Added neural network playground code from GitHub
Browse files- .github/workflows/pages.yml +23 -0
- .gitignore +40 -0
- .nojekyll +0 -0
- README.md +46 -10
- css/styles.css +1225 -0
- index.html +170 -19
- js/drag-drop.js +661 -0
- js/main.js +856 -0
- js/neural-network.js +460 -0
.github/workflows/pages.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Deploy to GitHub Pages
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: ["main"]
|
6 |
+
workflow_dispatch:
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
deploy:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
permissions:
|
12 |
+
contents: write
|
13 |
+
steps:
|
14 |
+
- name: Checkout
|
15 |
+
uses: actions/checkout@v4
|
16 |
+
|
17 |
+
- name: Deploy to GitHub Pages
|
18 |
+
uses: peaceiris/actions-gh-pages@v3
|
19 |
+
with:
|
20 |
+
github_token: ${{ secrets.GITHUB_TOKEN }}
|
21 |
+
publish_dir: ./
|
22 |
+
publish_branch: gh-pages
|
23 |
+
force_orphan: true
|
.gitignore
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# macOS files
|
2 |
+
.DS_Store
|
3 |
+
.AppleDouble
|
4 |
+
.LSOverride
|
5 |
+
|
6 |
+
# Thumbnails
|
7 |
+
._*
|
8 |
+
|
9 |
+
# Node modules and dependency directories
|
10 |
+
node_modules/
|
11 |
+
jspm_packages/
|
12 |
+
|
13 |
+
# Environment files
|
14 |
+
.env
|
15 |
+
.env.local
|
16 |
+
.env.development.local
|
17 |
+
.env.test.local
|
18 |
+
.env.production.local
|
19 |
+
|
20 |
+
# IDE files
|
21 |
+
.idea/
|
22 |
+
.vscode/
|
23 |
+
*.sublime-project
|
24 |
+
*.sublime-workspace
|
25 |
+
|
26 |
+
# Log files
|
27 |
+
npm-debug.log*
|
28 |
+
yarn-debug.log*
|
29 |
+
yarn-error.log*
|
30 |
+
logs
|
31 |
+
*.log
|
32 |
+
|
33 |
+
# Distribution directories
|
34 |
+
dist/
|
35 |
+
build/
|
36 |
+
|
37 |
+
# Python cache files
|
38 |
+
__pycache__/
|
39 |
+
*.py[cod]
|
40 |
+
*$py.class
|
.nojekyll
ADDED
File without changes
|
README.md
CHANGED
@@ -1,10 +1,46 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Neural Network Playground
|
2 |
+
|
3 |
+
An interactive web-based application for visualizing and experimenting with neural network architectures.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Drag-and-Drop Interface**: Easily create neural network architectures by dragging and dropping different layer types
|
8 |
+
- **Multiple Layer Types**: Support for Input, Hidden, Output, Convolutional, and Pooling layers
|
9 |
+
- **Dynamic Connections**: Create connections between layers to define your network topology
|
10 |
+
- **Visual Styling**: Beautiful gradient-based styling for different layer types with animations
|
11 |
+
- **Layer Properties**: View and edit detailed properties for each layer
|
12 |
+
- **Network Validation**: Automatic validation of network architectures
|
13 |
+
- **Training Simulation**: Visual simulation of the training process
|
14 |
+
- **Responsive Design**: Works on desktop and mobile devices
|
15 |
+
|
16 |
+
## Getting Started
|
17 |
+
|
18 |
+
1. Clone this repository
|
19 |
+
2. Open `index.html` in your browser or use a local server:
|
20 |
+
```
|
21 |
+
python -m http.server
|
22 |
+
```
|
23 |
+
3. Visit `http://localhost:8000` in your browser
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
1. Drag layer components from the left panel onto the canvas
|
28 |
+
2. Connect layers by dragging from output ports (right side) to input ports (left side)
|
29 |
+
3. Click on a layer to view its properties
|
30 |
+
4. Edit layer properties by clicking the edit button
|
31 |
+
5. Click "Run Network" to simulate training
|
32 |
+
|
33 |
+
## Technologies Used
|
34 |
+
|
35 |
+
- HTML5
|
36 |
+
- CSS3 (with animations and gradients)
|
37 |
+
- JavaScript (vanilla)
|
38 |
+
- No external libraries required!
|
39 |
+
|
40 |
+
## License
|
41 |
+
|
42 |
+
MIT
|
43 |
+
|
44 |
+
## Contributing
|
45 |
+
|
46 |
+
Contributions, issues, and feature requests are welcome!
|
css/styles.css
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* {
|
2 |
+
margin: 0;
|
3 |
+
padding: 0;
|
4 |
+
box-sizing: border-box;
|
5 |
+
}
|
6 |
+
|
7 |
+
:root {
|
8 |
+
--primary-color: #3498db;
|
9 |
+
--secondary-color: #2ecc71;
|
10 |
+
--accent-color: #9b59b6;
|
11 |
+
--warning-color: #e74c3c;
|
12 |
+
--info-color: #f39c12;
|
13 |
+
--background-color: #f8f9fa;
|
14 |
+
--card-background: #ffffff;
|
15 |
+
--text-color: #2c3e50;
|
16 |
+
--border-color: #e0e0e0;
|
17 |
+
--shadow-sm: 0 2px 4px rgba(0, 0, 0, 0.05);
|
18 |
+
--shadow-md: 0 4px 8px rgba(0, 0, 0, 0.1);
|
19 |
+
--shadow-lg: 0 8px 16px rgba(0, 0, 0, 0.15);
|
20 |
+
--border-radius: 8px;
|
21 |
+
--transition-speed: 0.3s;
|
22 |
+
|
23 |
+
/* New node color variables */
|
24 |
+
--input-node-color-1: #3498db;
|
25 |
+
--input-node-color-2: #1abc9c;
|
26 |
+
--hidden-node-color-1: #9b59b6;
|
27 |
+
--hidden-node-color-2: #8e44ad;
|
28 |
+
--output-node-color-1: #2ecc71;
|
29 |
+
--output-node-color-2: #27ae60;
|
30 |
+
--conv-node-color-1: #f39c12;
|
31 |
+
--conv-node-color-2: #e67e22;
|
32 |
+
--pool-node-color-1: #e74c3c;
|
33 |
+
--pool-node-color-2: #c0392b;
|
34 |
+
--node-glow: 0 0 15px rgba(255, 255, 255, 0.8);
|
35 |
+
}
|
36 |
+
|
37 |
+
body {
|
38 |
+
font-family: 'Roboto', 'Segoe UI', Arial, sans-serif;
|
39 |
+
line-height: 1.6;
|
40 |
+
color: var(--text-color);
|
41 |
+
background-color: var(--background-color);
|
42 |
+
padding-bottom: 2rem;
|
43 |
+
}
|
44 |
+
|
45 |
+
header {
|
46 |
+
background: linear-gradient(135deg, #3498db, #9b59b6);
|
47 |
+
color: white;
|
48 |
+
text-align: center;
|
49 |
+
padding: 1.5rem 2rem;
|
50 |
+
box-shadow: var(--shadow-md);
|
51 |
+
position: relative;
|
52 |
+
}
|
53 |
+
|
54 |
+
header::before {
|
55 |
+
content: '';
|
56 |
+
position: absolute;
|
57 |
+
top: 0;
|
58 |
+
left: 0;
|
59 |
+
right: 0;
|
60 |
+
bottom: 0;
|
61 |
+
background: url("data:image/svg+xml,%3Csvg width='60' height='60' viewBox='0 0 60 60' xmlns='http://www.w3.org/2000/svg'%3E%3Cg fill='none' fill-rule='evenodd'%3E%3Cg fill='%23ffffff' fill-opacity='0.1'%3E%3Cpath d='M36 34v-4h-2v4h-4v2h4v4h2v-4h4v-2h-4zm0-30V0h-2v4h-4v2h4v4h2V6h4V4h-4zM6 34v-4H4v4H0v2h4v4h2v-4h4v-2H6zM6 4V0H4v4H0v2h4v4h2V6h4V4H6z'/%3E%3C/g%3E%3C/g%3E%3C/svg%3E");
|
62 |
+
opacity: 0.1;
|
63 |
+
}
|
64 |
+
|
65 |
+
header h1 {
|
66 |
+
position: relative;
|
67 |
+
z-index: 1;
|
68 |
+
font-weight: 800;
|
69 |
+
letter-spacing: -0.5px;
|
70 |
+
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
71 |
+
}
|
72 |
+
|
73 |
+
.container {
|
74 |
+
max-width: 1400px;
|
75 |
+
margin: 0 auto;
|
76 |
+
padding: 0 1rem;
|
77 |
+
display: grid;
|
78 |
+
grid-template-columns: 1fr 2.5fr 1fr;
|
79 |
+
gap: 1.5rem;
|
80 |
+
}
|
81 |
+
|
82 |
+
.tools-panel, .properties-panel {
|
83 |
+
background: var(--card-background);
|
84 |
+
border-radius: var(--border-radius);
|
85 |
+
padding: 1.5rem;
|
86 |
+
box-shadow: var(--shadow-sm);
|
87 |
+
height: 85vh;
|
88 |
+
overflow-y: auto;
|
89 |
+
display: flex;
|
90 |
+
flex-direction: column;
|
91 |
+
}
|
92 |
+
|
93 |
+
.canvas-container {
|
94 |
+
grid-column: 2;
|
95 |
+
position: relative;
|
96 |
+
overflow: hidden;
|
97 |
+
}
|
98 |
+
|
99 |
+
.network-canvas {
|
100 |
+
width: 100%;
|
101 |
+
height: 100%;
|
102 |
+
position: relative;
|
103 |
+
background: var(--background-color);
|
104 |
+
border-radius: var(--border-radius);
|
105 |
+
border: 1px solid var(--border-color);
|
106 |
+
}
|
107 |
+
|
108 |
+
.node-types {
|
109 |
+
margin-top: 1.5rem;
|
110 |
+
}
|
111 |
+
|
112 |
+
.node-item {
|
113 |
+
padding: 0.8rem 1rem;
|
114 |
+
border-radius: var(--border-radius);
|
115 |
+
background: var(--background-color);
|
116 |
+
cursor: grab;
|
117 |
+
transition: all var(--transition-speed) ease;
|
118 |
+
margin-bottom: 0.8rem;
|
119 |
+
position: relative;
|
120 |
+
display: flex;
|
121 |
+
align-items: center;
|
122 |
+
border: 1px solid var(--border-color);
|
123 |
+
}
|
124 |
+
|
125 |
+
.node-item:hover {
|
126 |
+
transform: translateY(-2px);
|
127 |
+
box-shadow: var(--shadow-md);
|
128 |
+
}
|
129 |
+
|
130 |
+
.node-item[data-type="input"] {
|
131 |
+
background: linear-gradient(135deg, var(--input-node-color-1), var(--input-node-color-2));
|
132 |
+
border-color: var(--input-node-color-1);
|
133 |
+
color: white;
|
134 |
+
}
|
135 |
+
|
136 |
+
.node-item[data-type="hidden"] {
|
137 |
+
background: linear-gradient(135deg, var(--hidden-node-color-1), var(--hidden-node-color-2));
|
138 |
+
border-color: var(--hidden-node-color-1);
|
139 |
+
color: white;
|
140 |
+
}
|
141 |
+
|
142 |
+
.node-item[data-type="output"] {
|
143 |
+
background: linear-gradient(135deg, var(--output-node-color-1), var(--output-node-color-2));
|
144 |
+
border-color: var(--output-node-color-1);
|
145 |
+
color: white;
|
146 |
+
}
|
147 |
+
|
148 |
+
.node-item[data-type="conv"] {
|
149 |
+
background: linear-gradient(135deg, var(--conv-node-color-1), var(--conv-node-color-2));
|
150 |
+
border-color: var(--conv-node-color-1);
|
151 |
+
color: white;
|
152 |
+
}
|
153 |
+
|
154 |
+
.node-item[data-type="pool"] {
|
155 |
+
background: linear-gradient(135deg, var(--pool-node-color-1), var(--pool-node-color-2));
|
156 |
+
border-color: var(--pool-node-color-1);
|
157 |
+
color: white;
|
158 |
+
}
|
159 |
+
|
160 |
+
.node-icon {
|
161 |
+
width: 24px;
|
162 |
+
height: 24px;
|
163 |
+
margin-right: 10px;
|
164 |
+
display: flex;
|
165 |
+
align-items: center;
|
166 |
+
justify-content: center;
|
167 |
+
border-radius: 50%;
|
168 |
+
background: rgba(255, 255, 255, 0.8);
|
169 |
+
}
|
170 |
+
|
171 |
+
.node-icon svg {
|
172 |
+
width: 16px;
|
173 |
+
height: 16px;
|
174 |
+
}
|
175 |
+
|
176 |
+
.node {
|
177 |
+
padding: 1rem;
|
178 |
+
border-radius: 8px;
|
179 |
+
text-align: center;
|
180 |
