File size: 21,320 Bytes
0b2295a
 
 
 
 
 
 
 
 
 
 
 
 
f02caca
 
0b2295a
 
 
 
 
 
 
 
 
f02caca
 
 
0b2295a
 
 
 
 
 
 
 
f02caca
 
 
0b2295a
 
 
 
 
 
 
f02caca
 
 
0b2295a
 
 
 
 
 
 
 
 
 
f02caca
 
 
0b2295a
 
 
 
 
f02caca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd832fc
0b2295a
 
fd832fc
0b2295a
 
 
 
 
 
 
 
 
 
 
 
fd832fc
 
 
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
 
 
 
 
 
 
 
 
fd832fc
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
 
 
 
 
 
 
 
 
fd832fc
 
 
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
 
 
 
 
 
 
 
fd832fc
 
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
fd832fc
 
 
 
 
 
 
 
 
 
0b2295a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/**
 * Neural Network Tools and Utilities
 * Provides helper functions for managing neural network layers,
 * calculating parameters, and managing network architecture
 */

(function() {
    // Layer counters to track unique IDs for each layer type
    const layerCounters = {
        'input': 0,
        'hidden': 0,
        'output': 0,
        'conv': 0,
        'pool': 0,
        'linear': 0
    };
    
    // Default configuration templates for different layer types
    const nodeConfigTemplates = {
        'input': {
            units: 784,
            shape: [28, 28, 1],
            batchSize: 32,
            description: 'Input layer for raw data',
            parameters: 0,
            inputShape: null,
            outputShape: [784]
        },
        'hidden': {
            units: 128,
            activation: 'relu',
            useBias: true,
            kernelInitializer: 'glorotUniform',
            biasInitializer: 'zeros',
            dropoutRate: 0.2,
            description: 'Dense hidden layer with ReLU activation',
            inputShape: null,
            outputShape: null
        },
        'output': {
            units: 10,
            activation: 'softmax',
            useBias: true,
            kernelInitializer: 'glorotUniform',
            biasInitializer: 'zeros',
            description: 'Output layer with Softmax activation for classification',
            inputShape: null,
            outputShape: [10]
        },
        'conv': {
            filters: 32,
            kernelSize: [3, 3],
            strides: [1, 1],
            padding: 'valid',
            activation: 'relu',
            useBias: true,
            kernelInitializer: 'glorotUniform',
            biasInitializer: 'zeros',
            description: 'Convolutional layer for feature extraction',
            inputShape: null,
            outputShape: null
        },
        'pool': {
            poolSize: [2, 2],
            strides: [2, 2],
            padding: 'valid',
            description: 'Max pooling layer for spatial downsampling',
            inputShape: null,
            outputShape: null
        },
        'linear': {
            inputFeatures: 1,
            outputFeatures: 1,
            useBias: true,
            activation: 'linear',
            learningRate: 0.01,
            optimizer: 'sgd',
            lossFunction: 'mse',
            biasInitializer: 'zeros',
            kernelInitializer: 'glorotUniform',
            description: 'Linear regression layer for numerical prediction',
            inputShape: [1],
            outputShape: [1]
        }
    };
    
    // Mock data structure for sample datasets
    const sampleData = {
        'mnist': {
            name: 'MNIST Handwritten Digits',
            inputShape: [28, 28, 1],
            numClasses: 10,
            trainSamples: 60000,
            testSamples: 10000,
            description: 'Dataset of handwritten digits for classification'
        },
        'cifar10': {
            name: 'CIFAR-10',
            inputShape: [32, 32, 3],
            numClasses: 10,
            trainSamples: 50000,
            testSamples: 10000,
            description: 'Dataset of common objects like airplanes, cars, birds, etc.'
        },
        'fashion': {
            name: 'Fashion MNIST',
            inputShape: [28, 28, 1],
            numClasses: 10,
            trainSamples: 60000,
            testSamples: 10000,
            description: 'Dataset of fashion items like shirts, shoes, bags, etc.'
        }
    };
    
    /**
     * Get the next unique ID for a specific layer type
     * @param {string} layerType - The type of the layer (input, hidden, output, conv, pool)
     * @returns {string} - A unique ID for the layer
     */
    function getNextLayerId(layerType) {
        layerCounters[layerType]++;
        return `${layerType}-${layerCounters[layerType]}`;
    }
    
    /**
     * Reset all layer counters
     * Used when clearing the canvas
     */
    function resetLayerCounter() {
        for (let key in layerCounters) {
            layerCounters[key] = 0;
        }
    }
    
