Spaces:
Sleeping
Sleeping
File size: 21,078 Bytes
62d1e75 6aa479a 62d1e75 c72a64f 2311e2d c72a64f 6aa479a 62d1e75 db4ca04 62d1e75 db4ca04 c72a64f 2311e2d c72a64f 6aa479a c440b0b ef4e95d 3188460 ef4e95d 3188460 ef4e95d 6aa479a 72511f1 c440b0b 72511f1 6aa479a c440b0b c72a64f 6aa479a c440b0b 6aa479a c72a64f c440b0b db4ca04 c440b0b 6aa479a 62d1e75 3b2ec72 62d1e75 db4ca04 c72a64f db4ca04 2311e2d c440b0b 2311e2d ef4e95d 3188460 ef4e95d db4ca04 87dead9 c440b0b 87dead9 2311e2d db4ca04 2311e2d 6aa479a 2311e2d 6aa479a 2311e2d db4ca04 2311e2d 62d1e75 db4ca04 c72a64f db4ca04 c72a64f db4ca04 c72a64f db4ca04 62d1e75 c72a64f 62d1e75 c72a64f 62d1e75 c72a64f 62d1e75 ff4d9c5 62d1e75 db4ca04 6aa479a c72a64f 3b2ec72 ff4d9c5 c440b0b ff4d9c5 c440b0b 62d1e75 adff5e8 c72a64f 62d1e75 adff5e8 62d1e75 adff5e8 62d1e75 adff5e8 62d1e75 db4ca04 62d1e75 c72a64f 62d1e75 c72a64f 62d1e75 902429f ac6040e 902429f 62d1e75 902429f c72a64f 62d1e75 902429f 62d1e75 ef4e95d 3188460 ef4e95d 548e033 ef4e95d 62d1e75 ef4e95d 62d1e75 c72a64f 62d1e75 548e033 62d1e75 38deecc c72a64f f637309 38deecc db4ca04 c72a64f 548e033 c72a64f db4ca04 41d97de db4ca04 41d97de c440b0b 41d97de 2311e2d adff5e8 2311e2d 41d97de 62d1e75 41d97de 62d1e75 41d97de db4ca04 62d1e75 db4ca04 c72a64f db4ca04 024dec5 c72a64f 024dec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc
# Force model to CPU for stability and to avoid GPU memory issues on resource-constrained environments
# This is especially important for deployment on platforms like Hugging Face Spaces
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Define local paths for files downloaded from Google Cloud Storage
# These files are cached locally to avoid repeated downloads and improve performance
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
# =============================================================================
# RESOURCE CACHING
# =============================================================================
@st.cache_resource(show_spinner=False)
def cached_load_model():
"""
Load and cache the E5-large-v2 embedding model and tokenizer.
Uses Streamlit's cache_resource decorator to ensure the model
is loaded only once during the application session, improving
performance and reducing memory usage.
Returns:
tuple: (tokenizer, model) pair or (None, None) if loading fails
"""
try:
# Force model to CPU for stability
device = torch.device("cpu")
# Get embedding model path from secrets
try:
embedding_model = st.secrets["EMBEDDING_MODEL"]
except KeyError:
print("β Error: Embedding model path not found in secrets")
return None, None
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(
embedding_model,
torch_dtype=torch.float16
)
# Move model to CPU and set to eval mode for inference
model = model.to(device)
model.eval()
# Disable gradient computation to save memory during inference
torch.set_grad_enabled(False)
print("β
Model loaded successfully (cached)")
return tokenizer, model
except Exception as e:
print(f"β Error loading model: {str(e)}")
return None, None
@st.cache_resource(show_spinner=False)
def cached_load_data_files():
"""
Load and cache data files needed for the RAG system.
This function loads:
- FAISS index for vector similarity search
- Text chunks containing the original spiritual text passages
- Metadata dictionary with publication and author information
All files are downloaded from Google Cloud Storage if not already present locally.