+
font-size: 0.95rem;
|
181 |
+
color: white;
|
182 |
+
box-shadow: var(--shadow-md);
|
183 |
+
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1);
|
184 |
+
position: relative;
|
185 |
+
overflow: hidden;
|
186 |
+
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.2);
|
187 |
+
}
|
188 |
+
|
189 |
+
.node::after {
|
190 |
+
content: '';
|
191 |
+
position: absolute;
|
192 |
+
top: 0;
|
193 |
+
left: 0;
|
194 |
+
width: 100%;
|
195 |
+
height: 100%;
|
196 |
+
background: radial-gradient(circle at top right, rgba(255, 255, 255, 0.3), rgba(255, 255, 255, 0));
|
197 |
+
z-index: 0;
|
198 |
+
}
|
199 |
+
|
200 |
+
.node::before {
|
201 |
+
content: '';
|
202 |
+
position: absolute;
|
203 |
+
top: -50%;
|
204 |
+
left: -50%;
|
205 |
+
width: 200%;
|
206 |
+
height: 200%;
|
207 |
+
background: linear-gradient(45deg, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 0.1) 50%, rgba(255, 255, 255, 0) 100%);
|
208 |
+
transform: rotate(45deg);
|
209 |
+
animation: shimmer 3s infinite;
|
210 |
+
z-index: 1;
|
211 |
+
pointer-events: none;
|
212 |
+
}
|
213 |
+
|
214 |
+
@keyframes shimmer {
|
215 |
+
0% { transform: translateX(-100%) rotate(45deg); }
|
216 |
+
100% { transform: translateX(100%) rotate(45deg); }
|
217 |
+
}
|
218 |
+
|
219 |
+
.node:hover {
|
220 |
+
transform: translateY(-2px) scale(1.05);
|
221 |
+
box-shadow: var(--shadow-lg), 0 0 20px rgba(255, 255, 255, 0.2);
|
222 |
+
}
|
223 |
+
|
224 |
+
.input-node {
|
225 |
+
background: linear-gradient(135deg, var(--input-node-color-1), var(--input-node-color-2));
|
226 |
+
border: 2px solid var(--input-node-color-1);
|
227 |
+
color: white;
|
228 |
+
}
|
229 |
+
|
230 |
+
.hidden-node {
|
231 |
+
background: linear-gradient(135deg, var(--hidden-node-color-1), var(--hidden-node-color-2));
|
232 |
+
border: 2px solid var(--hidden-node-color-1);
|
233 |
+
color: white;
|
234 |
+
}
|
235 |
+
|
236 |
+
.output-node {
|
237 |
+
background: linear-gradient(135deg, var(--output-node-color-1), var(--output-node-color-2));
|
238 |
+
border: 2px solid var(--output-node-color-1);
|
239 |
+
color: white;
|
240 |
+
}
|
241 |
+
|
242 |
+
.conv-node {
|
243 |
+
background: linear-gradient(135deg, var(--conv-node-color-1), var(--conv-node-color-2));
|
244 |
+
border: 2px solid var(--conv-node-color-1);
|
245 |
+
color: white;
|
246 |
+
}
|
247 |
+
|
248 |
+
.pool-node {
|
249 |
+
background: linear-gradient(135deg, var(--pool-node-color-1), var(--pool-node-color-2));
|
250 |
+
border: 2px solid var(--pool-node-color-1);
|
251 |
+
color: white;
|
252 |
+
}
|
253 |
+
|
254 |
+
.controls {
|
255 |
+
margin-top: 2rem;
|
256 |
+
}
|
257 |
+
|
258 |
+
button {
|
259 |
+
display: block;
|
260 |
+
width: 100%;
|
261 |
+
padding: 0.9rem;
|
262 |
+
margin-bottom: 0.75rem;
|
263 |
+
background: var(--primary-color);
|
264 |
+
color: white;
|
265 |
+
border: none;
|
266 |
+
border-radius: 8px;
|
267 |
+
cursor: pointer;
|
268 |
+
transition: all 0.3s;
|
269 |
+
font-weight: 600;
|
270 |
+
letter-spacing: 0.02em;
|
271 |
+
position: relative;
|
272 |
+
overflow: hidden;
|
273 |
+
box-shadow: var(--shadow-md);
|
274 |
+
}
|
275 |
+
|
276 |
+
button::after {
|
277 |
+
content: '';
|
278 |
+
position: absolute;
|
279 |
+
top: 0;
|
280 |
+
left: 0;
|
281 |
+
width: 100%;
|
282 |
+
height: 100%;
|
283 |
+
background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0));
|
284 |
+
z-index: 0;
|
285 |
+
}
|
286 |
+
|
287 |
+
button:hover {
|
288 |
+
background: linear-gradient(135deg, var(--primary-color), #3a5ca9);
|
289 |
+
box-shadow: var(--shadow-lg);
|
290 |
+
transform: translateY(-2px);
|
291 |
+
}
|
292 |
+
|
293 |
+
button:active {
|
294 |
+
transform: translateY(1px);
|
295 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
296 |
+
}
|
297 |
+
|
298 |
+
h2 {
|
299 |
+
margin-bottom: 1.25rem;
|
300 |
+
color: var(--secondary-color);
|
301 |
+
font-size: 1.25rem;
|
302 |
+
font-weight: 700;
|
303 |
+
position: relative;
|
304 |
+
padding-bottom: 0.75rem;
|
305 |
+
}
|
306 |
+
|
307 |
+
h2::after {
|
308 |
+
content: '';
|
309 |
+
position: absolute;
|
310 |
+
left: 0;
|
311 |
+
bottom: 0;
|
312 |
+
width: 40px;
|
313 |
+
height: 3px;
|
314 |
+
background: var(--primary-color);
|
315 |
+
border-radius: 2px;
|
316 |
+
}
|
317 |
+
|
318 |
+
#node-properties {
|
319 |
+
padding: 1rem;
|
320 |
+
background-color: #f8f9fa;
|
321 |
+
border-radius: 8px;
|
322 |
+
min-height: 180px;
|
323 |
+
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05);
|
324 |
+
line-height: 1.7;
|
325 |
+
}
|
326 |
+
|
327 |
+
#node-properties strong {
|
328 |
+
color: var(--primary-color);
|
329 |
+
}
|
330 |
+
|
331 |
+
.tooltip {
|
332 |
+
position: absolute;
|
333 |
+
background: rgba(44, 62, 80, 0.95);
|
334 |
+
color: white;
|
335 |
+
padding: 12px 16px;
|
336 |
+
border-radius: 8px;
|
337 |
+
font-size: 0.9rem;
|
338 |
+
pointer-events: none;
|
339 |
+
opacity: 0;
|
340 |
+
transition: opacity 0.2s, transform 0.2s;
|
341 |
+
z-index: 1000;
|
342 |
+
max-width: 300px;
|
343 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
|
344 |
+
transform: translateY(10px);
|
345 |
+
backdrop-filter: blur(2px);
|
346 |
+
}
|
347 |
+
|
348 |
+
.tooltip.visible {
|
349 |
+
opacity: 1;
|
350 |
+
transform: translateY(0);
|
351 |
+
}
|
352 |
+
|
353 |
+
.tooltip-content {
|
354 |
+
line-height: 1.6;
|
355 |
+
}
|
356 |
+
|
357 |
+
footer {
|
358 |
+
text-align: center;
|
359 |
+
padding: 1.5rem;
|
360 |
+
background: linear-gradient(135deg, var(--secondary-color), #34495e);
|
361 |
+
color: white;
|
362 |
+
font-size: 0.9rem;
|
363 |
+
position: relative;
|
364 |
+
overflow: hidden;
|
365 |
+
}
|
366 |
+
|
367 |
+
footer::before {
|
368 |
+
content: '';
|
369 |
+
position: absolute;
|
370 |
+
width: 100%;
|
371 |
+
height: 100%;
|
372 |
+
top: 0;
|
373 |
+
left: 0;
|
374 |
+
background: url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="100" height="100" viewBox="0 0 100 100"><rect fill="none" width="100" height="100"/><circle fill="rgba(255,255,255,0.05)" cx="25" cy="25" r="5"/><circle fill="rgba(255,255,255,0.05)" cx="75" cy="25" r="5"/><circle fill="rgba(255,255,255,0.05)" cx="25" cy="75" r="5"/><circle fill="rgba(255,255,255,0.05)" cx="75" cy="75" r="5"/></svg>');
|
375 |
+
opacity: 0.4;
|
376 |
+
z-index: 0;
|
377 |
+
}
|
378 |
+
|
379 |
+
footer p {
|
380 |
+
position: relative;
|
381 |
+
z-index: 1;
|
382 |
+
}
|
383 |
+
|
384 |
+
/* Styles for nodes on the canvas */
|
385 |
+
.canvas-node {
|
386 |
+
position: absolute;
|
387 |
+
width: 180px;
|
388 |
+
padding: 0.8rem;
|
389 |
+
border-radius: var(--border-radius);
|
390 |
+
color: white;
|
391 |
+
box-shadow: var(--shadow-md);
|
392 |
+
z-index: 10;
|
393 |
+
transition: all 0.3s ease;
|
394 |
+
cursor: move;
|
395 |
+
background-size: 300% 300%;
|
396 |
+
animation: gradientShift 8s ease infinite;
|
397 |
+
}
|
398 |
+
|
399 |
+
@keyframes gradientShift {
|
400 |
+
0% { background-position: 0% 50%; }
|
401 |
+
50% { background-position: 100% 50%; }
|
402 |
+
100% { background-position: 0% 50%; }
|
403 |
+
}
|
404 |
+
|
405 |
+
.canvas-node.dragging {
|
406 |
+
cursor: grabbing;
|
407 |
+
box-shadow: var(--shadow-lg), 0 0 25px rgba(255, 255, 255, 0.3);
|
408 |
+
transform: scale(1.05);
|
409 |
+
z-index: 100;
|
410 |
+
}
|
411 |
+
|
412 |
+
.canvas-node[data-type="input"] {
|
413 |
+
background: linear-gradient(135deg, var(--input-node-color-1), var(--input-node-color-2), var(--input-node-color-1));
|
414 |
+
border: 2px solid var(--input-node-color-1);
|
415 |
+
}
|
416 |
+
|
417 |
+
.canvas-node[data-type="hidden"] {
|
418 |
+
background: linear-gradient(135deg, var(--hidden-node-color-1), var(--hidden-node-color-2), var(--hidden-node-color-1));
|
419 |
+
border: 2px solid var(--hidden-node-color-1);
|
420 |
+
}
|
421 |
+
|
422 |
+
.canvas-node[data-type="output"] {
|
423 |
+
background: linear-gradient(135deg, var(--output-node-color-1), var(--output-node-color-2), var(--output-node-color-1));
|
424 |
+
border: 2px solid var(--output-node-color-1);
|
425 |
+
}
|
426 |
+
|
427 |
+
.canvas-node[data-type="conv"] {
|
428 |
+
background: linear-gradient(135deg, var(--conv-node-color-1), var(--conv-node-color-2), var(--conv-node-color-1));
|
429 |
+
border: 2px solid var(--conv-node-color-1);
|
430 |
+
}
|
431 |
+
|
432 |
+
.canvas-node[data-type="pool"] {
|
433 |
+
background: linear-gradient(135deg, var(--pool-node-color-1), var(--pool-node-color-2), var(--pool-node-color-1));
|
434 |
+
border: 2px solid var(--pool-node-color-1);
|
435 |
+
}
|
436 |
+
|
437 |
+
.canvas-node .node-title {
|
438 |
+
font-weight: 600;
|
439 |
+
font-size: 0.9rem;
|
440 |
+
margin-bottom: 0.5rem;
|
441 |
+
color: white;
|
442 |
+
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.3);
|
443 |
+
position: relative;
|
444 |
+
z-index: 2;
|
445 |
+
}
|
446 |
+
|
447 |
+
.canvas-node .node-id {
|
448 |
+
position: absolute;
|
449 |
+
top: 8px;
|
450 |
+
right: 10px;
|
451 |
+
font-size: 0.7rem;
|
452 |
+
color: white;
|
453 |
+
background: rgba(0, 0, 0, 0.2);
|
454 |
+
border-radius: 4px;
|
455 |
+
padding: 0 5px;
|
456 |
+
z-index: 2;
|
457 |
+
}
|
458 |
+
|
459 |
+
.canvas-node .node-dimensions {
|
460 |
+
font-size: 0.8rem;
|
461 |
+
color: rgba(255, 255, 255, 0.9);
|
462 |
+
margin-bottom: 0.5rem;
|
463 |
+
position: relative;
|
464 |
+
z-index: 2;
|
465 |
+
}
|
466 |
+
|
467 |
+
.canvas-node::after {
|
468 |
+
content: '';
|
469 |
+
position: absolute;
|
470 |
+
top: 0;
|
471 |
+
left: 0;
|
472 |
+
width: 100%;
|
473 |
+
height: 100%;
|
474 |
+
background: radial-gradient(circle at top right, rgba(255, 255, 255, 0.3), rgba(255, 255, 255, 0));
|
475 |
+
z-index: 1;
|
476 |
+
border-radius: var(--border-radius);
|
477 |
+
pointer-events: none;
