anveshak / rag_engine.py
ankanghosh's picture
Update rag_engine.py
548e033 verified
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc
# Force model to CPU for stability and to avoid GPU memory issues on resource-constrained environments
# This is especially important for deployment on platforms like Hugging Face Spaces
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Define local paths for files downloaded from Google Cloud Storage
# These files are cached locally to avoid repeated downloads and improve performance
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
# =============================================================================
# RESOURCE CACHING
# =============================================================================
@st.cache_resource(show_spinner=False)
def cached_load_model():
"""
Load and cache the E5-large-v2 embedding model and tokenizer.
Uses Streamlit's cache_resource decorator to ensure the model
is loaded only once during the application session, improving
performance and reducing memory usage.
Returns:
tuple: (tokenizer, model) pair or (None, None) if loading fails
"""
try:
# Force model to CPU for stability
device = torch.device("cpu")
# Get embedding model path from secrets
try:
embedding_model = st.secrets["EMBEDDING_MODEL"]
except KeyError:
print("❌ Error: Embedding model path not found in secrets")
return None, None
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(
embedding_model,
torch_dtype=torch.float16
)
# Move model to CPU and set to eval mode for inference
model = model.to(device)
model.eval()
# Disable gradient computation to save memory during inference
torch.set_grad_enabled(False)
print("βœ… Model loaded successfully (cached)")
return tokenizer, model
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
return None, None
@st.cache_resource(show_spinner=False)
def cached_load_data_files():
"""
Load and cache data files needed for the RAG system.
This function loads:
- FAISS index for vector similarity search
- Text chunks containing the original spiritual text passages
- Metadata dictionary with publication and author information
All files are downloaded from Google Cloud Storage if not already present locally.
Returns:
tuple: (faiss_index, text_chunks, metadata_dict) or (None, None, None) if loading fails
"""
# Initialize GCP and OpenAI clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
print("Failed to initialize required services")
return None, None, None
# Get GCS paths from secrets - required
try:
metadata_file_gcs = st.secrets["METADATA_PATH_GCS"]
embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"]
faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"]
text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"]
except KeyError as e:
print(f"❌ Error: Required GCS path not found in secrets: {e}")
return None, None, None
# Download necessary files if not already present locally
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
print("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"❌ Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # Mapping: ID -> (Title, Author, Text)
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"❌ Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item
except Exception as e:
print(f"❌ Error loading metadata: {str(e)}")
return None, None, None
print(f"βœ… Data loaded successfully (cached): {len(text_chunks)} passages available")
return faiss_index, text_chunks, metadata_dict
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def setup_gcp_client():
"""
Initialize and return the Google Cloud Storage client.
Sets up GCP authentication and creates a client for the configured bucket.
Returns:
google.cloud.storage.bucket.Bucket: The GCS bucket object or None if initialization fails
"""
try:
credentials = setup_gcp_auth()
try:
bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"]
except KeyError:
print("❌ Error: GCS bucket name not found in secrets")
return None
storage_client = storage.Client(credentials=credentials)
bucket = storage_client.bucket(bucket_name_gcs)
print("βœ… GCP client initialized successfully")
return bucket
except Exception as e:
print(f"❌ GCP client initialization error: {str(e)}")
return None
def setup_openai_client():
"""
Initialize the OpenAI client.
Sets up OpenAI API authentication for generating answers using the LLM.
Returns:
bool: True if initialization was successful, False otherwise
"""
try:
setup_openai_auth()
print("βœ… OpenAI client initialized successfully")
return True
except Exception as e:
print(f"❌ OpenAI client initialization error: {str(e)}")
return False
def download_file_from_gcs(bucket, gcs_path, local_path):
"""
Download a file from Google Cloud Storage to local storage.
Only downloads if the file isn't already present locally, avoiding redundant downloads.
Args:
bucket: GCS bucket object
gcs_path (str): Path to the file in GCS
local_path (str): Local path where the file should be saved
Returns:
bool: True if download was successful or file already exists, False otherwise
"""
try:
if os.path.exists(local_path):
print(f"File already exists locally: {local_path}")
return True
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
return True
except Exception as e:
print(f"❌ Error downloading {gcs_path}: {str(e)}")
return False
def average_pool(last_hidden_states, attention_mask):
"""
Perform average pooling on model outputs for sentence embeddings.
This function creates a fixed-size vector representation of a text sequence by averaging
the token embeddings, accounting for padding tokens using the attention mask.
Args:
last_hidden_states: Hidden states output from the model
attention_mask: Attention mask indicating which tokens to include
Returns:
torch.Tensor: Pooled representation of the input sequence
"""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# In-memory cache for query embeddings to avoid redundant computations
query_embedding_cache = {}
def get_embedding(text):
"""
Generate embeddings for a text query using the cached model.
Uses an in-memory cache to avoid redundant embedding generation for repeated queries.
Properly prefixes inputs with "query:" or "passage:" as required by the E5 model.
Args:
text (str): The query text to embed
Returns:
numpy.ndarray: The embedding vector or a zero vector if embedding fails
"""
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
tokenizer, model = cached_load_model()
if model is None:
print("Model is None, returning zero embedding")
return np.zeros((1, 384), dtype=np.float32)
# Format input based on text length
# For E5 models, "query:" prefix is for questions, "passage:" for documents
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.detach().cpu().numpy()
del outputs, inputs
gc.collect()
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"❌ Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32)
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""
Retrieve the most relevant passages for a given spiritual query.
