=True,
|
36 |
-
# write_model_card=True,
|
37 |
-
# )
|
38 |
-
# if has_gpu
|
39 |
-
# else MergeOptions(
|
40 |
-
# allow_crimes=True,
|
41 |
-
# out_shard_size=parse_kmb("1B"),
|
42 |
-
# lazy_unpickle=True,
|
43 |
-
# write_model_card=True,
|
44 |
-
# )
|
45 |
-
# )
|
46 |
-
|
47 |
-
cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
|
48 |
-
" --cuda --low-cpu-memory --allow-crimes" if has_gpu else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
|
49 |
-
)
|
50 |
|
51 |
MARKDOWN_DESCRIPTION = """
|
52 |
# mergekit-gui
|
53 |
|
54 |
The fastest way to perform a model merge π₯
|
55 |
|
56 |
-
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
|
57 |
"""
|
58 |
|
59 |
MARKDOWN_ARTICLE = """
|
@@ -113,11 +82,56 @@ examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]
|
|
113 |
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")
|
114 |
|
115 |
|
116 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
runner = LogsViewRunner()
|
118 |
|
119 |
if not yaml_config:
|
120 |
-
yield runner.log("Empty yaml, pick an example below", level="ERROR")
|
121 |
return
|
122 |
try:
|
123 |
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
|
@@ -127,6 +141,12 @@ def merge(yaml_config: str, hf_token: str, repo_name: str) -> Iterable[List[Log]
|
|
127 |
|
128 |
is_community_model = False
|
129 |
if not hf_token:
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if "/" in repo_name and not repo_name.startswith("mergekit-community/"):
|
131 |
yield runner.log(
|
132 |
f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
|
@@ -142,6 +162,10 @@ def merge(yaml_config: str, hf_token: str, repo_name: str) -> Iterable[List[Log]
|
|
142 |
hf_token = COMMUNITY_HF_TOKEN
|
143 |
|
144 |
api = huggingface_hub.HfApi(token=hf_token)
|
|
|
|
|
|
|
|
|
145 |
|
146 |
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
|
147 |
tmpdir = pathlib.Path(tmpdirname)
|
@@ -163,19 +187,42 @@ def merge(yaml_config: str, hf_token: str, repo_name: str) -> Iterable[List[Log]
|
|
163 |
|
164 |
try:
|
165 |
yield runner.log(f"Creating repo {repo_name}")
|
166 |
-
repo_url = api.create_repo(repo_name, exist_ok=True)
|
167 |
yield runner.log(f"Repo created: {repo_url}")
|
168 |
except Exception as e:
|
169 |
yield runner.log(f"Error creating repo {e}", level="ERROR")
|
170 |
return
|
171 |
|
172 |
-
#
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
if
|
|
|
179 |
yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
|
180 |
api.delete_repo(repo_url.repo_id)
|
181 |
return
|
@@ -188,9 +235,18 @@ def merge(yaml_config: str, hf_token: str, repo_name: str) -> Iterable[List[Log]
|
|
188 |
)
|
189 |
yield runner.log(f"Model successfully uploaded to HF: {repo_url.repo_id}")
|
190 |
|
|
|
|
|
|
|
|
|
|
|
191 |
# This is workaround. As the space always getting stuck.
|
192 |
def _restart_space():
|
193 |
-
huggingface_hub.HfApi().restart_space(
|
|
|
|
|
|
|
|
|
194 |
# Run garbage collection every hour to keep the community org clean.
|
195 |
# Empty models might exists if the merge fails abruptly (e.g. if user leaves the Space).
|
196 |
def _garbage_remover():
|
@@ -199,6 +255,7 @@ def _garbage_remover():
|
|
199 |
except Exception as e:
|
200 |
print("Error running garbage collection", e)
|
201 |
|
|
|
202 |
scheduler = BackgroundScheduler()
|
203 |
restart_space_job = scheduler.add_job(_restart_space, "interval", seconds=21600)
|
204 |
garbage_remover_job = scheduler.add_job(_garbage_remover, "interval", seconds=3600)
|
@@ -210,7 +267,7 @@ NEXT_RESTART = f"Next Restart: {next_run_time_utc.strftime('%Y-%m-%d %H:%M:%S')}
|
|
210 |
with gr.Blocks() as demo:
|
211 |
gr.Markdown(MARKDOWN_DESCRIPTION)
|
212 |
gr.Markdown(NEXT_RESTART)
|
213 |
-
|
214 |
with gr.Row():
|
215 |
filename = gr.Textbox(visible=False, label="filename")
|
216 |
config = gr.Code(language="yaml", lines=10, label="config.yaml")
|
@@ -227,6 +284,11 @@ with gr.Blocks() as demo:
|
|
227 |
label="Repo name",
|
228 |
placeholder="Optional. Will create a random name if empty.",
|
229 |
)
|
|
|
|
|
|
|
|
|
|
|
230 |
button = gr.Button("Merge", variant="primary")
|
231 |
logs = LogsView(label="Terminal output")
|
232 |
gr.Examples(
|
@@ -239,8 +301,7 @@ with gr.Blocks() as demo:
|
|
239 |
)
|
240 |
gr.Markdown(MARKDOWN_ARTICLE)
|
241 |
|
242 |
-
button.click(fn=merge, inputs=[config, token, repo_name], outputs=[logs])
|
243 |
-
|
244 |
|
245 |
|
246 |
demo.queue(default_concurrency_limit=1).launch()
|
|
|
3 |
import random
|
4 |
import string
|
5 |
import tempfile
|
|
|
|
|
6 |
from typing import Iterable, List
|
7 |
|
8 |
+
import spaces
|
9 |
import gradio as gr
|
10 |
import huggingface_hub
|
11 |
import torch
|
|
|
15 |
|
16 |
from clean_community_org import garbage_collect_empty_models
|
17 |
from apscheduler.schedulers.background import BackgroundScheduler
|
18 |
+
from datetime import timezone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
MARKDOWN_DESCRIPTION = """
|
21 |
# mergekit-gui
|
22 |
|
23 |
The fastest way to perform a model merge π₯
|
24 |
|
25 |
+
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile. Uses Zero GPU quota to perform the merge.