|
478 |
+
}
|
479 |
+
|
480 |
+
.connection {
|
481 |
+
position: absolute;
|
482 |
+
height: 3px;
|
483 |
+
background: linear-gradient(90deg, var(--primary-color), var(--accent-color));
|
484 |
+
transform-origin: 0 0;
|
485 |
+
pointer-events: none;
|
486 |
+
z-index: 5;
|
487 |
+
box-shadow: 0 0 8px rgba(52, 152, 219, 0.5);
|
488 |
+
}
|
489 |
+
|
490 |
+
.connection::after {
|
491 |
+
content: '';
|
492 |
+
position: absolute;
|
493 |
+
right: -5px;
|
494 |
+
top: -5px;
|
495 |
+
width: 10px;
|
496 |
+
height: 10px;
|
497 |
+
border-radius: 50%;
|
498 |
+
background: var(--accent-color);
|
499 |
+
box-shadow: 0 0 8px rgba(155, 89, 182, 0.8);
|
500 |
+
}
|
501 |
+
|
502 |
+
.temp-connection {
|
503 |
+
background: linear-gradient(90deg, rgba(52, 152, 219, 0.5), rgba(155, 89, 182, 0.5));
|
504 |
+
box-shadow: 0 0 12px rgba(52, 152, 219, 0.3);
|
505 |
+
transition: none;
|
506 |
+
}
|
507 |
+
|
508 |
+
.temp-connection::after {
|
509 |
+
background: rgba(155, 89, 182, 0.7);
|
510 |
+
box-shadow: 0 0 12px rgba(155, 89, 182, 0.5);
|
511 |
+
}
|
512 |
+
|
513 |
+
.connected-node {
|
514 |
+
box-shadow: 0 0 0 3px rgba(46, 204, 113, 0.2), var(--shadow-sm);
|
515 |
+
}
|
516 |
+
|
517 |
+
.canvas-tooltip {
|
518 |
+
position: absolute;
|
519 |
+
background: white;
|
520 |
+
border-radius: var(--border-radius);
|
521 |
+
padding: 1rem;
|
522 |
+
box-shadow: var(--shadow-md);
|
523 |
+
z-index: 1000;
|
524 |
+
max-width: 300px;
|
525 |
+
display: none;
|
526 |
+
pointer-events: none;
|
527 |
+
border: 1px solid var(--border-color);
|
528 |
+
}
|
529 |
+
|
530 |
+
.tooltip-header {
|
531 |
+
font-weight: 600;
|
532 |
+
margin-bottom: 0.5rem;
|
533 |
+
padding-bottom: 0.5rem;
|
534 |
+
border-bottom: 1px solid #eee;
|
535 |
+
}
|
536 |
+
|
537 |
+
.tooltip-content {
|
538 |
+
font-size: 0.9rem;
|
539 |
+
}
|
540 |
+
|
541 |
+
.tooltip-row {
|
542 |
+
display: flex;
|
543 |
+
justify-content: space-between;
|
544 |
+
margin-bottom: 0.3rem;
|
545 |
+
}
|
546 |
+
|
547 |
+
.tooltip-label {
|
548 |
+
color: #666;
|
549 |
+
}
|
550 |
+
|
551 |
+
.tooltip-value {
|
552 |
+
font-weight: 500;
|
553 |
+
}
|
554 |
+
|
555 |
+
.control-group {
|
556 |
+
margin-bottom: 1.5rem;
|
557 |
+
}
|
558 |
+
|
559 |
+
.sample-data {
|
560 |
+
display: flex;
|
561 |
+
gap: 0.5rem;
|
562 |
+
flex-wrap: wrap;
|
563 |
+
margin-bottom: 1rem;
|
564 |
+
}
|
565 |
+
|
566 |
+
.sample-item {
|
567 |
+
width: 50px;
|
568 |
+
height: 50px;
|
569 |
+
border-radius: var(--border-radius);
|
570 |
+
border: 1px solid var(--border-color);
|
571 |
+
overflow: hidden;
|
572 |
+
cursor: pointer;
|
573 |
+
transition: all 0.2s ease;
|
574 |
+
}
|
575 |
+
|
576 |
+
.sample-item:hover {
|
577 |
+
transform: scale(1.1);
|
578 |
+
box-shadow: var(--shadow-sm);
|
579 |
+
}
|
580 |
+
|
581 |
+
.sample-item img {
|
582 |
+
width: 100%;
|
583 |
+
height: 100%;
|
584 |
+
object-fit: cover;
|
585 |
+
}
|
586 |
+
|
587 |
+
.button-group {
|
588 |
+
display: flex;
|
589 |
+
gap: 0.8rem;
|
590 |
+
margin-bottom: 1.5rem;
|
591 |
+
}
|
592 |
+
|
593 |
+
.btn {
|
594 |
+
padding: 0.7rem 1.2rem;
|
595 |
+
border-radius: var(--border-radius);
|
596 |
+
border: none;
|
597 |
+
cursor: pointer;
|
598 |
+
font-weight: 500;
|
599 |
+
transition: all var(--transition-speed) ease;
|
600 |
+
display: inline-flex;
|
601 |
+
align-items: center;
|
602 |
+
justify-content: center;
|
603 |
+
}
|
604 |
+
|
605 |
+
.btn:hover {
|
606 |
+
transform: translateY(-2px);
|
607 |
+
box-shadow: var(--shadow-sm);
|
608 |
+
}
|
609 |
+
|
610 |
+
.btn:active {
|
611 |
+
transform: translateY(0);
|
612 |
+
}
|
613 |
+
|
614 |
+
.btn-primary {
|
615 |
+
background: var(--primary-color);
|
616 |
+
color: white;
|
617 |
+
}
|
618 |
+
|
619 |
+
.btn-primary:hover {
|
620 |
+
background: #2980b9;
|
621 |
+
}
|
622 |
+
|
623 |
+
.btn-secondary {
|
624 |
+
background: var(--secondary-color);
|
625 |
+
color: white;
|
626 |
+
}
|
627 |
+
|
628 |
+
.btn-secondary:hover {
|
629 |
+
background: #27ae60;
|
630 |
+
}
|
631 |
+
|
632 |
+
.btn-danger {
|
633 |
+
background: var(--warning-color);
|
634 |
+
color: white;
|
635 |
+
}
|
636 |
+
|
637 |
+
.btn-danger:hover {
|
638 |
+
background: #c0392b;
|
639 |
+
}
|
640 |
+
|
641 |
+
.btn-sm {
|
642 |
+
padding: 0.4rem 0.8rem;
|
643 |
+
font-size: 0.9rem;
|
644 |
+
}
|
645 |
+
|
646 |
+
.btn-icon {
|
647 |
+
margin-right: 0.5rem;
|
648 |
+
}
|
649 |
+
|
650 |
+
.network-settings {
|
651 |
+
margin-bottom: 1.5rem;
|
652 |
+
}
|
653 |
+
|
654 |
+
.setting-group {
|
655 |
+
margin-bottom: 1rem;
|
656 |
+
}
|
657 |
+
|
658 |
+
.setting-label {
|
659 |
+
font-size: 0.9rem;
|
660 |
+
color: #666;
|
661 |
+
margin-bottom: 0.3rem;
|
662 |
+
display: block;
|
663 |
+
}
|
664 |
+
|
665 |
+
.range-slider {
|
666 |
+
width: 100%;
|
667 |
+
-webkit-appearance: none;
|
668 |
+
height: 6px;
|
669 |
+
border-radius: 5px;
|
670 |
+
background: #ddd;
|
671 |
+
outline: none;
|
672 |
+
}
|
673 |
+
|
674 |
+
.range-slider::-webkit-slider-thumb {
|
675 |
+
-webkit-appearance: none;
|
676 |
+
appearance: none;
|
677 |
+
width: 18px;
|
678 |
+
height: 18px;
|
679 |
+
border-radius: 50%;
|
680 |
+
background: var(--primary-color);
|
681 |
+
cursor: pointer;
|
682 |
+
transition: all 0.2s ease;
|
683 |
+
}
|
684 |
+
|
685 |
+
.range-slider::-webkit-slider-thumb:hover {
|
686 |
+
background: #2980b9;
|
687 |
+
box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.3);
|
688 |
+
}
|
689 |
+
|
690 |
+
.range-value {
|
691 |
+
font-size: 0.9rem;
|
692 |
+
color: var(--primary-color);
|
693 |
+
font-weight: 600;
|
694 |
+
text-align: right;
|
695 |
+
margin-top: 0.3rem;
|
696 |
+
}
|
697 |
+
|
698 |
+
select {
|
699 |
+
width: 100%;
|
700 |
+
padding: 0.5rem;
|
701 |
+
border-radius: var(--border-radius);
|
702 |
+
border: 1px solid var(--border-color);
|
703 |
+
background: white;
|
704 |
+
font-size: 0.9rem;
|
705 |
+
color: var(--text-color);
|
706 |
+
cursor: pointer;
|
707 |
+
}
|
708 |
+
|
709 |
+
.props-content {
|
710 |
+
flex: 1;
|
711 |
+
display: flex;
|
712 |
+
flex-direction: column;
|
713 |
+
}
|
714 |
+
|
715 |
+
.props-section {
|
716 |
+
margin-bottom: 1.5rem;
|
717 |
+
}
|
718 |
+
|
719 |
+
.props-heading {
|
720 |
+
font-size: 1rem;
|
721 |
+
font-weight: 600;
|
722 |
+
margin-bottom: 0.8rem;
|
723 |
+
color: var(--primary-color);
|
724 |
+
display: flex;
|
725 |
+
align-items: center;
|
726 |
+
}
|
727 |
+
|
728 |
+
.props-heading i {
|
729 |
+
margin-right: 0.5rem;
|
730 |
+
}
|
731 |
+
|
732 |
+
.props-row {
|
733 |
+
display: flex;
|
734 |
+
justify-content: space-between;
|
735 |
+
align-items: center;
|
736 |
+
padding: 0.5rem 0;
|
737 |
+
border-bottom: 1px solid #f0f0f0;
|
738 |
+
}
|
739 |
+
|
740 |
+
.props-key {
|
741 |
+
color: #666;
|
742 |
+
font-size: 0.9rem;
|
743 |
+
}
|
744 |
+
|
745 |
+
.props-value {
|
746 |
+
font-weight: 500;
|
747 |
+
font-size: 0.9rem;
|
748 |
+
}
|
749 |
+
|
750 |
+
.activation-function {
|
751 |
+
background: #f8f9fa;
|
752 |
+
border-radius: var(--border-radius);
|
753 |
+
padding: 1rem;
|
754 |
+
margin-bottom: 1.5rem;
|
755 |
+
}
|
756 |
+
|
757 |
+
.layer-weights {
|
758 |
+
display: flex;
|
759 |
+
justify-content: center;
|
760 |
+
margin-bottom: 1.5rem;
|
761 |
+
background: #f8f9fa;
|
762 |
+
border-radius: var(--border-radius);
|
763 |
+
padding: 1rem;
|
764 |
+
}
|
765 |
+
|
766 |
+
.weights-img {
|
767 |
+
max-width: 100%;
|
768 |
+
border-radius: var(--border-radius);
|
769 |
+
}
|
770 |
+
|
771 |
+
.training-progress {
|
772 |
+
margin-bottom: 1.5rem;
|
773 |
+
}
|
774 |
+
|
775 |
+
.progress-bar-container {
|
776 |
+
width: 100%;
|
777 |
+
height: 10px;
|
778 |
+
background: #f0f0f0;
|
779 |
+
border-radius: 5px;
|
780 |
+
overflow: hidden;
|
781 |
+
margin-bottom: 0.5rem;
|
782 |
+
}
|
783 |
+
|
784 |
+
.progress-bar {
|
785 |
+
height: 100%;
|
786 |
+
background: linear-gradient(90deg, var(--primary-color), var(--accent-color));
|
787 |
+
border-radius: 5px;
|
788 |
+
transition: width 0.3s ease;
|
789 |
+
width: 0%;
|
790 |
+
}
|
791 |
+
|
792 |
+
.metrics {
|
793 |
+
display: flex;
|
794 |
+
justify-content: space-between;
|
795 |
+
margin-top: 0.5rem;
|
796 |
+
}
|
797 |
+
|
798 |
+
.metric {
|
799 |
+
text-align: center;
|
800 |
+
flex: 1;
|
801 |
+
}
|
802 |
+
|
803 |
+
.metric-value {
|
804 |
+
font-weight: 600;
|
805 |
+
font-size: 1.1rem;
|
806 |
+
color: var(--primary-color);
|
807 |
+
}
|
808 |
+
|
809 |
+
.metric-label {
|
810 |
+
font-size: 0.8rem;
|
811 |
+
color: #666;
|
812 |
+
}
|
813 |
+
|
814 |
+
.node-controls {
|
815 |
+
display: flex;
|
816 |
+
justify-content: flex-end;
|
817 |
+
margin-top: 0.5rem;
|
818 |
+
}
|
819 |
+
|
820 |
+
.node-edit-btn, .node-delete-btn {
|
821 |
+
background: none;
|
822 |
+
border: none;
|
823 |
+
cursor: pointer;
|
824 |
+
padding: 3px;
|
825 |
+
border-radius: 4px;
|
826 |
+
transition: all 0.2s ease;
|
827 |
+
margin-left: 0.3rem;
|
828 |
+
}
|
829 |
+
|
830 |
+
.node-edit-btn:hover {
|
831 |
+
background: #e0e0e0;
|
832 |
+
}
|
833 |
+
|
834 |
+
.node-delete-btn:hover {
|
835 |
+
background: #ffcdd2;
|
836 |
+
}
|
837 |
+
|
838 |
+
.icon {
|
839 |
+
font-style: normal;
|
840 |
+
font-size: 16px;
|
841 |
+
}
|
842 |
+
|
843 |
+
/* Modal styles */
|
844 |
+
.modal {
|
845 |
+
display: none;
|
846 |
+
position: fixed;
|
847 |
+
z-index: 1000;
|
848 |
+
left: 0;
|
849 |
+
top: 0;
|
850 |
+
width: 100%;
|
851 |
+
height: 100%;
|
852 |
+
background-color: rgba(0, 0, 0, 0.5);
|
853 |
+
align-items: center;
|
854 |
+
justify-content: center;
|
855 |
+
}
|
856 |
+
|
857 |
+
.modal-content {
|
858 |
+
background-color: white;
|
859 |
+
padding: 2rem;
|
860 |
+
border-radius: var(--border-radius);
|
861 |
+
width: 90%;
|
862 |
+
max-width: 700px;
|
863 |
+