Returns:
tuple: (faiss_index, text_chunks, metadata_dict) or (None, None, None) if loading fails
"""
# Initialize GCP and OpenAI clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
print("Failed to initialize required services")
return None, None, None
# Get GCS paths from secrets - required
try:
metadata_file_gcs = st.secrets["METADATA_PATH_GCS"]
embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"]
faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"]
text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"]
except KeyError as e:
print(f"β Error: Required GCS path not found in secrets: {e}")
return None, None, None
# Download necessary files if not already present locally
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
print("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"β Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # Mapping: ID -> (Title, Author, Text)
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"β Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item
except Exception as e:
print(f"β Error loading metadata: {str(e)}")
return None, None, None
print(f"β
Data loaded successfully (cached): {len(text_chunks)} passages available")
return faiss_index, text_chunks, metadata_dict
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def setup_gcp_client():
"""
Initialize and return the Google Cloud Storage client.
Sets up GCP authentication and creates a client for the configured bucket.
Returns:
google.cloud.storage.bucket.Bucket: The GCS bucket object or None if initialization fails
"""
try:
credentials = setup_gcp_auth()
try:
bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"]
except KeyError:
print("β Error: GCS bucket name not found in secrets")
return None
storage_client = storage.Client(credentials=credentials)
bucket = storage_client.bucket(bucket_name_gcs)
print("β
GCP client initialized successfully")
return bucket
except Exception as e:
print(f"β GCP client initialization error: {str(e)}")
return None
def setup_openai_client():
"""
Initialize the OpenAI client.
Sets up OpenAI API authentication for generating answers using the LLM.
Returns:
bool: True if initialization was successful, False otherwise
"""
try:
setup_openai_auth()
print("β
OpenAI client initialized successfully")
return True
except Exception as e:
print(f"β OpenAI client initialization error: {str(e)}")
return False
def download_file_from_gcs(bucket, gcs_path, local_path):
"""
Download a file from Google Cloud Storage to local storage.
Only downloads if the file isn't already present locally, avoiding redundant downloads.
Args:
bucket: GCS bucket object
gcs_path (str): Path to the file in GCS
local_path (str): Local path where the file should be saved
Returns:
bool: True if download was successful or file already exists, False otherwise
"""
try:
if os.path.exists(local_path):
print(f"File already exists locally: {local_path}")
return True
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"β
Downloaded {gcs_path} β {local_path}")
return True
except Exception as e:
print(f"β Error downloading {gcs_path}: {str(e)}")
return False
def average_pool(last_hidden_states, attention_mask):
"""
Perform average pooling on model outputs for sentence embeddings.
This function creates a fixed-size vector representation of a text sequence by averaging
the token embeddings, accounting for padding tokens using the attention mask.
Args:
last_hidden_states: Hidden states output from the model
attention_mask: Attention mask indicating which tokens to include
Returns:
torch.Tensor: Pooled representation of the input sequence
"""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# In-memory cache for query embeddings to avoid redundant computations
query_embedding_cache = {}
def get_embedding(text):
"""
Generate embeddings for a text query using the cached model.
Uses an in-memory cache to avoid redundant embedding generation for repeated queries.
Properly prefixes inputs with "query:" or "passage:" as required by the E5 model.
Args:
text (str): The query text to embed
Returns:
numpy.ndarray: The embedding vector or a zero vector if embedding fails
"""
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
tokenizer, model = cached_load_model()
if model is None:
print("Model is None, returning zero embedding")
return np.zeros((1, 384), dtype=np.float32)
# Format input based on text length
# For E5 models, "query:" prefix is for questions, "passage:" for documents
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.detach().cpu().numpy()
del outputs, inputs
gc.collect()
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"β Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32)
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""
Retrieve the most relevant passages for a given spiritual query.
This function:
1. Embeds the user query using the same model used for text chunks
2. Finds similar passages using the FAISS index with cosine similarity
3. Filters results based on similarity threshold to ensure relevance
4. Enriches results with metadata (title, author, publisher)
5. Ensures passage diversity by including only one passage per source title
Args:
query (str): The user's spiritual question
faiss_index: FAISS index containing passage embeddings
text_chunks (dict): Dictionary mapping IDs to text chunks and metadata
metadata_dict (dict): Dictionary containing publication information
top_k (int): Maximum number of passages to retrieve
similarity_threshold (float): Minimum similarity score (0.0-1.0) for retrieved passages
Returns:
tuple: (retrieved_passages, retrieved_sources) containing the text and source information
"""
try:
print(f"\nπ Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"β Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""
Generate an answer using the OpenAI GPT model with formatted citations.
