anveshak / rag_engine.py
ankanghosh's picture
Update rag_engine.py
72511f1 verified
raw
history blame
15 kB
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc
# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
# Load GCP authentication from utility function
def setup_gcp_client():
try:
credentials = setup_gcp_auth()
# Get bucket name from secrets - required
try:
bucket_name_gcs = st.secrets["bucket_name_gcs"]
except KeyError:
print("❌ Error: GCS bucket name not found in secrets")
return None
storage_client = storage.Client(credentials=credentials)
bucket = storage_client.bucket(bucket_name_gcs)
print("βœ… GCP client initialized successfully")
return bucket
except Exception as e:
print(f"❌ GCP client initialization error: {str(e)}")
return None
# Setup OpenAI authentication
def setup_openai_client():
try:
setup_openai_auth()
print("βœ… OpenAI client initialized successfully")
return True
except Exception as e:
print(f"❌ OpenAI client initialization error: {str(e)}")
return False
def load_model():
"""Load the embedding model and store in session state"""
try:
# Check if model already loaded
if 'model' in st.session_state and st.session_state.model is not None:
print("Model already loaded in session state")
return st.session_state.tokenizer, st.session_state.model
print("Loading new model instance...")
# Force model to CPU
device = torch.device("cpu")
# Get embedding model path from secrets
try:
embedding_model = st.secrets["embedding_model"]
except KeyError:
print("❌ Error: Embedding model not found in secrets")
return None, None
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(
embedding_model,
torch_dtype=torch.float16
)
# Move to CPU and set to eval mode
model = model.to(device)
model.eval()
# Disable gradient computation
torch.set_grad_enabled(False)
# Store in session state
st.session_state.tokenizer = tokenizer
st.session_state.model = model
print("βœ… Model loaded successfully")
return tokenizer, model
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
# Return None values - don't raise exception
return None, None
def download_file_from_gcs(bucket, gcs_path, local_path):
"""Download a file from GCS to local storage."""
try:
# Check if file already exists
if os.path.exists(local_path):
print(f"File already exists locally: {local_path}")
return True
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
return True
except Exception as e:
print(f"❌ Error downloading {gcs_path}: {str(e)}")
return False
def load_data_files():
"""Load FAISS index, text chunks, and metadata"""
# Check if already loaded in session state
if 'faiss_index' in st.session_state and st.session_state.faiss_index is not None:
print("Using cached data files from session state")
return st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict
# Initialize clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
print("Failed to initialize required services")
return None, None, None
# Get GCS paths from secrets - required
try:
metadata_file_gcs = st.secrets["metadata_file_gcs"]
embeddings_file_gcs = st.secrets["embeddings_file_gcs"]
faiss_index_file_gcs = st.secrets["faiss_index_file_gcs"]
text_chunks_file_gcs = st.secrets["text_chunks_file_gcs"]
except KeyError as e:
print(f"❌ Error: Required GCS path not found in secrets: {e}")
return None, None, None
# Download necessary files
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
print("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"❌ Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # {ID -> (Title, Author, Text)}
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"❌ Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item
except Exception as e:
print(f"❌ Error loading metadata: {str(e)}")
return None, None, None
print(f"βœ… Data loaded successfully: {len(text_chunks)} passages available")
# Store in session state
st.session_state.faiss_index = faiss_index
st.session_state.text_chunks = text_chunks
st.session_state.metadata_dict = metadata_dict
return faiss_index, text_chunks, metadata_dict
def average_pool(last_hidden_states, attention_mask):
"""Average pooling for sentence embeddings."""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Cache for query embeddings
query_embedding_cache = {}
def get_embedding(text):
"""Generate embeddings for a text query"""
# Check cache first
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
# Get model
if 'model' not in st.session_state or st.session_state.model is None:
tokenizer, model = load_model()
else:
tokenizer, model = st.session_state.tokenizer, st.session_state.model
# Handle model load failure
if model is None:
print("Model is None, returning zero embedding")
return np.zeros((1, 384), dtype=np.float32)
# Prepare text
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
# Tokenize
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
# Generate embeddings
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.detach().cpu().numpy()
# Clean up
del outputs, inputs
gc.collect()
# Cache and return
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"❌ Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32)
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""Retrieve top-k most relevant passages using FAISS with metadata."""
try:
print(f"\nπŸ” Retrieving passages for query: {query}")
# Get query embedding
query_embedding = get_embedding(query)
# Search in FAISS index
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
# Process results
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
# Clean title
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
# Skip duplicates
if clean_title in cited_titles:
continue
# Get metadata
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
# Add to results
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
# Stop if we have enough
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"❌ Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""Generate an answer using OpenAI GPT model with formatted citations."""
try:
# Format context
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
# System message
system_message = (
"You are an AI specialized in Indian spiritual texts. "
"Answer based on context, summarizing ideas rather than quoting verbatim. "
"Ensure proper citation and do not include direct excerpts."
)
# User message
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
# Get LLM model from secrets
try:
llm_model = st.secrets["llm_model"]
except KeyError:
print("❌ Error: LLM model not found in secrets")
return "I apologize, but I'm unable to answer at the moment."
# Call OpenAI API
response = openai.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
answer = response.choices[0].message.content.strip()
# Enforce word limit
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"❌ LLM API error: {str(e)}")
return "I apologize, but I'm unable to answer at the moment."
def format_citations(sources):
"""Format citations to display each one on a new line with a full stop if needed."""
formatted_citations = []
for title, author, publisher in sources:
# Check if the publisher already ends with a period, question mark, or exclamation mark
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
def process_query(query, top_k=5, word_limit=100):
"""Process a query through the RAG pipeline with proper formatting."""
print(f"\nπŸ” Processing query: {query}")
# Load data files if not already loaded
faiss_index, text_chunks, metadata_dict = load_data_files()
# Check if data loaded successfully
if faiss_index is None or text_chunks is None or metadata_dict is None:
return {
"query": query,
"answer_with_rag": "⚠️ System error: Data files not loaded properly.",
"citations": "No citations available."
}
# Get relevant passages
retrieved_context, retrieved_sources = retrieve_passages(
query,
faiss_index,
text_chunks,
metadata_dict,
top_k=top_k
)
# Format citations
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
# Generate answer
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "⚠️ No relevant context found."
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}