    /**
     * Create a configuration object for a layer
     * @param {string} layerType - The type of the layer
     * @param {Object} customConfig - Custom configuration for the layer
     * @returns {Object} - Complete layer configuration
     */
    function createNodeConfig(layerType, customConfig = {}) {
        const baseConfig = { ...nodeConfigTemplates[layerType] };
        
        // Merge custom config with base config
        const config = { ...baseConfig, ...customConfig };
        
        // Calculate parameters if not provided
        if (config.parameters === undefined) {
            config.parameters = calculateParameters(layerType, config);
        }
        
        return config;
    }
    
    /**
     * Calculate parameters for a layer
     * @param {string} layerType - The type of the layer
     * @param {Object} config - Layer configuration
     * @param {Object} prevLayerConfig - Configuration of the previous connected layer
     * @returns {number} - Number of trainable parameters
     */
    function calculateParameters(layerType, config, prevLayerConfig = null) {
        let parameters = 0;
        
        switch(layerType) {
            case 'input':
                parameters = 0; // Input layer has no trainable parameters
                break;
                
            case 'hidden':
                if (prevLayerConfig) {
                    // Calculate input units from previous layer shape or units
                    let inputUnits;
                    if (prevLayerConfig.outputShape && Array.isArray(prevLayerConfig.outputShape)) {
                        inputUnits = prevLayerConfig.outputShape.reduce((a, b) => a * b, 1);
                    } else if (prevLayerConfig.units) {
                        inputUnits = prevLayerConfig.units;
                    } else if (prevLayerConfig.shape) {
                        inputUnits = prevLayerConfig.shape.reduce((a, b) => a * b, 1);
                    } else {
                        inputUnits = 784; // Default fallback
                    }
                    
                    // Weight parameters: input_units * output_units
                    parameters = inputUnits * config.units;
                    
                    // Add bias parameters if using bias
                    if (config.useBias) {
                        parameters += config.units;
                    }
                }
                break;
                
            case 'output':
                if (prevLayerConfig) {
                    // Calculate input units from previous layer
                    let inputUnits;
                    if (prevLayerConfig.outputShape && Array.isArray(prevLayerConfig.outputShape)) {
                        inputUnits = prevLayerConfig.outputShape.reduce((a, b) => a * b, 1);
                    } else if (prevLayerConfig.units) {
                        inputUnits = prevLayerConfig.units;
                    } else {
                        inputUnits = 128; // Default fallback
                    }
                    
                    // Weight parameters: input_units * output_units
                    parameters = inputUnits * config.units;
                    
                    // Add bias parameters if using bias
                    if (config.useBias) {
                        parameters += config.units;
                    }
                }
                break;
                
            case 'conv':
                if (prevLayerConfig) {
                    // Get input channels from previous layer
                    let inputChannels;
                    if (prevLayerConfig.outputShape && prevLayerConfig.outputShape.length > 2) {
                        inputChannels = prevLayerConfig.outputShape[2];
                    } else if (prevLayerConfig.shape && prevLayerConfig.shape.length > 2) {
                        inputChannels = prevLayerConfig.shape[2];
                    } else if (prevLayerConfig.filters) {
                        inputChannels = prevLayerConfig.filters;
                    } else {
                        inputChannels = 1; // Default fallback
                    }
                    
                    // Weight parameters: kernel_height * kernel_width * input_channels * filters
                    const kernelSize = Array.isArray(config.kernelSize) ? 
                                      config.kernelSize[0] * config.kernelSize[1] : 
                                      config.kernelSize * config.kernelSize;
                    
                    parameters = kernelSize * inputChannels * config.filters;
                    
                    // Add bias parameters if using bias
                    if (config.useBias) {
                        parameters += config.filters;
                    }
                    
                    // Calculate and store output shape
                    if (prevLayerConfig.shape || prevLayerConfig.outputShape) {
                        const inputShape = prevLayerConfig.outputShape || prevLayerConfig.shape;
                        const padding = config.padding === 'same' ? Math.floor(config.kernelSize[0] / 2) : 0;
                        const outputHeight = Math.floor((inputShape[0] - config.kernelSize[0] + 2 * padding) / config.strides[0]) + 1;
                        const outputWidth = Math.floor((inputShape[1] - config.kernelSize[1] + 2 * padding) / config.strides[1]) + 1;
                        
                        config.outputShape = [outputHeight, outputWidth, config.filters];
                    }
                }
                break;
                
            case 'pool':
                parameters = 0; // Pooling layers have no trainable parameters
                