This function:
1. Formats retrieved passages with source information
2. Creates a prompt with system and user messages
3. Calls the OpenAI API to generate an answer
4. Trims the response to the specified word limit
The system prompt ensures answers maintain appropriate respect for spiritual traditions,
synthesize rather than quote directly, and acknowledge gaps when relevant information
isn't available.
Args:
query (str): The user's spiritual question
context (list, optional): List of (source_info, text) tuples for context
word_limit (int): Maximum word count for the generated answer
Returns:
str: The generated answer or an error message
"""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000 # Limit context size to avoid exceeding token limits
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
system_message = (
"You are an AI specialized in spirituality, primarily based on Indian spiritual texts and teachings."
"While your knowledge is predominantly from Indian spiritual traditions, you also have limited familiarity with spiritual concepts from other global traditions."
"Answer based on context, summarizing ideas rather than quoting verbatim."
"If no relevant information is found in the provided context, politely inform the user that this specific query may not be covered in the available spiritual texts. Suggest they try a related question or rephrase their query or try a different query."
"Avoid repetition and irrelevant details."
"Ensure proper citation and do not include direct excerpts."
"Maintain appropriate, respectful language at all times."
"Do not use profanity, expletives, obscenities, slurs, hate speech, sexually explicit content, or language promoting violence."
"As a spiritual guidance system, ensure all responses reflect dignity, peace, love, and compassion consistent with spiritual traditions."
"Provide concise, focused answers without lists or lengthy explanations."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
try:
llm_model = st.secrets["LLM_MODEL"]
except KeyError:
print("β Error: LLM model not found in secrets")
return "I apologize, but I am unable to answer at the moment."
response = openai.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
# Extract the answer and apply word limit
answer = response.choices[0].message.content.strip()
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"β LLM API error: {str(e)}")
return "I apologize, but I am unable to answer at the moment."
def format_citations(sources):
"""
Format citations for display to the user.
Creates properly formatted citations for each source used in generating the answer.
Each citation appears on a new line with consistent formatting.
Args:
sources (list): List of (title, author, publisher) tuples
Returns:
str: Formatted citations as a string with each citation on a new line
"""
formatted_citations = []
for title, author, publisher in sources:
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"π {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"π {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
# =============================================================================
# DATA CACHING FOR QUERY RESULTS
# =============================================================================
@st.cache_data(ttl=3600, show_spinner=False)
def cached_process_query(query, top_k=5, word_limit=100):
"""
Process a user query with caching to avoid redundant computation.
This function is cached with a Time-To-Live (TTL) of 1 hour, meaning identical
queries within this time period will return cached results rather than
reprocessing, improving responsiveness.
Args:
query (str): The user's spiritual question
top_k (int): Number of sources to retrieve and use for answer generation
word_limit (int): Maximum word count for the generated answer
Returns:
dict: Dictionary containing the query, answer, and citations
"""
print(f"\nπ Processing query (cached): {query}")
# Load all necessary data resources (with caching)
faiss_index, text_chunks, metadata_dict = cached_load_data_files()
# Handle missing data gracefully
if faiss_index is None or text_chunks is None or metadata_dict is None:
return {
"query": query,
"answer_with_rag": "β οΈ System error: Data files not loaded properly.",
"citations": "No citations available."
}
# Step 1: Retrieve relevant passages using similarity search
retrieved_context, retrieved_sources = retrieve_passages(
query,
faiss_index,
text_chunks,
metadata_dict,
top_k=top_k
)
# Step 2: Format citations for display
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
# Step 3: Generate the answer if relevant context was found
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "β οΈ No relevant context found."
# Return the complete response package
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
def process_query(query, top_k=5, word_limit=100):
"""
Process a query through the RAG pipeline with proper formatting.
This is the main entry point for query processing, wrapping the cached
query processing function.
Args:
query (str): The user's spiritual question
top_k (int): Number of sources to retrieve and use for answer generation
word_limit (int): Maximum word count for the generated answer
Returns:
dict: Dictionary containing the query, answer, and citations
"""
return cached_process_query(query, top_k, word_limit)
# Alias for backward compatibility
load_model = cached_load_model |