|
26 |
"""
|
27 |
|
28 |
MARKDOWN_ARTICLE = """
|
|
|
82 |
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")
|
83 |
|
84 |
|
85 |
+
def run_merge_cpu(runner: LogsViewRunner, cli: str, merged_path: str, tmpdirname: str):
|
86 |
+
# Set tmp HF_HOME to avoid filling up disk Space
|
87 |
+
tmp_env = os.environ.copy()
|
88 |
+
tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
|
89 |
+
full_cli = cli + f" --lora-merge-cache {tmpdirname}/.lora_cache --transformers-cache {tmpdirname}/.cache"
|
90 |
+
yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)
|
91 |
+
yield ("done", runner.exit_code)
|
92 |
+
|
93 |
+
|
94 |
+
@spaces.GPU(duration=60 * 5)
|
95 |
+
def run_merge_gpu(runner: LogsViewRunner, cli: str, merged_path: str, tmpdirname: str):
|
96 |
+
yield from run_merge_cpu(
|
97 |
+
runner,
|
98 |
+
cli,
|
99 |
+
merged_path,
|
100 |
+
tmpdirname,
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def run_merge(
|
105 |
+
runner: LogsViewRunner,
|
106 |
+
cli: str,
|
107 |
+
merged_path: str,
|
108 |
+
tmpdirname: str,
|
109 |
+
use_gpu: bool,
|
110 |
+
):
|
111 |
+
if use_gpu:
|
112 |
+
yield from run_merge_gpu(runner, cli, merged_path, tmpdirname)
|
113 |
+
else:
|
114 |
+
yield from run_merge_cpu(runner, cli, merged_path, tmpdirname)
|
115 |
+
|
116 |
+
|
117 |
+
def prefetch_models(
|
118 |
+
runner: LogsViewRunner,
|
119 |
+
merge_config: MergeConfiguration,
|
120 |
+
hf_home: str,
|
121 |
+
lora_merge_cache: str,
|
122 |
+
):
|
123 |
+
for model in merge_config.referenced_models():
|
124 |
+
yield runner.log(f"Downloading {model}...")
|
125 |
+
model = model.merged(cache_dir=lora_merge_cache, trust_remote_code=False)
|
126 |
+
local_path = model.local_path(cache_dir=hf_home)
|
127 |
+
yield runner.log(f"\tDownloaded {model} to {local_path}")
|
128 |
+
|
129 |
+
|
130 |
+
def merge(yaml_config: str, hf_token: str, repo_name: str, private: bool) -> Iterable[List[Log]]:
|
131 |
runner = LogsViewRunner()
|
132 |
|
133 |
if not yaml_config:
|
134 |
+
yield runner.log("Empty yaml, enter your config or pick an example below", level="ERROR")
|
135 |
return
|
136 |
try:
|
137 |
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
|
|
|
141 |
|
142 |
is_community_model = False
|
143 |
if not hf_token:
|
144 |
+
if private:
|
145 |
+
yield runner.log(
|
146 |
+
"Cannot upload model as private without a token. Please provide a HF token.",
|
147 |
+
level="ERROR",
|
148 |
+
)
|
149 |
+
return
|
150 |
if "/" in repo_name and not repo_name.startswith("mergekit-community/"):
|
151 |
yield runner.log(
|
152 |
f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
|
|
|
162 |
hf_token = COMMUNITY_HF_TOKEN
|
163 |
|
164 |
api = huggingface_hub.HfApi(token=hf_token)
|
165 |
+
has_gpu = torch.cuda.is_available()
|
166 |
+
cli = "mergekit-yaml config.yaml merge --copy-tokenizer --allow-crimes -v" + (
|
167 |
+
" --cuda --low-cpu-memory --read-to-gpu" if (has_gpu) else " --out-shard-size 1B --lazy-unpickle"
|
168 |
+
)
|
169 |
|
170 |
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
|
171 |
tmpdir = pathlib.Path(tmpdirname)
|
|
|
187 |
|
188 |
try:
|
189 |
yield runner.log(f"Creating repo {repo_name}")
|
190 |
+
repo_url = api.create_repo(repo_name, exist_ok=True, private=private, repo_type="model")
|
191 |
yield runner.log(f"Repo created: {repo_url}")
|
192 |
except Exception as e:
|
193 |
yield runner.log(f"Error creating repo {e}", level="ERROR")
|
194 |
return
|
195 |
|
196 |
+
# Prefetch models to avoid downloading them with scarce GPU time
|
197 |
+
yield runner.log("Prefetching models...")
