File size: 14,994 Bytes
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
6aa479a
62d1e75
2311e2d
 
 
6aa479a
 
 
 
 
62d1e75
 
2311e2d
 
 
ef4e95d
 
 
 
 
 
 
 
2311e2d
ef4e95d
2311e2d
 
 
 
 
62d1e75
 
2311e2d
 
 
 
 
 
 
 
62d1e75
 
6aa479a
62d1e75
6aa479a
 
 
c440b0b
6aa479a
 
c440b0b
6aa479a
 
c440b0b
ef4e95d
 
72511f1
ef4e95d
72511f1
ef4e95d
 
6aa479a
72511f1
c440b0b
72511f1
6aa479a
c440b0b
 
6aa479a
 
c440b0b
6aa479a
 
c440b0b
 
 
 
 
 
 
 
6aa479a
62d1e75
 
6aa479a
3b2ec72
62d1e75
adff5e8
62d1e75
38deecc
6aa479a
c440b0b
 
 
 
adff5e8
38deecc
 
2311e2d
38deecc
 
2311e2d
 
 
6aa479a
c440b0b
6aa479a
c440b0b
 
 
6aa479a
2311e2d
 
 
 
c440b0b
2311e2d
 
ef4e95d
 
 
 
 
 
 
 
 
 
c440b0b
87dead9
 
 
 
 
 
c440b0b
87dead9
2311e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa479a
2311e2d
 
 
 
 
6aa479a
2311e2d
 
 
 
6aa479a
c440b0b
 
 
 
 
 
2311e2d
62d1e75
 
 
 
 
 
6aa479a
62d1e75
 
 
6aa479a
 
62d1e75
 
ff4d9c5
62d1e75
6aa479a
 
3b2ec72
 
 
ff4d9c5
6aa479a
 
 
 
 
c440b0b
3b2ec72
62d1e75
6aa479a
ff4d9c5
 
 
 
 
 
 
 
 
6aa479a
ff4d9c5
 
 
 
 
 
6aa479a
c440b0b
 
ff4d9c5
6aa479a
ff4d9c5
 
 
 
c440b0b
62d1e75
adff5e8
62d1e75
 
 
6aa479a
 
62d1e75
6aa479a
 
adff5e8
62d1e75
 
 
 
 
 
6aa479a
62d1e75
 
adff5e8
 
62d1e75
6aa479a
62d1e75
 
 
6aa479a
62d1e75
 
 
6aa479a
adff5e8
62d1e75
 
 
6aa479a
62d1e75
 
 
 
6aa479a
62d1e75
 
 
 
 
 
 
 
 
 
6aa479a
62d1e75
6aa479a
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa479a
62d1e75
 
 
 
 
 
 
ef4e95d
 
 
 
 
 
 
6aa479a
62d1e75
ef4e95d
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38deecc
f637309
 
 
 
 
 
 
 
 
 
38deecc
62d1e75
 
 
2311e2d
 
c440b0b
2311e2d
 
c440b0b
 
 
 
 
 
2311e2d
6aa479a
2311e2d
 
adff5e8
 
 
2311e2d
 
 
6011dd4
62d1e75
 
6aa479a
62d1e75
 
 
 
 
 
38deecc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc

# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""

# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"

# Load GCP authentication from utility function
def setup_gcp_client():
    try:
        credentials = setup_gcp_auth()
        
        # Get bucket name from secrets - required
        try:
            bucket_name_gcs = st.secrets["bucket_name_gcs"]
        except KeyError:
            print("❌ Error: GCS bucket name not found in secrets")
            return None
            
        storage_client = storage.Client(credentials=credentials)
        bucket = storage_client.bucket(bucket_name_gcs)
        print("βœ… GCP client initialized successfully")
        return bucket
    except Exception as e:
        print(f"❌ GCP client initialization error: {str(e)}")
        return None

# Setup OpenAI authentication
def setup_openai_client():
    try:
        setup_openai_auth()
        print("βœ… OpenAI client initialized successfully")
        return True
    except Exception as e:
        print(f"❌ OpenAI client initialization error: {str(e)}")
        return False

def load_model():
    """Load the embedding model and store in session state"""
    try:
        # Check if model already loaded
        if 'model' in st.session_state and st.session_state.model is not None:
            print("Model already loaded in session state")
            return st.session_state.tokenizer, st.session_state.model
            
        print("Loading new model instance...")
        
