Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ import whisper
|
|
15 |
|
16 |
YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"
|
17 |
|
|
|
18 |
MODEL_SIZES = ["tiny", "base", "small", "medium", "large", "turbo"]
|
19 |
for size in MODEL_SIZES:
|
20 |
whisper.load_model(size, device="cpu")
|
@@ -73,6 +74,9 @@ def transcribe_audio(
|
|
73 |
youtube_url: str,
|
74 |
return_timestamps: bool,
|
75 |
temperature: float,
|
|
|
|
|
|
|
76 |
):
|
77 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
results = []
|
@@ -84,6 +88,9 @@ def transcribe_audio(
|
|
84 |
word_timestamps=return_timestamps,
|
85 |
temperature=temperature,
|
86 |
verbose=False,
|
|
|
|
|
|
|
87 |
)
|
88 |
text = out["text"].strip()
|
89 |
segments = out["segments"] if return_timestamps else []
|
@@ -129,6 +136,28 @@ def build_demo() -> gr.Blocks:
|
|
129 |
step=0.01,
|
130 |
)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
audio_input = gr.Audio(
|
133 |
label="Upload or record audio",
|
134 |
sources=["upload"],
|
@@ -151,7 +180,16 @@ def build_demo() -> gr.Blocks:
|
|
151 |
|
152 |
transcribe_btn.click(
|
153 |
transcribe_audio,
|
154 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
outputs=[out_table],
|
156 |
)
|
157 |
|
|
|
15 |
|
16 |
YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"
|
17 |
|
18 |
+
|
19 |
MODEL_SIZES = ["tiny", "base", "small", "medium", "large", "turbo"]
|
20 |
for size in MODEL_SIZES:
|
21 |
whisper.load_model(size, device="cpu")
|
|
|
74 |
youtube_url: str,
|
75 |
return_timestamps: bool,
|
76 |
temperature: float,
|
77 |
+
logprob_threshold: float = -1.0,
|
78 |
+
no_speech_threshold: float = 0.6,
|
79 |
+
compression_ratio_threshold: float = 2.4,
|
80 |
):
|
81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
results = []
|
|
|
88 |
word_timestamps=return_timestamps,
|
89 |
temperature=temperature,
|
90 |
verbose=False,
|
91 |
+
logprob_threshold=logprob_threshold,
|
92 |
+
no_speech_threshold=no_speech_threshold,
|
93 |
+
compression_ratio_threshold=compression_ratio_threshold,
|
94 |
)
|
95 |
text = out["text"].strip()
|
96 |
segments = out["segments"] if return_timestamps else []
|
|
|
136 |
step=0.01,
|
137 |
)
|
138 |
|
139 |
+
logprob_slider = gr.Slider(
|
140 |
+
label="Average log-probability threshold",
|
141 |
+
minimum=-10.0,
|
142 |
+
maximum=0.0,
|
143 |
+
value=-1.0,
|
144 |
+
step=0.1,
|
145 |
+
)
|
146 |
+
no_speech_slider = gr.Slider(
|
147 |
+
label="No-speech probability threshold",
|
148 |
+
minimum=0.0,
|
149 |
+
maximum=1.0,
|
150 |
+
value=0.6,
|
151 |
+
step=0.01,
|
152 |
+
)
|
153 |
+
compression_slider = gr.Slider(
|
154 |
+
label="Compression ratio threshold",
|
155 |
+
minimum=1.0,
|
156 |
+
maximum=5.0,
|
157 |
+
value=2.4,
|
158 |
+
step=0.1,
|
159 |
+
)
|
160 |
+
|
161 |
audio_input = gr.Audio(
|
162 |
label="Upload or record audio",
|
163 |
sources=["upload"],
|
|
|
180 |
|
181 |
transcribe_btn.click(
|
182 |
transcribe_audio,
|
183 |
+
inputs=[
|
184 |
+
model_choices,
|
185 |
+
audio_input,
|
186 |
+
yt_input,
|
187 |
+
ts_checkbox,
|
188 |
+
temp_slider,
|
189 |
+
logprob_slider,
|
190 |
+
no_speech_slider,
|
191 |
+
compression_slider,
|
192 |
+
],
|
193 |
outputs=[out_table],
|
194 |
)
|
195 |
|