max-height: 90vh;
|
864 |
+
overflow-y: auto;
|
865 |
+
position: relative;
|
866 |
+
animation: modalFadeIn 0.3s;
|
867 |
+
}
|
868 |
+
|
869 |
+
.close-modal {
|
870 |
+
position: absolute;
|
871 |
+
right: 1.5rem;
|
872 |
+
top: 1.5rem;
|
873 |
+
font-size: 1.5rem;
|
874 |
+
color: #aaa;
|
875 |
+
cursor: pointer;
|
876 |
+
transition: color 0.2s ease;
|
877 |
+
}
|
878 |
+
|
879 |
+
.close-modal:hover {
|
880 |
+
color: var(--text-color);
|
881 |
+
}
|
882 |
+
|
883 |
+
.modal-title {
|
884 |
+
font-size: 1.5rem;
|
885 |
+
margin-bottom: 1.5rem;
|
886 |
+
color: var(--primary-color);
|
887 |
+
padding-bottom: 1rem;
|
888 |
+
border-bottom: 1px solid var(--border-color);
|
889 |
+
}
|
890 |
+
|
891 |
+
.modal-section {
|
892 |
+
margin-bottom: 2rem;
|
893 |
+
}
|
894 |
+
|
895 |
+
.modal-section-title {
|
896 |
+
font-size: 1.2rem;
|
897 |
+
margin-bottom: 1rem;
|
898 |
+
color: var(--text-color);
|
899 |
+
}
|
900 |
+
|
901 |
+
.modal-text {
|
902 |
+
line-height: 1.7;
|
903 |
+
margin-bottom: 1rem;
|
904 |
+
}
|
905 |
+
|
906 |
+
.modal-list {
|
907 |
+
list-style: none;
|
908 |
+
margin: 1rem 0;
|
909 |
+
}
|
910 |
+
|
911 |
+
.modal-list li {
|
912 |
+
padding: 0.5rem 0;
|
913 |
+
border-bottom: 1px solid #f0f0f0;
|
914 |
+
display: flex;
|
915 |
+
align-items: flex-start;
|
916 |
+
}
|
917 |
+
|
918 |
+
.modal-list li::before {
|
919 |
+
content: '•';
|
920 |
+
color: var(--primary-color);
|
921 |
+
font-weight: bold;
|
922 |
+
margin-right: 0.5rem;
|
923 |
+
}
|
924 |
+
|
925 |
+
/* Footer styles */
|
926 |
+
.footer {
|
927 |
+
text-align: center;
|
928 |
+
margin-top: 3rem;
|
929 |
+
padding: 1.5rem;
|
930 |
+
background: white;
|
931 |
+
box-shadow: var(--shadow-sm);
|
932 |
+
}
|
933 |
+
|
934 |
+
.footer-links {
|
935 |
+
display: flex;
|
936 |
+
justify-content: center;
|
937 |
+
gap: 1.5rem;
|
938 |
+
margin-bottom: 1rem;
|
939 |
+
}
|
940 |
+
|
941 |
+
.footer-link {
|
942 |
+
color: var(--primary-color);
|
943 |
+
text-decoration: none;
|
944 |
+
transition: color 0.2s ease;
|
945 |
+
}
|
946 |
+
|
947 |
+
.footer-link:hover {
|
948 |
+
color: #2980b9;
|
949 |
+
text-decoration: underline;
|
950 |
+
}
|
951 |
+
|
952 |
+
.footer-text {
|
953 |
+
color: #666;
|
954 |
+
font-size: 0.9rem;
|
955 |
+
}
|
956 |
+
|
957 |
+
/* Animation keyframes */
|
958 |
+
@keyframes pulse {
|
959 |
+
0% {
|
960 |
+
box-shadow: 0 0 0 0 rgba(46, 204, 113, 0.5);
|
961 |
+
}
|
962 |
+
70% {
|
963 |
+
box-shadow: 0 0 0 5px rgba(46, 204, 113, 0);
|
964 |
+
}
|
965 |
+
100% {
|
966 |
+
box-shadow: 0 0 0 0 rgba(46, 204, 113, 0);
|
967 |
+
}
|
968 |
+
}
|
969 |
+
|
970 |
+
@keyframes modalFadeIn {
|
971 |
+
from {
|
972 |
+
opacity: 0;
|
973 |
+
transform: translateY(-30px);
|
974 |
+
}
|
975 |
+
to {
|
976 |
+
opacity: 1;
|
977 |
+
transform: translateY(0);
|
978 |
+
}
|
979 |
+
}
|
980 |
+
|
981 |
+
/* Layer editor modal styles */
|
982 |
+
.layer-editor-modal .modal-content {
|
983 |
+
max-width: 550px;
|
984 |
+
}
|
985 |
+
|
986 |
+
.layer-form {
|
987 |
+
display: grid;
|
988 |
+
grid-template-columns: 1fr 1fr;
|
989 |
+
gap: 1rem;
|
990 |
+
}
|
991 |
+
|
992 |
+
.form-group {
|
993 |
+
margin-bottom: 1rem;
|
994 |
+
}
|
995 |
+
|
996 |
+
.form-group label {
|
997 |
+
display: block;
|
998 |
+
font-size: 0.9rem;
|
999 |
+
color: #666;
|
1000 |
+
margin-bottom: 0.3rem;
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
.form-group input, .form-group select {
|
1004 |
+
width: 100%;
|
1005 |
+
padding: 0.5rem;
|
1006 |
+
border-radius: var(--border-radius);
|
1007 |
+
border: 1px solid var(--border-color);
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
.form-group input:focus, .form-group select:focus {
|
1011 |
+
outline: none;
|
1012 |
+
border-color: var(--primary-color);
|
1013 |
+
box-shadow: 0 0 0 2px rgba(52, 152, 219, 0.2);
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
.form-grid-full {
|
1017 |
+
grid-column: 1 / -1;
|
1018 |
+
}
|
1019 |
+
|
1020 |
+
.parameters-preview {
|
1021 |
+
grid-column: 1 / -1;
|
1022 |
+
background: #f8f9fa;
|
1023 |
+
border-radius: var(--border-radius);
|
1024 |
+
padding: 1rem;
|
1025 |
+
margin-top: 1rem;
|
1026 |
+
}
|
1027 |
+
|
1028 |
+
.parameters-title {
|
1029 |
+
font-weight: 600;
|
1030 |
+
margin-bottom: 0.5rem;
|
1031 |
+
color: var(--text-color);
|
1032 |
+
font-size: 0.9rem;
|
1033 |
+
}
|
1034 |
+
|
1035 |
+
.parameters-grid {
|
1036 |
+
display: grid;
|
1037 |
+
grid-template-columns: repeat(auto-fill, minmax(120px, 1fr));
|
1038 |
+
gap: 0.5rem;
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
.parameter-item {
|
1042 |
+
background: white;
|
1043 |
+
border-radius: var(--border-radius);
|
1044 |
+
padding: 0.7rem;
|
1045 |
+
box-shadow: var(--shadow-sm);
|
1046 |
+
text-align: center;
|
1047 |
+
}
|
1048 |
+
|
1049 |
+
.parameter-value {
|
1050 |
+
font-weight: 600;
|
1051 |
+
color: var(--primary-color);
|
1052 |
+
font-size: 1rem;
|
1053 |
+
margin-bottom: 0.2rem;
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
.parameter-label {
|
1057 |
+
font-size: 0.8rem;
|
1058 |
+
color: #666;
|
1059 |
+
}
|
1060 |
+
|
1061 |
+
/* Responsive styles */
|
1062 |
+
@media screen and (max-width: 1200px) {
|
1063 |
+
.container {
|
1064 |
+
grid-template-columns: 1fr;
|
1065 |
+
grid-template-rows: auto;
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
.tools-panel, .canvas-container, .props-panel {
|
1069 |
+
grid-column: 1;
|
1070 |
+
height: auto;
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
.tools-panel {
|
1074 |
+
display: grid;
|
1075 |
+
grid-template-columns: 1fr 1fr;
|
1076 |
+
gap: 1rem;
|
1077 |
+
height: auto;
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
.network-canvas {
|
1081 |
+
height: 60vh;
|
1082 |
+
}
|
1083 |
+
|
1084 |
+
.canvas-node {
|
1085 |
+
width: 160px;
|
1086 |
+
}
|
1087 |
+
}
|
1088 |
+
|
1089 |
+
@media screen and (max-width: 768px) {
|
1090 |
+
.tools-panel {
|
1091 |
+
grid-template-columns: 1fr;
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
.canvas-node {
|
1095 |
+
width: 140px;
|
1096 |
+
padding: 0.6rem;
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
.header-title {
|
1100 |
+
font-size: 2rem;
|
1101 |
+
}
|
1102 |
+
|
1103 |
+
.button-group {
|
1104 |
+
flex-wrap: wrap;
|
1105 |
+
}
|
1106 |
+
|
1107 |
+
.btn {
|
1108 |
+
flex: 1;
|
1109 |
+
min-width: 120px;
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
.props-row {
|
1113 |
+
flex-direction: column;
|
1114 |
+
align-items: flex-start;
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
.props-value {
|
1118 |
+
margin-top: 0.3rem;
|
1119 |
+
}
|
1120 |
+
}
|
1121 |
+
|
1122 |
+
/* Highlights and animations */
|
1123 |
+
.highlight-pulse {
|
1124 |
+
animation: highlightPulse 1.5s ease-in-out;
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
@keyframes highlightPulse {
|
1128 |
+
0% {
|
1129 |
+
box-shadow: 0 0 0 0 rgba(52, 152, 219, 0.5);
|
1130 |
+
}
|
1131 |
+
50% {
|
1132 |
+
box-shadow: 0 0 0 12px rgba(52, 152, 219, 0.3);
|
1133 |
+
}
|
1134 |
+
100% {
|
1135 |
+
box-shadow: 0 0 0 0 rgba(52, 152, 219, 0);
|
1136 |
+
}
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
.node-port {
|
1140 |
+
width: 14px;
|
1141 |
+
height: 14px;
|
1142 |
+
border-radius: 50%;
|
1143 |
+
background: white;
|
1144 |
+
border: 2px solid #aaa;
|
1145 |
+
position: absolute;
|
1146 |
+
cursor: pointer;
|
1147 |
+
transition: all 0.2s ease;
|
1148 |
+
z-index: 20;
|
1149 |
+
box-shadow: 0 0 8px rgba(255, 255, 255, 0.5);
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
.port-in {
|
1153 |
+
top: 50%;
|
1154 |
+
left: -7px;
|
1155 |
+
transform: translateY(-50%);
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
.port-out {
|
1159 |
+
top: 50%;
|
1160 |
+
right: -7px;
|
1161 |
+
transform: translateY(-50%);
|
1162 |
+
}
|
1163 |
+
|
1164 |
+
.port-in:hover, .port-out:hover, .port-hover {
|
1165 |
+
background: rgba(255, 255, 255, 0.9);
|
1166 |
+
border-color: white;
|
1167 |
+
transform: translateY(-50%) scale(1.3);
|
1168 |
+
box-shadow: 0 0 12px rgba(255, 255, 255, 0.8);
|
1169 |
+
}
|
1170 |
+
|
1171 |
+
.active-port {
|
1172 |
+
background: rgba(255, 255, 255, 0.9);
|
1173 |
+
border-color: white;
|
1174 |
+
box-shadow: 0 0 12px rgba(255, 255, 255, 0.8);
|
1175 |
+
animation: portPulse 1.5s infinite;
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
@keyframes portPulse {
|
1179 |
+
0% {
|
1180 |
+
box-shadow: 0 0 0 0 rgba(255, 255, 255, 0.7);
|
1181 |
+
}
|
1182 |
+
70% {
|
1183 |
+
box-shadow: 0 0 0 8px rgba(255, 255, 255, 0);
|
1184 |
+
}
|
1185 |
+
100% {
|
1186 |
+
box-shadow: 0 0 0 0 rgba(255, 255, 255, 0);
|
1187 |
+
}
|
1188 |
+
}
|
1189 |
+
|
1190 |
+
.valid-target {
|
1191 |
+
background: var(--secondary-color);
|
1192 |
+
border-color: white;
|
1193 |
+
animation: validPulse 1.5s infinite;
|
1194 |
+
}
|
1195 |
+
|
1196 |
+
@keyframes validPulse {
|
1197 |
+
0% {
|
1198 |
+
box-shadow: 0 0 0 0 rgba(46, 204, 113, 0.7);
|
1199 |
+
}
|
1200 |
+
70% {
|
1201 |
+
box-shadow: 0 0 0 8px rgba(46, 204, 113, 0);
|
1202 |
+
}
|
1203 |
+
100% {
|
1204 |
+
box-shadow: 0 0 0 0 rgba(46, 204, 113, 0);
|
1205 |
+
}
|
1206 |
+
}
|
1207 |
+
|
1208 |
+
.invalid-target {
|
1209 |
+
background: var(--warning-color);
|
1210 |
+
border-color: white;
|
1211 |
+
cursor: not-allowed;
|
1212 |
+
animation: invalidPulse 1.5s infinite;
|
1213 |
+
}
|
1214 |
+
|
1215 |
+
@keyframes invalidPulse {
|
1216 |
+
0% {
|
1217 |
+
box-shadow: 0 0 0 0 rgba(231, 76, 60, 0.7);
|
1218 |
+
}
|
1219 |
+
70% {
|
1220 |
+
box-shadow: 0 0 0 8px rgba(231, 76, 60, 0);
|
1221 |
+
}
|
1222 |
+
100% {
|
1223 |
+
box-shadow: 0 0 0 0 rgba(231, 76, 60, 0);
|
1224 |
+
}
|
1225 |
+
}
|
index.html
CHANGED
@@ -1,19 +1,170 @@
|
|
1 |
-
<!