                // Calculate and store output shape
                if (prevLayerConfig && (prevLayerConfig.shape || prevLayerConfig.outputShape)) {
                    const inputShape = prevLayerConfig.outputShape || prevLayerConfig.shape;
                    const padding = config.padding === 'same' ? Math.floor(config.poolSize[0] / 2) : 0;
                    const outputHeight = Math.floor((inputShape[0] - config.poolSize[0] + 2 * padding) / config.strides[0]) + 1;
                    const outputWidth = Math.floor((inputShape[1] - config.poolSize[1] + 2 * padding) / config.strides[1]) + 1;
                    
                    config.outputShape = [outputHeight, outputWidth, inputShape[2]];
                }
                break;
                
            default:
                parameters = 0;
        }
        
        return parameters;
    }
    
    /**
     * Calculate FLOPs (floating point operations) for a layer
     * @param {string} layerType - The type of the layer
     * @param {Object} config - Layer configuration
     * @param {Object} inputDims - Input dimensions
     * @returns {number} - Approximate FLOPs for forward pass
     */
    function calculateFLOPs(layerType, config, inputDims) {
        let flops = 0;
        
        switch(layerType) {
            case 'input':
                flops = 0;
                break;
                
            case 'hidden':
                // FLOPs = 2 * input_dim * output_dim (multiply-add operations)
                flops = 2 * inputDims.reduce((a, b) => a * b, 1) * config.units;
                break;
                
            case 'output':
                // Same as hidden layer
                flops = 2 * inputDims.reduce((a, b) => a * b, 1) * config.units;
                break;
                
            case 'conv':
                // Output dimensions after convolution
                const outputHeight = Math.floor((inputDims[0] - config.kernelSize[0] + 2 * 
                                               (config.padding === 'same' ? config.kernelSize[0] / 2 : 0)) / 
                                               config.strides[0] + 1);
                                               
                const outputWidth = Math.floor((inputDims[1] - config.kernelSize[1] + 2 * 
                                              (config.padding === 'same' ? config.kernelSize[1] / 2 : 0)) / 
                                              config.strides[1] + 1);
                
                // FLOPs per output point = 2 * kernel_height * kernel_width * input_channels
                const flopsPerPoint = 2 * config.kernelSize[0] * config.kernelSize[1] * inputDims[2];
                
                // Total FLOPs = output_points * flops_per_point * output_channels
                flops = outputHeight * outputWidth * flopsPerPoint * config.filters;
                break;
                
            case 'pool':
                // Output dimensions after pooling
                const poolOutputHeight = Math.floor((inputDims[0] - config.poolSize[0]) / 
                                                  config.strides[0] + 1);
                                                  
                const poolOutputWidth = Math.floor((inputDims[1] - config.poolSize[1]) / 
                                                 config.strides[1] + 1);
                
                // For max pooling, approximately one comparison per element in the pooling window
                flops = poolOutputHeight * poolOutputWidth * inputDims[2] * 
                       config.poolSize[0] * config.poolSize[1];
                break;
                
            default:
                flops = 0;
        }
        
        return flops;
    }
    
    /**
     * Calculate memory usage for a layer
     * @param {string} layerType - The type of the layer
     * @param {Object} config - Layer configuration
     * @param {Object} batchSize - Batch size for calculation
     * @returns {Object} - Memory usage statistics
     */
    function calculateMemoryUsage(layerType, config, batchSize = 32) {
        // Assume 4 bytes per parameter (float32)
        const bytesPerParam = 4;
        let outputShape = [];
        let parameters = 0;
        let activationMemory = 0;
        
        switch(layerType) {
            case 'input':
                outputShape = config.shape || [28, 28, 1];
                parameters = 0;
                break;
                
            case 'hidden':
                outputShape = [config.units];
                parameters = config.parameters || 0;
                break;
                
            case 'output':
                outputShape = [config.units];
                parameters = config.parameters || 0;
                break;
                
            case 'conv':
                // This is a simplified calculation, actual dimensions depend on padding and strides
                const inputShape = config.inputShape || [28, 28, 1];
                const outputHeight = Math.floor((inputShape[0] - config.kernelSize[0] + 2 * 
                                               (config.padding === 'same' ? config.kernelSize[0] / 2 : 0)) / 
                                               config.strides[0] + 1);
                                               
                const outputWidth = Math.floor((inputShape[1] - config.kernelSize[1] + 2 * 
                                              (config.padding === 'same' ? config.kernelSize[1] / 2 : 0)) / 
                                              config.strides[1] + 1);
                
                outputShape = [outputHeight, outputWidth, config.filters];
                parameters = config.parameters || 0;
                break;
                
            case 'pool':
                const poolInputShape = config.inputShape || [28, 28, 32];
                const poolOutputHeight = Math.floor((poolInputShape[0] - config.poolSize[0]) / 
                                                  config.strides[0] + 1);
                                                  
                const poolOutputWidth = Math.floor((poolInputShape[1] - config.poolSize[1]) / 
                                                 config.strides[1] + 1);
                
                outputShape = [poolOutputHeight, poolOutputWidth, poolInputShape[2]];
                parameters = 0;
                break;
                
            default:
                outputShape = [0];
                parameters = 0;
        }
        