|
198 |
+
yield from prefetch_models(
|
199 |
+
runner,
|
200 |
+
merge_config,
|
201 |
+
hf_home=f"{tmpdirname}/.cache",
|
202 |
+
lora_merge_cache=f"{tmpdirname}/.lora_cache",
|
203 |
+
)
|
204 |
+
yield runner.log("Models prefetched. Starting merge.")
|
205 |
+
exit_code = None
|
206 |
+
try:
|
207 |
+
for ev in run_merge(
|
208 |
+
runner,
|
209 |
+
cli,
|
210 |
+
merged_path,
|
211 |
+
tmpdirname,
|
212 |
+
use_gpu=has_gpu,
|
213 |
+
):
|
214 |
+
if isinstance(ev, tuple) and ev[0] == "done":
|
215 |
+
exit_code = ev[1]
|
216 |
+
continue
|
217 |
+
yield ev
|
218 |
+
except Exception as e:
|
219 |
+
yield runner.log(f"Error running merge {e}", level="ERROR")
|
220 |
+
yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
|
221 |
+
api.delete_repo(repo_url.repo_id)
|
222 |
+
return
|
223 |
|
224 |
+
if exit_code != 0:
|
225 |
+
yield runner.log(f"Exit code: {exit_code}")
|
226 |
yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
|
227 |
api.delete_repo(repo_url.repo_id)
|
228 |
return
|
|
|
235 |
)
|
236 |
yield runner.log(f"Model successfully uploaded to HF: {repo_url.repo_id}")
|
237 |
|
238 |
+
|
239 |
+
merge.zerogpu = True
|
240 |
+
run_merge.zerogpu = True
|
241 |
+
|
242 |
+
|
243 |
# This is workaround. As the space always getting stuck.
|
244 |
def _restart_space():
|
245 |
+
huggingface_hub.HfApi().restart_space(
|
246 |
+
repo_id="arcee-ai/mergekit-gui", token=COMMUNITY_HF_TOKEN, factory_reboot=False
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
# Run garbage collection every hour to keep the community org clean.
|
251 |
# Empty models might exists if the merge fails abruptly (e.g. if user leaves the Space).
|
252 |
def _garbage_remover():
|
|
|
255 |
except Exception as e:
|
256 |
print("Error running garbage collection", e)
|
257 |
|
258 |
+
|
259 |
scheduler = BackgroundScheduler()
|
260 |
restart_space_job = scheduler.add_job(_restart_space, "interval", seconds=21600)
|
261 |
garbage_remover_job = scheduler.add_job(_garbage_remover, "interval", seconds=3600)
|
|
|
267 |
with gr.Blocks() as demo:
|
268 |
gr.Markdown(MARKDOWN_DESCRIPTION)
|
269 |
gr.Markdown(NEXT_RESTART)
|
270 |
+
|
271 |
with gr.Row():
|
272 |
filename = gr.Textbox(visible=False, label="filename")
|
273 |
config = gr.Code(language="yaml", lines=10, label="config.yaml")
|
|
|
284 |
label="Repo name",
|
285 |
placeholder="Optional. Will create a random name if empty.",
|
286 |
)
|
287 |
+
private = gr.Checkbox(
|
288 |
+
label="Private",
|
289 |
+
value=False,
|
290 |
+
info="Upload the model as private. If not checked, will be public. Must provide a token.",
|
291 |
+
)
|
292 |
button = gr.Button("Merge", variant="primary")
|
293 |
logs = LogsView(label="Terminal output")
|
294 |
gr.Examples(
|
|
|
301 |
)
|
302 |
gr.Markdown(MARKDOWN_ARTICLE)
|
303 |
|
304 |
+
button.click(fn=merge, inputs=[config, token, repo_name, private], outputs=[logs])
|
|
|
305 |
|
306 |
|
307 |
demo.queue(default_concurrency_limit=1).launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
apscheduler
|
2 |
-
torch
|
3 |
git+https://github.com/arcee-ai/mergekit.git
|
4 |
# see https://huggingface.co/spaces/Wauplin/gradio_logsview
|
5 |
gradio_logsview@https://huggingface.co/spaces/Wauplin/gradio_logsview/resolve/main/gradio_logsview-0.0.5-py3-none-any.whl
|
|
|
1 |
apscheduler
|
2 |
+
torch==2.5.1
|
3 |
git+https://github.com/arcee-ai/mergekit.git
|
4 |
# see https://huggingface.co/spaces/Wauplin/gradio_logsview
|
5 |
gradio_logsview@https://huggingface.co/spaces/Wauplin/gradio_logsview/resolve/main/gradio_logsview-0.0.5-py3-none-any.whl
|