|
2 |
-
<html>
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Neural Network Playground</title>
|
7 |
+
<link rel="stylesheet" href="css/styles.css">
|
8 |
+
<link rel="preconnect" href="https://fonts.googleapis.com">
|
9 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
10 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700;800&display=swap" rel="stylesheet">
|
11 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
|
12 |
+
</head>
|
13 |
+
<body>
|
14 |
+
<header>
|
15 |
+
<h1>Neural Network Playground</h1>
|
16 |
+
<p class="header-subtitle">Interactive visualization of neural network architectures and concepts</p>
|
17 |
+
</header>
|
18 |
+
|
19 |
+
<main>
|
20 |
+
<div class="container">
|
21 |
+
<div class="tools-panel">
|
22 |
+
<h2>Network Components</h2>
|
23 |
+
|
24 |
+
<p class="hint-text">Drag components to the canvas to build your neural network</p>
|
25 |
+
|
26 |
+
<div class="node-types">
|
27 |
+
<div class="node-item" draggable="true" data-type="input">
|
28 |
+
<div class="node input-node">Input Layer</div>
|
29 |
+
</div>
|
30 |
+
<div class="node-item" draggable="true" data-type="hidden">
|
31 |
+
<div class="node hidden-node">Hidden Layer</div>
|
32 |
+
</div>
|
33 |
+
<div class="node-item" draggable="true" data-type="output">
|
34 |
+
<div class="node output-node">Output Layer</div>
|
35 |
+
</div>
|
36 |
+
<div class="node-item" draggable="true" data-type="conv">
|
37 |
+
<div class="node conv-node">Convolutional</div>
|
38 |
+
</div>
|
39 |
+
<div class="node-item" draggable="true" data-type="pool">
|
40 |
+
<div class="node pool-node">Pooling</div>
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
|
44 |
+
<h3 class="section-title">Sample Data</h3>
|
45 |
+
<div class="sample-data">
|
46 |
+
<div class="sample-item" data-sample="1">5</div>
|
47 |
+
<div class="sample-item" data-sample="2">7</div>
|
48 |
+
<div class="sample-item" data-sample="3">3</div>
|
49 |
+
</div>
|
50 |
+
|
51 |
+
<div class="controls">
|
52 |
+
<button id="run-network">Run Network</button>
|
53 |
+
<button id="clear-canvas">Clear Canvas</button>
|
54 |
+
</div>
|
55 |
+
|
56 |
+
<h3 class="section-title">Network Settings</h3>
|
57 |
+
<div class="network-settings">
|
58 |
+
<div class="setting-group">
|
59 |
+
<label for="learning-rate">Learning Rate:</label>
|
60 |
+
<input type="range" id="learning-rate" min="0.001" max="1" step="0.001" value="0.1">
|
61 |
+
<span class="setting-value" id="learning-rate-value">0.1</span>
|
62 |
+
</div>
|
63 |
+
<div class="setting-group">
|
64 |
+
<label for="activation">Activation:</label>
|
65 |
+
<select id="activation">
|
66 |
+
<option value="relu">ReLU</option>
|
67 |
+
<option value="sigmoid">Sigmoid</option>
|
68 |
+
<option value="tanh">Tanh</option>
|
69 |
+
</select>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
</div>
|
73 |
+
|
74 |
+
<div class="canvas-container">
|
75 |
+
<div id="network-canvas" class="network-canvas">
|
76 |
+
<div class="canvas-hint">
|
77 |
+
<strong>Build Your Neural Network</strong>
|
78 |
+
Drag components from the left panel and drop them here.
|
79 |
+
<br>Connect them by dragging from output (right) to input (left) ports.
|
80 |
+
</div>
|
81 |
+
</div>
|
82 |
+
</div>
|
83 |
+
|
84 |
+
<div class="properties-panel">
|
85 |
+
<h2>Layer Properties</h2>
|
86 |
+
<div id="node-properties">
|
87 |
+
<p>Hover over a node to see its properties</p>
|
88 |
+
</div>
|
89 |
+
|
90 |
+
<h3 class="section-title">Activation Function</h3>
|
91 |
+
<div class="activation-graph">
|
92 |
+
<svg class="activation-curve" viewBox="0 0 100 100" preserveAspectRatio="none">
|
93 |
+
<!-- Will be populated by JavaScript -->
|
94 |
+
</svg>
|
95 |
+
</div>
|
96 |
+
|
97 |
+
<h3 class="section-title">Layer Weights</h3>
|
98 |
+
<div id="weight-visualization"></div>
|
99 |
+
|
100 |
+
<h3 class="section-title">Training Progress</h3>
|
101 |
+
<div class="training-progress">
|
102 |
+
<div class="progress-bar-container">
|
103 |
+
<div class="progress-bar" style="width: 0%"></div>
|
104 |
+
</div>
|
105 |
+
<div class="metrics">
|
106 |
+
<div class="metric">
|
107 |
+
<span class="metric-label">Loss:</span>
|
108 |
+
<span class="metric-value" id="loss-value">-</span>
|
109 |
+
</div>
|
110 |
+
<div class="metric">
|
111 |
+
<span class="metric-label">Accuracy:</span>
|
112 |
+
<span class="metric-value" id="accuracy-value">-</span>
|
113 |
+
</div>
|
114 |
+
</div>
|
115 |
+
</div>
|
116 |
+
</div>
|
117 |
+
</div>
|
118 |
+
</main>
|
119 |
+
|
120 |
+
<div class="tooltip" id="node-tooltip">
|
121 |
+
<div class="tooltip-content"></div>
|
122 |
+
</div>
|
123 |
+
|
124 |
+
<footer>
|
125 |
+
<p>Neural Network Playground - Learn and visualize neural networks interactively</p>
|
126 |
+
<div class="footer-links">
|
127 |
+
<a href="#" id="about-link">About</a>
|
128 |
+
<a href="#" id="guide-link">User Guide</a>
|
129 |
+
<a href="https://github.com/yourusername/neural-network-playground" target="_blank">GitHub</a>
|
130 |
+
</div>
|
131 |
+
</footer>
|
132 |
+
|
133 |
+
<div class="modal" id="about-modal">
|
134 |
+
<div class="modal-content">
|
135 |
+
<div class="modal-header">
|
136 |
+
<h3>About Neural Network Playground</h3>
|
137 |
+
<button class="close-modal">×</button>
|
138 |
+
</div>
|
139 |
+
<div class="modal-body">
|
140 |
+
<p>This playground allows you to experiment with neural networks visually. Build networks by dragging and dropping layer components, connecting them, and running simulations.</p>
|
141 |
+
<p>Learn about different layer types, activation functions, and see how data flows through the network.</p>
|
142 |
+
<h4>Key Concepts:</h4>
|
143 |
+
<ul>
|
144 |
+
<li><strong>Input Layer:</strong> Receives raw data (like images) and passes it to the network</li>
|
145 |
+
<li><strong>Hidden Layers:</strong> Extract and process features from the data</li>
|
146 |
+
<li><strong>Output Layer:</strong> Provides the final prediction or classification</li>
|
147 |
+
<li><strong>Convolutional Layer:</strong> Specialized for image processing, detects spatial patterns</li>
|
148 |
+
<li><strong>Pooling Layer:</strong> Reduces dimensions while preserving important features</li>
|
149 |
+
</ul>
|
150 |
+
</div>
|
151 |
+
</div>
|
152 |
+
</div>
|
153 |
+
|
154 |
+
<!-- Layer Editor Modal -->
|
155 |
+
<div id="layer-editor-modal" class="modal layer-editor-modal">
|
156 |
+
<div class="modal-content">
|
157 |
+
<span class="close-modal">×</span>
|
158 |
+
<h2 class="modal-title">Edit Layer</h2>
|
159 |
+
<form class="layer-form">
|
160 |
+
<!-- Form fields will be dynamically generated based on layer type -->
|
161 |
+
</form>
|
162 |
+
</div>
|
163 |
+
</div>
|
164 |
+
<!-- End Layer Editor Modal -->
|
165 |
+
|
166 |
+
<script src="js/main.js"></script>
|
167 |
+
<script src="js/neural-network.js"></script>
|
168 |
+
<script src="js/drag-drop.js"></script>
|
169 |
+
</body>
|
170 |
+
</html>
|
js/drag-drop.js
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Initialize drag and drop functionality
|
2 |
+
function initializeDragAndDrop() {
|
3 |
+
const nodeItems = document.querySelectorAll('.node-item');
|
4 |
+
const canvas = document.getElementById('network-canvas');
|
5 |
+
let draggedNode = null;
|
6 |
+
let offsetX, offsetY;
|
7 |
+
let isDragging = false;
|
8 |
+
let isConnecting = false;
|
9 |
+
let startNode = null;
|
10 |
+
let connectionLine = null;
|
11 |
+
let nodeCounter = {};
|
12 |
+
|
13 |
+
// Track layers for proper architecture building
|
14 |
+
let networkLayers = {
|
15 |
+
layers: [],
|
16 |
+
connections: []
|
17 |
+
};
|
18 |
+
|
19 |
+
// Add event listeners to draggable items
|
20 |
+
nodeItems.forEach(item => {
|
21 |
+
item.addEventListener('dragstart', handleDragStart);
|
22 |
+
});
|
23 |
+
|
24 |
+
// Canvas events for dropping nodes
|
25 |
+
canvas.addEventListener('dragover', handleDragOver);
|
26 |
+
canvas.addEventListener('drop', handleDrop);
|
27 |
+
|
28 |
+
// Handle drag start event
|
29 |
+
function handleDragStart(e) {
|
30 |
+
draggedNode = this;
|
31 |
+
e.dataTransfer.setData('text/plain', this.getAttribute('data-type'));
|
32 |
+
|
33 |
+
// Set a ghost image for drag (optional)
|
34 |
+
const ghost = this.cloneNode(true);
|
35 |
+
ghost.style.opacity = '0.5';
|
36 |
+
document.body.appendChild(ghost);
|
37 |
+
e.dataTransfer.setDragImage(ghost, 0, 0);
|
38 |
+
setTimeout(() => {
|
39 |
+
document.body.removeChild(ghost);
|
40 |
+
}, 0);
|
41 |
+
}
|
42 |
+
|
43 |
+
// Handle drag over event
|
44 |
+
function handleDragOver(e) {
|
45 |
+
e.preventDefault();
|
46 |
+
e.dataTransfer.dropEffect = 'copy';
|
47 |
+
}
|
48 |
+
|
49 |
+
// Handle drop event to create new nodes on the canvas
|
50 |
+
function handleDrop(e) {
|
51 |
+
e.preventDefault();
|
52 |
+
|
53 |
+
// Hide the canvas hint when nodes are added
|
54 |
+
const canvasHint = document.querySelector('.canvas-hint');
|
55 |
+
if (canvasHint) {
|
56 |
+
canvasHint.style.display = 'none';
|
57 |
+
}
|
58 |
+
|
59 |
+
const nodeType = e.dataTransfer.getData('text/plain');
|
60 |
+
|
61 |
+
if (nodeType) {
|
62 |
+
// Generate unique layer ID
|
63 |
+
const layerId = window.neuralNetwork.getNextLayerId(nodeType);
|
64 |
+
|
65 |
+
// Create a new node on the canvas
|
66 |
+
const canvasNode = document.createElement('div');
|
67 |
+
canvasNode.className = `canvas-node ${nodeType}-node`;
|
68 |
+
canvasNode.setAttribute('data-type', nodeType);
|
69 |
+
canvasNode.setAttribute('data-id', layerId);
|
70 |
+
|
71 |
+
// Set node position
|
72 |
+