        // Calculate memory for the activations (output of this layer)
        activationMemory = batchSize * outputShape.reduce((a, b) => a * b, 1) * bytesPerParam;
        
        // Calculate memory for the parameters
        const paramMemory = parameters * bytesPerParam;
        
        return {
            parameters: parameters,
            paramMemory: paramMemory, // in bytes
            activationMemory: activationMemory, // in bytes
            totalMemory: paramMemory + activationMemory, // in bytes
            outputShape: outputShape
        };
    }
    
    /**
     * Generate a human-readable description of a layer
     * @param {string} layerType - The type of the layer
     * @param {Object} config - Layer configuration
     * @returns {string} - Description of the layer
     */
    function generateLayerDescription(layerType, config) {
        let description = '';
        
        switch(layerType) {
            case 'input':
                description = `Input Layer: Shape=${config.shape.join('×')}`;
                break;
                
            case 'hidden':
                description = `Dense Layer: ${config.units} units, ${config.activation} activation`;
                if (config.dropoutRate > 0) {
                    description += `, dropout ${config.dropoutRate}`;
                }
                break;
                
            case 'output':
                description = `Output Layer: ${config.units} units, ${config.activation} activation`;
                break;
                
            case 'conv':
                description = `Conv2D: ${config.filters} filters, ${config.kernelSize.join('×')} kernel, ${config.activation} activation`;
                break;
                
            case 'pool':
                description = `MaxPooling2D: ${config.poolSize.join('×')} pool size`;
                break;
                
            default:
                description = 'Unknown layer type';
        }
        
        return description;
    }
    
    /**
     * Validate a network architecture
     * @param {Object} layers - Array of layer configurations
     * @param {Object} connections - Array of connections between layers
     * @returns {Object} - Validation result with errors if any
     */
    function validateNetwork(layers, connections) {
        const errors = [];
        
        // Check if there's exactly one input layer
        const inputLayers = layers.filter(layer => layer.type === 'input');
        if (inputLayers.length === 0) {
            errors.push('Network must have at least one input layer');
        } else if (inputLayers.length > 1) {
            errors.push('Network can have only one input layer');
        }
        
        // Check if there's at least one output layer
        const outputLayers = layers.filter(layer => layer.type === 'output');
        if (outputLayers.length === 0) {
            errors.push('Network must have at least one output layer');
        }
        
        // Check for isolated nodes (nodes with no connections)
        const connectedNodes = new Set();
        connections.forEach(conn => {
            connectedNodes.add(conn.source);
            connectedNodes.add(conn.target);
        });
        
        const isolatedNodes = layers.filter(layer => !connectedNodes.has(layer.id));
        if (isolatedNodes.length > 0) {
            isolatedNodes.forEach(node => {
                if (node.type !== 'input' && node.type !== 'output') {
                    errors.push(`Layer "${node.name}" (${node.id}) is isolated`);
                }
            });
        }
        
        // Check if input layer has incoming connections
        inputLayers.forEach(layer => {
            const incomingConnections = connections.filter(conn => conn.target === layer.id);
            if (incomingConnections.length > 0) {
                errors.push(`Input layer "${layer.name}" cannot have incoming connections`);
            }
        });
        
        // Check if output layer has outgoing connections
        outputLayers.forEach(layer => {
            const outgoingConnections = connections.filter(conn => conn.source === layer.id);
            if (outgoingConnections.length > 0) {
                errors.push(`Output layer "${layer.name}" cannot have outgoing connections`);
            }
        });
        
        return {
            valid: errors.length === 0,
            errors: errors
        };
    }
    
    // Expose functions to the global scope
    window.neuralNetwork = {
        getNextLayerId,
        resetLayerCounter,
        createNodeConfig,
        calculateParameters,
        calculateFLOPs,
        calculateMemoryUsage,
        generateLayerDescription,
        validateNetwork,
        nodeConfigTemplates,
        sampleData
    };
})();