        # Force model to CPU
        device = torch.device("cpu")
        
        # Get embedding model path from secrets
        try:
            embedding_model = st.secrets["embedding_model"]
        except KeyError:
            print("❌ Error: Embedding model not found in secrets")
            return None, None
            
        # Load tokenizer and model
        tokenizer = AutoTokenizer.from_pretrained(embedding_model)
        model = AutoModel.from_pretrained(
            embedding_model,
            torch_dtype=torch.float16
        )
        
        # Move to CPU and set to eval mode
        model = model.to(device)
        model.eval()
        
        # Disable gradient computation
        torch.set_grad_enabled(False)
        
        # Store in session state
        st.session_state.tokenizer = tokenizer
        st.session_state.model = model
        
        print("βœ… Model loaded successfully")
        return tokenizer, model
        
    except Exception as e:
        print(f"❌ Error loading model: {str(e)}")
        # Return None values - don't raise exception
        return None, None

def download_file_from_gcs(bucket, gcs_path, local_path):
    """Download a file from GCS to local storage."""
    try:
        # Check if file already exists
        if os.path.exists(local_path):
            print(f"File already exists locally: {local_path}")
            return True
            
        blob = bucket.blob(gcs_path)
        blob.download_to_filename(local_path)
        print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
        return True
    except Exception as e:
        print(f"❌ Error downloading {gcs_path}: {str(e)}")
        return False

def load_data_files():
    """Load FAISS index, text chunks, and metadata"""
    # Check if already loaded in session state
    if 'faiss_index' in st.session_state and st.session_state.faiss_index is not None:
        print("Using cached data files from session state")
        return st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict
    
    # Initialize clients
    bucket = setup_gcp_client()
    openai_initialized = setup_openai_client()
    
    if not bucket or not openai_initialized:
        print("Failed to initialize required services")
        return None, None, None
    
    # Get GCS paths from secrets - required
    try:
        metadata_file_gcs = st.secrets["metadata_file_gcs"]
        embeddings_file_gcs = st.secrets["embeddings_file_gcs"]
        faiss_index_file_gcs = st.secrets["faiss_index_file_gcs"]
        text_chunks_file_gcs = st.secrets["text_chunks_file_gcs"]
    except KeyError as e:
        print(f"❌ Error: Required GCS path not found in secrets: {e}")
        return None, None, None
    
    # Download necessary files
    success = True
    success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
    success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
    success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
    
    if not success:
        print("Failed to download required files")
        return None, None, None
    
    # Load FAISS index
    try:
        faiss_index = faiss.read_index(local_faiss_index_file)
    except Exception as e:
        print(f"❌ Error loading FAISS index: {str(e)}")
        return None, None, None
    
    # Load text chunks
    try:
        text_chunks = {}  # {ID -> (Title, Author, Text)}
        with open(local_text_chunks_file, "r", encoding="utf-8") as f:
            for line in f:
                parts = line.strip().split("\t")
                if len(parts) == 4:
                    text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
    except Exception as e:
        print(f"❌ Error loading text chunks: {str(e)}")
        return None, None, None
    
    # Load metadata
    try:
        metadata_dict = {}
        with open(local_metadata_file, "r", encoding="utf-8") as f:
            for line in f:
                item = json.loads(line)
                metadata_dict[item["Title"]] = item
    except Exception as e:
        print(f"❌ Error loading metadata: {str(e)}")
        return None, None, None
    
    print(f"βœ… Data loaded successfully: {len(text_chunks)} passages available")
    
    # Store in session state
    st.session_state.faiss_index = faiss_index
    st.session_state.text_chunks = text_chunks
    st.session_state.metadata_dict = metadata_dict
    
    return faiss_index, text_chunks, metadata_dict

def average_pool(last_hidden_states, attention_mask):
    """Average pooling for sentence embeddings."""
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

# Cache for query embeddings
query_embedding_cache = {}

def get_embedding(text):
    """Generate embeddings for a text query"""
    # Check cache first
    if text in query_embedding_cache:
        return query_embedding_cache[text]

    try:
        # Get model
        if 'model' not in st.session_state or st.session_state.model is None:
            tokenizer, model = load_model()
        else:
            tokenizer, model = st.session_state.tokenizer, st.session_state.model
            
        # Handle model load failure
        if model is None:
            print("Model is None, returning zero embedding")
            return np.zeros((1, 384), dtype=np.float32)
            
        # Prepare text
        input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
        
        # Tokenize
        inputs = tokenizer(
            input_text,
            padding=True,
            truncation=True,
            return_tensors="pt",
            max_length=512,
            return_attention_mask=True
        )
        
        # Generate embeddings
        with torch.no_grad():
            outputs = model(**inputs)
            embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
            embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
            embeddings = embeddings.detach().cpu().numpy()
            
        # Clean up
        del outputs, inputs
        gc.collect()
        
        # Cache and return
        query_embedding_cache[text] = embeddings
        return embeddings
    except Exception as e:
        print(f"❌ Embedding error: {str(e)}")
        return np.zeros((1, 384), dtype=np.float32)

def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
    """Retrieve top-k most relevant passages using FAISS with metadata."""
    try:
        print(f"\nπŸ” Retrieving passages for query: {query}")
        