const rect = canvas.getBoundingClientRect();
|
73 |
+
const x = e.clientX - rect.left;
|
74 |
+
const y = e.clientY - rect.top;
|
75 |
+
|
76 |
+
canvasNode.style.left = `${x}px`;
|
77 |
+
canvasNode.style.top = `${y}px`;
|
78 |
+
|
79 |
+
// Set node content based on type
|
80 |
+
let nodeName, dimensions, units;
|
81 |
+
|
82 |
+
switch(nodeType) {
|
83 |
+
case 'input':
|
84 |
+
nodeName = 'Input Layer';
|
85 |
+
dimensions = '1 × 28 × 28';
|
86 |
+
break;
|
87 |
+
case 'hidden':
|
88 |
+
// Customize if it's the first hidden layer
|
89 |
+
const hiddenCount = document.querySelectorAll('.canvas-node[data-type="hidden"]').length;
|
90 |
+
units = hiddenCount === 0 ? 128 : 64;
|
91 |
+
nodeName = `Hidden Layer ${hiddenCount + 1}`;
|
92 |
+
dimensions = `${units}`;
|
93 |
+
break;
|
94 |
+
case 'output':
|
95 |
+
nodeName = 'Output Layer';
|
96 |
+
dimensions = '10';
|
97 |
+
break;
|
98 |
+
case 'conv':
|
99 |
+
const convCount = document.querySelectorAll('.canvas-node[data-type="conv"]').length;
|
100 |
+
const filters = 32 * (convCount + 1);
|
101 |
+
nodeName = `Conv2D ${convCount + 1}`;
|
102 |
+
dimensions = `${filters} × 26 × 26`;
|
103 |
+
break;
|
104 |
+
case 'pool':
|
105 |
+
const poolCount = document.querySelectorAll('.canvas-node[data-type="pool"]').length;
|
106 |
+
nodeName = `MaxPool ${poolCount + 1}`;
|
107 |
+
dimensions = '32 × 13 × 13';
|
108 |
+
break;
|
109 |
+
default:
|
110 |
+
nodeName = 'Neural Node';
|
111 |
+
dimensions = '64';
|
112 |
+
}
|
113 |
+
|
114 |
+
canvasNode.innerHTML = `
|
115 |
+
<div class="node-title">${nodeName}</div>
|
116 |
+
<div class="node-id">${layerId}</div>
|
117 |
+
<div class="node-dimensions">${dimensions}</div>
|
118 |
+
<div class="node-port port-in"></div>
|
119 |
+
<div class="node-port port-out"></div>
|
120 |
+
<div class="node-controls">
|
121 |
+
<button class="node-edit-btn" title="Edit layer parameters"><i class="icon">⚙️</i></button>
|
122 |
+
<button class="node-delete-btn" title="Delete layer"><i class="icon">🗑️</i></button>
|
123 |
+
</div>
|
124 |
+
`;
|
125 |
+
|
126 |
+
// Store dimensions for hover display
|
127 |
+
canvasNode.setAttribute('data-dimensions', dimensions);
|
128 |
+
canvasNode.setAttribute('data-name', nodeName);
|
129 |
+
|
130 |
+
// Add to network layers
|
131 |
+
const layerInfo = {
|
132 |
+
id: layerId,
|
133 |
+
type: nodeType,
|
134 |
+
name: nodeName,
|
135 |
+
dimensions: dimensions,
|
136 |
+
position: { x, y }
|
137 |
+
};
|
138 |
+
|
139 |
+
networkLayers.layers.push(layerInfo);
|
140 |
+
|
141 |
+
// Add to canvas
|
142 |
+
canvas.appendChild(canvasNode);
|
143 |
+
|
144 |
+
// Add events for moving nodes on the canvas
|
145 |
+
canvasNode.addEventListener('mousedown', startDrag);
|
146 |
+
|
147 |
+
// Connection handling
|
148 |
+
const portIn = canvasNode.querySelector('.port-in');
|
149 |
+
const portOut = canvasNode.querySelector('.port-out');
|
150 |
+
|
151 |
+
portOut.addEventListener('mousedown', (e) => {
|
152 |
+
e.stopPropagation();
|
153 |
+
startConnection(canvasNode, e);
|
154 |
+
});
|
155 |
+
|
156 |
+
portIn.addEventListener('mouseup', (e) => {
|
157 |
+
e.stopPropagation();
|
158 |
+
endConnection(canvasNode);
|
159 |
+
});
|
160 |
+
|
161 |
+
// Button event listeners
|
162 |
+
const editBtn = canvasNode.querySelector('.node-edit-btn');
|
163 |
+
if (editBtn) {
|
164 |
+
editBtn.addEventListener('click', (e) => {
|
165 |
+
e.stopPropagation();
|
166 |
+
openLayerEditor(canvasNode);
|
167 |
+
});
|
168 |
+
}
|
169 |
+
|
170 |
+
const deleteBtn = canvasNode.querySelector('.node-delete-btn');
|
171 |
+
if (deleteBtn) {
|
172 |
+
deleteBtn.addEventListener('click', (e) => {
|
173 |
+
e.stopPropagation();
|
174 |
+
deleteNode(canvasNode);
|
175 |
+
});
|
176 |
+
}
|
177 |
+
|
178 |
+
// Update node parameters (for sequential model validation)
|
179 |
+
updateLayerConnectivity();
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
// Start dragging an existing node on the canvas
|
184 |
+
function startDrag(e) {
|
185 |
+
if (isConnecting) return;
|
186 |
+
|
187 |
+
// Only start drag if not clicking on buttons or ports
|
188 |
+
if (e.target.closest('.node-controls') || e.target.closest('.node-port')) {
|
189 |
+
return;
|
190 |
+
}
|
191 |
+
|
192 |
+
isDragging = true;
|
193 |
+
const target = e.target.closest('.canvas-node');
|
194 |
+
const rect = target.getBoundingClientRect();
|
195 |
+
|
196 |
+
// Calculate offset
|
197 |
+
offsetX = e.clientX - rect.left;
|
198 |
+
offsetY = e.clientY - rect.top;
|
199 |
+
|
200 |
+
document.addEventListener('mousemove', dragNode);
|
201 |
+
document.addEventListener('mouseup', stopDrag);
|
202 |
+
|
203 |
+
// Reference to the dragged node
|
204 |
+
draggedNode = target;
|
205 |
+
|
206 |
+
// Make the dragged node appear on top
|
207 |
+
draggedNode.style.zIndex = "100";
|
208 |
+
|
209 |
+
// Add dragging class for visual feedback
|
210 |
+
draggedNode.classList.add('dragging');
|
211 |
+
|
212 |
+
// Prevent default behavior
|
213 |
+
e.preventDefault();
|
214 |
+
}
|
215 |
+
|
216 |
+
// Drag node on the canvas
|
217 |
+
function dragNode(e) {
|
218 |
+
if (!isDragging) return;
|
219 |
+
|
220 |
+
const canvasRect = canvas.getBoundingClientRect();
|
221 |
+
let x = e.clientX - canvasRect.left - offsetX;
|
222 |
+
let y = e.clientY - canvasRect.top - offsetY;
|
223 |
+
|
224 |
+
// Constrain to canvas
|
225 |
+
x = Math.max(0, Math.min(canvasRect.width - draggedNode.offsetWidth, x));
|
226 |
+
y = Math.max(0, Math.min(canvasRect.height - draggedNode.offsetHeight, y));
|
227 |
+
|
228 |
+
draggedNode.style.left = `${x}px`;
|
229 |
+
draggedNode.style.top = `${y}px`;
|
230 |
+
|
231 |
+
// Update node position in network layers
|
232 |
+
const nodeId = draggedNode.getAttribute('data-id');
|
233 |
+
const layerIndex = networkLayers.layers.findIndex(layer => layer.id === nodeId);
|
234 |
+
if (layerIndex !== -1) {
|
235 |
+
networkLayers.layers[layerIndex].position = { x, y };
|
236 |
+
}
|
237 |
+
|
238 |
+
// Update connected lines if any
|
239 |
+
updateConnections();
|
240 |
+
}
|
241 |
+
|
242 |
+
// Stop dragging
|
243 |
+
function stopDrag() {
|
244 |
+
if (!isDragging) return;
|
245 |
+
|
246 |
+
isDragging = false;
|
247 |
+
document.removeEventListener('mousemove', dragNode);
|
248 |
+
document.removeEventListener('mouseup', stopDrag);
|
249 |
+
|
250 |
+
// Reset z-index and remove dragging class
|
251 |
+
if (draggedNode) {
|
252 |
+
draggedNode.style.zIndex = "10";
|
253 |
+
draggedNode.classList.remove('dragging');
|
254 |
+
|
255 |
+
// Trigger connections update one more time
|
256 |
+
updateConnections();
|
257 |
+
}
|
258 |
+
}
|
259 |
+
|
260 |
+
// Start creating a connection between nodes
|
261 |
+
function startConnection(node, e) {
|
262 |
+
isConnecting = true;
|
263 |
+
startNode = node;
|
264 |
+
|
265 |
+
// Create a temporary line
|
266 |
+
connectionLine = document.createElement('div');
|
267 |
+
connectionLine.className = 'connection temp-connection';
|
268 |
+
|
269 |
+
// Get start position (center of the port)
|
270 |
+
const portOut = node.querySelector('.port-out');
|
271 |
+
const portRect = portOut.getBoundingClientRect();
|
272 |
+
const canvasRect = canvas.getBoundingClientRect();
|
273 |
+
|
274 |
+
const startX = portRect.left + portRect.width / 2 - canvasRect.left;
|
275 |
+
const startY = portRect.top + portRect.height / 2 - canvasRect.top;
|
276 |
+
|
277 |
+
// Position the line
|
278 |
+
connectionLine.style.left = `${startX}px`;
|
279 |
+
connectionLine.style.top = `${startY}px`;
|
280 |
+
connectionLine.style.width = '0px';
|
281 |
+
connectionLine.style.transform = 'rotate(0deg)';
|
282 |
+
|
283 |
+
// Add active class to the starting port
|
284 |
+
portOut.classList.add('active-port');
|
285 |
+
|
286 |
+
// Highlight valid target ports
|
287 |
+
highlightValidConnectionTargets(node);
|
288 |
+
|
289 |
+
canvas.appendChild(connectionLine);
|
290 |
+
|
291 |
+
// Add event listeners for drawing the line
|
292 |
+
document.addEventListener('mousemove', drawConnection);
|
293 |
+
document.addEventListener('mouseup', cancelConnection);
|
294 |
+
|
295 |
+
e.preventDefault();
|
296 |
+
}
|
297 |
+
|
298 |
+
// Highlight valid targets for connection
|
299 |
+
function highlightValidConnectionTargets(sourceNode) {
|
300 |
+
const sourceType = sourceNode.getAttribute('data-type');
|
301 |
+
const sourceId = sourceNode.getAttribute('data-id');
|
302 |
+
|
303 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
304 |
+
if (node !== sourceNode) {
|
305 |
+
const nodeType = node.getAttribute('data-type');
|
306 |
+
const nodeId = node.getAttribute('data-id');
|
307 |
+
const isValidTarget = isValidConnection(sourceType, nodeType, sourceId, nodeId);
|
308 |
+
|
309 |
+
const portIn = node.querySelector('.port-in');
|
310 |
+
if (isValidTarget) {
|
311 |
+
portIn.classList.add('valid-target');
|
312 |
+
} else {
|
313 |
+
portIn.classList.add('invalid-target');
|
314 |
+
}
|
315 |
+
}
|
316 |
+
});
|
317 |
+
}
|
318 |
+
|
319 |
+
// Remove highlights from all ports
|
320 |
+
function removePortHighlights() {
|
321 |
+
document.querySelectorAll('.port-in, .port-out').forEach(port => {
|
322 |
+
port.classList.remove('active-port', 'valid-target', 'invalid-target');
|
323 |
+
});
|
324 |
+
}
|
325 |
+
|
326 |
+
// Check if a connection between two node types is valid
|
327 |
+
function isValidConnection(sourceType, targetType, sourceId, targetId) {
|
328 |
+
// Basic hierarchy validation
|
329 |
+
if (sourceType === 'output' || targetType === 'input') {
|
330 |
+