This function:
1. Embeds the user query using the same model used for text chunks
2. Finds similar passages using the FAISS index with cosine similarity
3. Filters results based on similarity threshold to ensure relevance
4. Enriches results with metadata (title, author, publisher)
5. Ensures passage diversity by including only one passage per source title
Args:
query (str): The user's spiritual question
faiss_index: FAISS index containing passage embeddings
text_chunks (dict): Dictionary mapping IDs to text chunks and metadata
metadata_dict (dict): Dictionary containing publication information
top_k (int): Maximum number of passages to retrieve
similarity_threshold (float): Minimum similarity score (0.0-1.0) for retrieved passages
Returns:
tuple: (retrieved_passages, retrieved_sources) containing the text and source information
"""
try:
print(f"\nπŸ” Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"❌ Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""
Generate an answer using the OpenAI GPT model with formatted citations.
This function:
1. Formats retrieved passages with source information
2. Creates a prompt with system and user messages
3. Calls the OpenAI API to generate an answer
4. Trims the response to the specified word limit
The system prompt ensures answers maintain appropriate respect for spiritual traditions,
synthesize rather than quote directly, and acknowledge gaps when relevant information
isn't available.
Args:
query (str): The user's spiritual question
context (list, optional): List of (source_info, text) tuples for context
word_limit (int): Maximum word count for the generated answer
Returns:
str: The generated answer or an error message
"""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000 # Limit context size to avoid exceeding token limits
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
system_message = (
"You are an AI specialized in spirituality, primarily based on Indian spiritual texts and teachings."
"While your knowledge is predominantly from Indian spiritual traditions, you also have limited familiarity with spiritual concepts from other global traditions."
"Answer based on context, summarizing ideas rather than quoting verbatim."
"If no relevant information is found in the provided context, politely inform the user that this specific query may not be covered in the available spiritual texts. Suggest they try a related question or rephrase their query or try a different query."
"Avoid repetition and irrelevant details."
"Ensure proper citation and do not include direct excerpts."
"Maintain appropriate, respectful language at all times."
"Do not use profanity, expletives, obscenities, slurs, hate speech, sexually explicit content, or language promoting violence."
"As a spiritual guidance system, ensure all responses reflect dignity, peace, love, and compassion consistent with spiritual traditions."
"Provide concise, focused answers without lists or lengthy explanations."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
try:
llm_model = st.secrets["LLM_MODEL"]
except KeyError:
print("❌ Error: LLM model not found in secrets")
return "I apologize, but I am unable to answer at the moment."
response = openai.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
# Extract the answer and apply word limit
answer = response.choices[0].message.content.strip()
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"❌ LLM API error: {str(e)}")
return "I apologize, but I am unable to answer at the moment."
def format_citations(sources):
"""
Format citations for display to the user.
Creates properly formatted citations for each source used in generating the answer.
Each citation appears on a new line with consistent formatting.
Args:
sources (list): List of (title, author, publisher) tuples
Returns:
str: Formatted citations as a string with each citation on a new line
"""
formatted_citations = []
for title, author, publisher in sources:
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
# =============================================================================
# DATA CACHING FOR QUERY RESULTS
# =============================================================================
@st.cache_data(ttl=3600, show_spinner=False)
def cached_process_query(query, top_k=5, word_limit=100):
"""
Process a user query with caching to avoid redundant computation.
This function is cached with a Time-To-Live (TTL) of 1 hour, meaning identical
queries within this time period will return cached results rather than
reprocessing, improving responsiveness.
Args:
query (str): The user's spiritual question
top_k (int): Number of sources to retrieve and use for answer generation
word_limit (int): Maximum word count for the generated answer
Returns:
dict: Dictionary containing the query, answer, and citations
"""
print(f"\nπŸ” Processing query (cached): {query}")
# Load all necessary data resources (with caching)
faiss_index, text_chunks, metadata_dict = cached_load_data_files()
# Handle missing data gracefully
if faiss_index is None or text_chunks is None or metadata_dict is None:
return {
"query": query,
"answer_with_rag": "⚠️ System error: Data files not loaded properly.",
"citations": "No citations available."
}
# Step 1: Retrieve relevant passages using similarity search
retrieved_context, retrieved_sources = retrieve_passages(
query,
faiss_index,
text_chunks,
metadata_dict,
top_k=top_k
)
# Step 2: Format citations for display
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
# Step 3: Generate the answer if relevant context was found
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "⚠️ No relevant context found."
# Return the complete response package
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
def process_query(query, top_k=5, word_limit=100):
"""
Process a query through the RAG pipeline with proper formatting.
This is the main entry point for query processing, wrapping the cached
query processing function.
Args:
query (str): The user's spiritual question
top_k (int): Number of sources to retrieve and use for answer generation
word_limit (int): Maximum word count for the generated answer
Returns:
dict: Dictionary containing the query, answer, and citations
"""
return cached_process_query(query, top_k, word_limit)
# Alias for backward compatibility
load_model = cached_load_model