File size: 5,592 Bytes
0ce1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef4e11
b8e512a
 
 
 
0ce1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef4e11
 
 
0ce1e8d
 
 
 
 
 
 
 
 
 
 
bef4e11
 
 
0ce1e8d
 
 
 
 
 
 
 
 
 
 
b8e512a
0ce1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e512a
0ce1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef4e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef4e11
 
 
 
 
 
 
 
 
 
0ce1e8d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Demo to run OpenAI Whisper using HuggingFace ZeroGPU.

This way we can test default Whisper models provided by OpenAI, for later comparison with fine-tuned ones.
"""

import subprocess
import tempfile
from pathlib import Path

import gradio as gr
import spaces
import torch
import whisper

YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"


MODEL_SIZES = ["tiny", "base", "small", "medium", "large", "turbo"]
for size in MODEL_SIZES:
    whisper.load_model(size, device="cpu")


def download_youtube(url: str, tmp_dir: Path) -> Path:
    """Download the audio track from a YouTube video and return the local path."""
    out_path = tmp_dir / r"%\(id)s.%(ext)s"
    cmd = [
        "yt-dlp",
        "--quiet",
        "--no-warnings",
        "--extract-audio",
        "--audio-format",
        "m4a",
        "--audio-quality",
        "0",
        "-f",
        YT_AUDIO_FORMAT,
        "-o",
        str(out_path),
        url,
    ]
    result = subprocess.run(cmd, capture_output=True, check=True)
    if result.returncode != 0:
        raise RuntimeError(f"yt-dlp failed: {result.stderr.decode()}")

    files = list(tmp_dir.glob("*.m4a"))
    if not files:
        raise FileNotFoundError("Could not locate downloaded audio.")
    return files[0]


def _get_input_path(audio, youtube_url):
    if youtube_url and youtube_url.strip():
        with tempfile.TemporaryDirectory() as tmp:
            return download_youtube(youtube_url, Path(tmp))
    elif audio is not None:
        return audio
    else:
        raise gr.Error("Provide audio or a YouTube URL")


def make_results_table(results):
    rows = []
    for r in results:
        row = [r["model"], r["language"], r["text"]]
        rows.append(row)
    return rows


@spaces.GPU
def transcribe_audio(
    model_sizes: list[str],
    audio: str,
    youtube_url: str,
    return_timestamps: bool,
    temperature: float,
    logprob_threshold: float = -1.0,
    no_speech_threshold: float = 0.6,
    compression_ratio_threshold: float = 2.4,
):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    results = []
    for size in model_sizes:
        model = whisper.load_model(size, device=device)
        inp = _get_input_path(audio, youtube_url)
        out = model.transcribe(
            str(inp),
            word_timestamps=return_timestamps,
            temperature=temperature,
            verbose=False,
            logprob_threshold=logprob_threshold,
            no_speech_threshold=no_speech_threshold,
            compression_ratio_threshold=compression_ratio_threshold,
        )
        text = out["text"].strip()
        segments = out["segments"] if return_timestamps else []
        results.append(
            {
                "model": size,
                "language": out["language"],
                "text": text,
                "segments": segments,
            }
        )
    df_results = make_results_table(results)
    return df_results


def build_demo() -> gr.Blocks:
    with gr.Blocks(title="🗣️ Whisper Transcription Demo (HF Spaces Zero-GPU)") as whisper_demo:
        gr.Markdown("""
        # Whisper Transcription Demo

        Run Whisper transcription on audio or YouTube video. Whisper is a general-purpose speech recognition model,
        trained on a large dataset
        """)

        with gr.Row():
            model_choices = gr.Dropdown(
                label="Model size(s)",
                choices=MODEL_SIZES,
                value=["turbo"],
                multiselect=True,
                allow_custom_value=False,
            )
            ts_checkbox = gr.Checkbox(
                label="Return word timestamps",
                interactive=False,
                value=False,
            )
            temp_slider = gr.Slider(
                label="Decoding temperature",
                minimum=0.0,
                maximum=1.0,
                value=0.0,
                step=0.01,
            )

        logprob_slider = gr.Slider(
            label="Average log-probability threshold",
            minimum=-10.0,
            maximum=0.0,
            value=-1.0,
            step=0.1,
        )
        no_speech_slider = gr.Slider(
            label="No-speech probability threshold",
            minimum=0.0,
            maximum=1.0,
            value=0.6,
            step=0.01,
        )
        compression_slider = gr.Slider(
            label="Compression ratio threshold",
            minimum=1.0,
            maximum=5.0,
            value=2.4,
            step=0.1,
        )

        audio_input = gr.Audio(
            label="Upload or record audio",
            sources=["upload"],
            type="filepath",
        )

        yt_input = gr.Textbox(
            label="... or paste a YouTube URL (audio only)",
            placeholder="https://youtu.be/XYZ",
        )

        with gr.Row():
            transcribe_btn = gr.Button("Transcribe 🏁")

        out_table = gr.Dataframe(
            headers=["Model", "Language", "Transcript"],
            datatype=["str", "str", "str"],
            label="Transcription Results",
        )

        transcribe_btn.click(
            transcribe_audio,
            inputs=[
                model_choices,
                audio_input,
                yt_input,
                ts_checkbox,
                temp_slider,
                logprob_slider,
                no_speech_slider,
                compression_slider,
            ],
            outputs=[out_table],
        )

    return whisper_demo


if __name__ == "__main__":
    demo = build_demo()
    demo.launch()