return false; // Output can't have outgoing connections, Input can't have incoming
|
331 |
+
}
|
332 |
+
|
333 |
+
// Prevent cycles
|
334 |
+
const existingConnection = networkLayers.connections.find(
|
335 |
+
conn => conn.target === sourceId && conn.source === targetId
|
336 |
+
);
|
337 |
+
if (existingConnection) {
|
338 |
+
return false;
|
339 |
+
}
|
340 |
+
|
341 |
+
// Specific connection rules
|
342 |
+
switch(sourceType) {
|
343 |
+
case 'input':
|
344 |
+
return ['hidden', 'conv'].includes(targetType);
|
345 |
+
case 'conv':
|
346 |
+
return ['conv', 'pool', 'hidden'].includes(targetType);
|
347 |
+
case 'pool':
|
348 |
+
return ['conv', 'hidden'].includes(targetType);
|
349 |
+
case 'hidden':
|
350 |
+
return ['hidden', 'output'].includes(targetType);
|
351 |
+
default:
|
352 |
+
return false;
|
353 |
+
}
|
354 |
+
}
|
355 |
+
|
356 |
+
// Draw the connection line as mouse moves
|
357 |
+
function drawConnection(e) {
|
358 |
+
if (!isConnecting || !connectionLine) return;
|
359 |
+
|
360 |
+
const canvasRect = canvas.getBoundingClientRect();
|
361 |
+
const portOut = startNode.querySelector('.port-out');
|
362 |
+
const portRect = portOut.getBoundingClientRect();
|
363 |
+
|
364 |
+
// Calculate start and end points
|
365 |
+
const startX = portRect.left + portRect.width / 2 - canvasRect.left;
|
366 |
+
const startY = portRect.top + portRect.height / 2 - canvasRect.top;
|
367 |
+
const endX = e.clientX - canvasRect.left;
|
368 |
+
const endY = e.clientY - canvasRect.top;
|
369 |
+
|
370 |
+
// Calculate length and angle
|
371 |
+
const length = Math.sqrt(Math.pow(endX - startX, 2) + Math.pow(endY - startY, 2));
|
372 |
+
const angle = Math.atan2(endY - startY, endX - startX) * 180 / Math.PI;
|
373 |
+
|
374 |
+
// Update line
|
375 |
+
connectionLine.style.width = `${length}px`;
|
376 |
+
connectionLine.style.transform = `rotate(${angle}deg)`;
|
377 |
+
|
378 |
+
// Highlight the port under cursor
|
379 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
380 |
+
if (node !== startNode) {
|
381 |
+
const nodeRect = node.getBoundingClientRect();
|
382 |
+
const portIn = node.querySelector('.port-in');
|
383 |
+
const portInRect = portIn.getBoundingClientRect();
|
384 |
+
|
385 |
+
// Check if mouse is over the input port
|
386 |
+
if (e.clientX >= portInRect.left && e.clientX <= portInRect.right &&
|
387 |
+
e.clientY >= portInRect.top && e.clientY <= portInRect.bottom) {
|
388 |
+
portIn.classList.add('port-hover');
|
389 |
+
} else {
|
390 |
+
portIn.classList.remove('port-hover');
|
391 |
+
}
|
392 |
+
}
|
393 |
+
});
|
394 |
+
}
|
395 |
+
|
396 |
+
// Cancel connection creation
|
397 |
+
function cancelConnection(e) {
|
398 |
+
if (!isConnecting) return;
|
399 |
+
|
400 |
+
// Find if we're over a valid input port
|
401 |
+
let targetNode = null;
|
402 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
403 |
+
if (node !== startNode) {
|
404 |
+
const portIn = node.querySelector('.port-in');
|
405 |
+
const portRect = portIn.getBoundingClientRect();
|
406 |
+
|
407 |
+
if (e.clientX >= portRect.left && e.clientX <= portRect.right &&
|
408 |
+
e.clientY >= portRect.top && e.clientY <= portRect.bottom) {
|
409 |
+
|
410 |
+
// Check if this would be a valid connection
|
411 |
+
const sourceType = startNode.getAttribute('data-type');
|
412 |
+
const targetType = node.getAttribute('data-type');
|
413 |
+
const sourceId = startNode.getAttribute('data-id');
|
414 |
+
const targetId = node.getAttribute('data-id');
|
415 |
+
|
416 |
+
if (isValidConnection(sourceType, targetType, sourceId, targetId)) {
|
417 |
+
targetNode = node;
|
418 |
+
}
|
419 |
+
}
|
420 |
+
}
|
421 |
+
});
|
422 |
+
|
423 |
+
// If we found a valid target, create the connection
|
424 |
+
if (targetNode) {
|
425 |
+
endConnection(targetNode);
|
426 |
+
} else {
|
427 |
+
// Otherwise, remove the temporary line
|
428 |
+
if (connectionLine && connectionLine.parentNode) {
|
429 |
+
connectionLine.parentNode.removeChild(connectionLine);
|
430 |
+
}
|
431 |
+
}
|
432 |
+
|
433 |
+
// Remove all port highlights
|
434 |
+
removePortHighlights();
|
435 |
+
document.querySelectorAll('.port-hover').forEach(port => {
|
436 |
+
port.classList.remove('port-hover');
|
437 |
+
});
|
438 |
+
|
439 |
+
// Reset variables
|
440 |
+
isConnecting = false;
|
441 |
+
startNode = null;
|
442 |
+
connectionLine = null;
|
443 |
+
|
444 |
+
// Remove event listeners
|
445 |
+
document.removeEventListener('mousemove', drawConnection);
|
446 |
+
document.removeEventListener('mouseup', cancelConnection);
|
447 |
+
}
|
448 |
+
|
449 |
+
// End creating a connection
|
450 |
+
function endConnection(targetNode) {
|
451 |
+
if (!isConnecting) return;
|
452 |
+
|
453 |
+
// Check if a valid node port was targeted
|
454 |
+
if (targetNode && targetNode.classList && targetNode.classList.contains('canvas-node')) {
|
455 |
+
// Get node IDs for the connection
|
456 |
+
const sourceId = startNode.getAttribute('data-id');
|
457 |
+
const targetId = targetNode.getAttribute('data-id');
|
458 |
+
|
459 |
+
// Check if connection already exists
|
460 |
+
const exists = networkLayers.connections.some(conn =>
|
461 |
+
conn.source === sourceId && conn.target === targetId
|
462 |
+
);
|
463 |
+
|
464 |
+
if (!exists) {
|
465 |
+
// Create permanent connection
|
466 |
+
const connection = connectionLine.cloneNode(true);
|
467 |
+
connection.classList.remove('temp-connection');
|
468 |
+
connection.setAttribute('data-source', sourceId);
|
469 |
+
connection.setAttribute('data-target', targetId);
|
470 |
+
canvas.appendChild(connection);
|
471 |
+
|
472 |
+
// Add to connections array
|
473 |
+
networkLayers.connections.push({
|
474 |
+
source: sourceId,
|
475 |
+
target: targetId,
|
476 |
+
sourceType: startNode.getAttribute('data-type'),
|
477 |
+
targetType: targetNode.getAttribute('data-type')
|
478 |
+
});
|
479 |
+
|
480 |
+
// Update parameters for model consistency
|
481 |
+
updateLayerConnectivity();
|
482 |
+
|
483 |
+
console.log(`Connected ${sourceId} to ${targetId}`);
|
484 |
+
}
|
485 |
+
}
|
486 |
+
|
487 |
+
// Remove temporary line
|
488 |
+
if (connectionLine && connectionLine.parentNode) {
|
489 |
+
connectionLine.parentNode.removeChild(connectionLine);
|
490 |
+
}
|
491 |
+
|
492 |
+
// Remove port highlights
|
493 |
+
removePortHighlights();
|
494 |
+
|
495 |
+
// Reset variables
|
496 |
+
isConnecting = false;
|
497 |
+
startNode = null;
|
498 |
+
connectionLine = null;
|
499 |
+
|
500 |
+
// Remove event listeners
|
501 |
+
document.removeEventListener('mousemove', drawConnection);
|
502 |
+
document.removeEventListener('mouseup', cancelConnection);
|
503 |
+
}
|
504 |
+
|
505 |
+
// Update layer connectivity to ensure model consistency
|
506 |
+
function updateLayerConnectivity() {
|
507 |
+
// This is where we'd propagate input/output shapes between connected layers
|
508 |
+
// For now we'll just highlight connected nodes
|
509 |
+
|
510 |
+
// Reset all nodes
|
511 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
512 |
+
node.classList.remove('connected-node');
|
513 |
+
});
|
514 |
+
|
515 |
+
// Mark all nodes that have connections
|
516 |
+
const connectedNodeIds = new Set();
|
517 |
+
networkLayers.connections.forEach(conn => {
|
518 |
+
connectedNodeIds.add(conn.source);
|
519 |
+
connectedNodeIds.add(conn.target);
|
520 |
+
});
|
521 |
+
|
522 |
+
connectedNodeIds.forEach(id => {
|
523 |
+
const node = document.querySelector(`.canvas-node[data-id="${id}"]`);
|
524 |
+
if (node) {
|
525 |
+
node.classList.add('connected-node');
|
526 |
+
}
|
527 |
+
});
|
528 |
+
|
529 |
+
// Trigger a custom event that the main script can listen for
|
530 |
+
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
531 |
+
document.dispatchEvent(event);
|
532 |
+
}
|
533 |
+
|
534 |
+
// Delete a node and its connections
|
535 |
+
function deleteNode(node) {
|
536 |
+
if (!node) return;
|
537 |
+
|
538 |
+
const nodeId = node.getAttribute('data-id');
|
539 |
+
|
540 |
+
// Remove all connections to/from this node
|
541 |
+
document.querySelectorAll(`.connection[data-source="${nodeId}"], .connection[data-target="${nodeId}"]`).forEach(conn => {
|
542 |
+
conn.parentNode.removeChild(conn);
|
543 |
+
});
|
544 |
+
|
545 |
+
// Remove from network layers
|
546 |
+
networkLayers.layers = networkLayers.layers.filter(layer => layer.id !== nodeId);
|
547 |
+
networkLayers.connections = networkLayers.connections.filter(conn =>
|
548 |
+
conn.source !== nodeId && conn.target !== nodeId
|
549 |
+
);
|
550 |
+
|
551 |
+
// Remove the node
|
552 |
+
node.parentNode.removeChild(node);
|
553 |
+
|
554 |
+
// Update layer connectivity
|
555 |
+
updateLayerConnectivity();
|
556 |
+
}
|
557 |
+
|
558 |
+
// Open layer editor modal
|
559 |
+
function openLayerEditor(node) {
|
560 |
+
if (!node) return;
|
561 |
+
|
562 |
+
const nodeId = node.getAttribute('data-id');
|
563 |
+
const nodeType = node.getAttribute('data-type');
|
564 |
+
const nodeName = node.getAttribute('data-name');
|
565 |
+
const dimensions = node.getAttribute('data-dimensions');
|
566 |
+
|
567 |
+
// Trigger custom event
|
568 |
+
const event = new CustomEvent('openLayerEditor', {
|
569 |
+
detail: { id: nodeId, type: nodeType, name: nodeName, dimensions: dimensions }
|
570 |
+
});
|
571 |
+
document.dispatchEvent(event);
|
572 |
+
}
|
573 |
+
|
574 |
+
// Update connections when nodes are moved
|
575 |
+
function updateConnections() {
|
576 |
+
const connections = document.querySelectorAll('.connection');
|
577 |
+
connections.forEach(connection => {
|
578 |
+