        # Get query embedding
        query_embedding = get_embedding(query)
        
        # Search in FAISS index
        distances, indices = faiss_index.search(query_embedding, top_k * 2)

        print(f"Found {len(distances[0])} potential matches")
        retrieved_passages = []
        retrieved_sources = []
        cited_titles = set()

        # Process results
        for dist, idx in zip(distances[0], indices[0]):
            print(f"Distance: {dist:.4f}, Index: {idx}")
            if idx in text_chunks and dist >= similarity_threshold:
                title_with_txt, author, text = text_chunks[idx]

                # Clean title
                clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
                clean_title = unicodedata.normalize("NFC", clean_title)

                # Skip duplicates
                if clean_title in cited_titles:
                    continue  

                # Get metadata
                metadata_entry = metadata_dict.get(clean_title, {})
                author = metadata_entry.get("Author", "Unknown")
                publisher = metadata_entry.get("Publisher", "Unknown")

                # Add to results
                cited_titles.add(clean_title)
                retrieved_passages.append(text)
                retrieved_sources.append((clean_title, author, publisher))  

                # Stop if we have enough
                if len(retrieved_passages) == top_k:
                    break

        print(f"Retrieved {len(retrieved_passages)} passages")
        return retrieved_passages, retrieved_sources
    except Exception as e:
        print(f"❌ Error in retrieve_passages: {str(e)}")
        return [], []

def answer_with_llm(query, context=None, word_limit=100):
    """Generate an answer using OpenAI GPT model with formatted citations."""
    try:
        # Format context
        if context:
            formatted_contexts = []
            total_chars = 0
            max_context_chars = 4000  

            for (title, author, publisher), text in context:
                remaining_space = max(0, max_context_chars - total_chars)
                excerpt_len = min(150, remaining_space)

                if excerpt_len > 50:
                    excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
                    formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
                    formatted_contexts.append(formatted_context)
                    total_chars += len(formatted_context)

                if total_chars >= max_context_chars:
                    break

            formatted_context = "\n".join(formatted_contexts)
        else:
            formatted_context = "No relevant information available."

        # System message
        system_message = (
            "You are an AI specialized in Indian spiritual texts. "
            "Answer based on context, summarizing ideas rather than quoting verbatim. "
            "Ensure proper citation and do not include direct excerpts."
        )

        # User message
        user_message = f"""
        Context:
        {formatted_context}
        Question:
        {query}
        """

        # Get LLM model from secrets
        try:
            llm_model = st.secrets["llm_model"]
        except KeyError:
            print("❌ Error: LLM model not found in secrets")
            return "I apologize, but I'm unable to answer at the moment."
            
        # Call OpenAI API
        response = openai.chat.completions.create(
            model=llm_model,
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": user_message}
            ],
            max_tokens=200,
            temperature=0.7
        )

        answer = response.choices[0].message.content.strip()

        # Enforce word limit
        words = answer.split()
        if len(words) > word_limit:
            answer = " ".join(words[:word_limit])
            if not answer.endswith((".", "!", "?")):
                answer += "."

        return answer

    except Exception as e:
        print(f"❌ LLM API error: {str(e)}")
        return "I apologize, but I'm unable to answer at the moment."

def format_citations(sources):
    """Format citations to display each one on a new line with a full stop if needed."""
    formatted_citations = []
    for title, author, publisher in sources:
        # Check if the publisher already ends with a period, question mark, or exclamation mark
        if publisher.endswith(('.', '!', '?')):
            formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
        else:
            formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
    
    return "\n".join(formatted_citations)

def process_query(query, top_k=5, word_limit=100):
    """Process a query through the RAG pipeline with proper formatting."""
    print(f"\nπŸ” Processing query: {query}")
    
    # Load data files if not already loaded
    faiss_index, text_chunks, metadata_dict = load_data_files()
    
    # Check if data loaded successfully
    if faiss_index is None or text_chunks is None or metadata_dict is None:
        return {
            "query": query, 
            "answer_with_rag": "⚠️ System error: Data files not loaded properly.", 
            "citations": "No citations available."
        }

    # Get relevant passages
    retrieved_context, retrieved_sources = retrieve_passages(
        query, 
        faiss_index, 
        text_chunks, 
        metadata_dict,
        top_k=top_k
    )
    
    # Format citations
    sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."

    # Generate answer
    if retrieved_context:
        context_with_sources = list(zip(retrieved_sources, retrieved_context))
        llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
    else:
        llm_answer_with_rag = "⚠️ No relevant context found."

    return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}