const sourceId = connection.getAttribute('data-source');
|
579 |
+
const targetId = connection.getAttribute('data-target');
|
580 |
+
|
581 |
+
const sourceNode = document.querySelector(`.canvas-node[data-id="${sourceId}"]`);
|
582 |
+
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
|
583 |
+
|
584 |
+
if (sourceNode && targetNode) {
|
585 |
+
const sourcePort = sourceNode.querySelector('.port-out');
|
586 |
+
const targetPort = targetNode.querySelector('.port-in');
|
587 |
+
|
588 |
+
if (sourcePort && targetPort) {
|
589 |
+
const sourceRect = sourcePort.getBoundingClientRect();
|
590 |
+
const targetRect = targetPort.getBoundingClientRect();
|
591 |
+
const canvasRect = canvas.getBoundingClientRect();
|
592 |
+
|
593 |
+
const startX = sourceRect.left + sourceRect.width / 2 - canvasRect.left;
|
594 |
+
const startY = sourceRect.top + sourceRect.height / 2 - canvasRect.top;
|
595 |
+
const endX = targetRect.left + targetRect.width / 2 - canvasRect.left;
|
596 |
+
const endY = targetRect.top + targetRect.height / 2 - canvasRect.top;
|
597 |
+
|
598 |
+
const length = Math.sqrt(Math.pow(endX - startX, 2) + Math.pow(endY - startY, 2));
|
599 |
+
const angle = Math.atan2(endY - startY, endX - startX) * 180 / Math.PI;
|
600 |
+
|
601 |
+
connection.style.left = `${startX}px`;
|
602 |
+
connection.style.top = `${startY}px`;
|
603 |
+
connection.style.width = `${length}px`;
|
604 |
+
connection.style.transform = `rotate(${angle}deg)`;
|
605 |
+
}
|
606 |
+
} else {
|
607 |
+
// If either node is missing, remove the connection
|
608 |
+
if (connection.parentNode) {
|
609 |
+
connection.parentNode.removeChild(connection);
|
610 |
+
|
611 |
+
// Remove from the connections array
|
612 |
+
const connIndex = networkLayers.connections.findIndex(conn =>
|
613 |
+
conn.source === sourceId && conn.target === targetId
|
614 |
+
);
|
615 |
+
if (connIndex !== -1) {
|
616 |
+
networkLayers.connections.splice(connIndex, 1);
|
617 |
+
}
|
618 |
+
}
|
619 |
+
}
|
620 |
+
});
|
621 |
+
}
|
622 |
+
|
623 |
+
// Get the current network architecture
|
624 |
+
function getNetworkArchitecture() {
|
625 |
+
return networkLayers;
|
626 |
+
}
|
627 |
+
|
628 |
+
// Clear all nodes from the canvas
|
629 |
+
function clearAllNodes() {
|
630 |
+
// Clear all nodes and connections
|
631 |
+
document.querySelectorAll('.canvas-node, .connection').forEach(el => {
|
632 |
+
el.parentNode.removeChild(el);
|
633 |
+
});
|
634 |
+
|
635 |
+
// Reset network layers
|
636 |
+
networkLayers = {
|
637 |
+
layers: [],
|
638 |
+
connections: []
|
639 |
+
};
|
640 |
+
|
641 |
+
// Reset layer counter
|
642 |
+
window.neuralNetwork.resetLayerCounter();
|
643 |
+
|
644 |
+
// Show the canvas hint
|
645 |
+
const canvasHint = document.querySelector('.canvas-hint');
|
646 |
+
if (canvasHint) {
|
647 |
+
canvasHint.style.display = 'block';
|
648 |
+
}
|
649 |
+
|
650 |
+
// Trigger network updated event
|
651 |
+
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
652 |
+
document.dispatchEvent(event);
|
653 |
+
}
|
654 |
+
|
655 |
+
// Export functions
|
656 |
+
window.dragDrop = {
|
657 |
+
getNetworkArchitecture,
|
658 |
+
clearAllNodes,
|
659 |
+
updateConnections
|
660 |
+
};
|
661 |
+
}
|
js/main.js
ADDED
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Initialize the application when the DOM is fully loaded
|
2 |
+
document.addEventListener('DOMContentLoaded', () => {
|
3 |
+
console.log('Neural Network Playground Initialized');
|
4 |
+
|
5 |
+
// Initialize the canvas and tooltip
|
6 |
+
const canvas = document.getElementById('network-canvas');
|
7 |
+
const tooltip = document.createElement('div');
|
8 |
+
tooltip.className = 'canvas-tooltip';
|
9 |
+
tooltip.innerHTML = `
|
10 |
+
<div class="tooltip-header"></div>
|
11 |
+
<div class="tooltip-content"></div>
|
12 |
+
`;
|
13 |
+
document.body.appendChild(tooltip);
|
14 |
+
|
15 |
+
// Initialize drag and drop functionality
|
16 |
+
initializeDragAndDrop();
|
17 |
+
|
18 |
+
// Network configuration (from UI controls)
|
19 |
+
let networkConfig = {
|
20 |
+
learningRate: 0.01,
|
21 |
+
activation: 'relu',
|
22 |
+
batchSize: 32,
|
23 |
+
epochs: 10
|
24 |
+
};
|
25 |
+
|
26 |
+
// Initialize UI controls
|
27 |
+
setupUIControls();
|
28 |
+
|
29 |
+
// Layer editor modal
|
30 |
+
setupLayerEditor();
|
31 |
+
|
32 |
+
// Listen for network updates
|
33 |
+
document.addEventListener('networkUpdated', handleNetworkUpdate);
|
34 |
+
|
35 |
+
// Listen for layer editor events
|
36 |
+
document.addEventListener('openLayerEditor', handleOpenLayerEditor);
|
37 |
+
|
38 |
+
// Setup UI controls and event listeners
|
39 |
+
function setupUIControls() {
|
40 |
+
// Learning rate slider
|
41 |
+
const learningRateSlider = document.getElementById('learning-rate');
|
42 |
+
const learningRateValue = document.getElementById('learning-rate-value');
|
43 |
+
|
44 |
+
if (learningRateSlider && learningRateValue) {
|
45 |
+
learningRateSlider.value = networkConfig.learningRate;
|
46 |
+
learningRateValue.textContent = networkConfig.learningRate.toFixed(3);
|
47 |
+
|
48 |
+
learningRateSlider.addEventListener('input', (e) => {
|
49 |
+
networkConfig.learningRate = parseFloat(e.target.value);
|
50 |
+
learningRateValue.textContent = networkConfig.learningRate.toFixed(3);
|
51 |
+
});
|
52 |
+
}
|
53 |
+
|
54 |
+
// Activation function dropdown
|
55 |
+
const activationSelect = document.getElementById('activation');
|
56 |
+
if (activationSelect) {
|
57 |
+
activationSelect.value = networkConfig.activation;
|
58 |
+
|
59 |
+
activationSelect.addEventListener('change', (e) => {
|
60 |
+
networkConfig.activation = e.target.value;
|
61 |
+
updateActivationFunctionGraph(networkConfig.activation);
|
62 |
+
});
|
63 |
+
}
|
64 |
+
|
65 |
+
// Initialize activation function graph
|
66 |
+
updateActivationFunctionGraph(networkConfig.activation);
|
67 |
+
|
68 |
+
// Sample data event handlers
|
69 |
+
const sampleItems = document.querySelectorAll('.sample-item');
|
70 |
+
sampleItems.forEach(item => {
|
71 |
+
item.addEventListener('click', () => {
|
72 |
+
const sampleId = item.getAttribute('data-sample');
|
73 |
+
handleSampleSelection(sampleId);
|
74 |
+
});
|
75 |
+
});
|
76 |
+
|
77 |
+
// Button event listeners
|
78 |
+
const runButton = document.getElementById('run-network');
|
79 |
+
if (runButton) {
|
80 |
+
runButton.addEventListener('click', runNetwork);
|
81 |
+
}
|
82 |
+
|
83 |
+
const clearButton = document.getElementById('clear-canvas');
|
84 |
+
if (clearButton) {
|
85 |
+
clearButton.addEventListener('click', clearCanvas);
|
86 |
+
}
|
87 |
+
|
88 |
+
// Modal handlers
|
89 |
+
setupModals();
|
90 |
+
}
|
91 |
+
|
92 |
+
// Setup modal handlers
|
93 |
+
function setupModals() {
|
94 |
+
const aboutModal = document.getElementById('about-modal');
|
95 |
+
const aboutLink = document.getElementById('about-link');
|
96 |
+
|
97 |
+
if (aboutLink && aboutModal) {
|
98 |
+
aboutLink.addEventListener('click', (e) => {
|
99 |
+
e.preventDefault();
|
100 |
+
openModal(aboutModal);
|
101 |
+
});
|
102 |
+
|
103 |
+
const closeButtons = aboutModal.querySelectorAll('.close-modal');
|
104 |
+
closeButtons.forEach(btn => {
|
105 |
+
btn.addEventListener('click', () => {
|
106 |
+
closeModal(aboutModal);
|
107 |
+
});
|
108 |
+
});
|
109 |
+
|
110 |
+
// Close modal when clicking outside
|
111 |
+
aboutModal.addEventListener('click', (e) => {
|
112 |
+
if (e.target === aboutModal) {
|
113 |
+
closeModal(aboutModal);
|
114 |
+
}
|
115 |
+
});
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
// Setup layer editor modal
|
120 |
+
function setupLayerEditor() {
|
121 |
+
const layerEditorModal = document.getElementById('layer-editor-modal');
|
122 |
+
|
123 |
+
if (layerEditorModal) {
|
124 |
+
const closeButtons = layerEditorModal.querySelectorAll('.close-modal');
|
125 |
+
closeButtons.forEach(btn => {
|
126 |
+
btn.addEventListener('click', () => {
|
127 |
+
closeModal(layerEditorModal);
|
128 |
+
});
|
129 |
+
});
|
130 |
+
|
131 |
+
// Close modal when clicking outside
|
132 |
+
layerEditorModal.addEventListener('click', (e) => {
|
133 |
+
if (e.target === layerEditorModal) {
|
134 |
+
closeModal(layerEditorModal);
|
135 |
+
}
|
136 |
+
});
|
137 |
+
|
138 |
+
// Save button
|
139 |
+
const saveButton = layerEditorModal.querySelector('.save-layer-btn');
|
140 |
+
if (saveButton) {
|
141 |
+
saveButton.addEventListener('click', saveLayerConfig);
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
|
146 |
+
// Open modal
|
147 |
+
function openModal(modal) {
|
148 |
+
if (modal) {
|
149 |
+
modal.style.display = 'flex';
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
// Close modal
|
154 |
+
function closeModal(modal) {
|
155 |
+
if (modal) {
|
156 |
+
modal.style.display = 'none';
|
157 |
+
}
|
158 |
+
}
|
159 |
+
|
160 |
+
// Handle network updates
|
161 |
+
function handleNetworkUpdate(e) {
|
162 |
+
const networkLayers = e.detail;
|
163 |
+
console.log('Network updated:', networkLayers);
|
164 |
+
|
165 |
+
// Update the properties panel
|
166 |
+
updatePropertiesPanel(networkLayers);
|
167 |
+
}
|
168 |
+
|
169 |
+
// Update properties panel with network information
|
170 |
+
function updatePropertiesPanel(networkLayers) {
|
171 |
+
const propertiesPanel = document.querySelector('.props-panel');
|
172 |
+
if (!propertiesPanel) return;
|
173 |
+
|
174 |
+
// Find the properties content section
|
175 |
+
const propsContent = propertiesPanel.querySelector('.props-content');
|
176 |
+
if (!propsContent) return;
|
177 |
+
|
178 |
+
// Basic network stats
|
179 |
+
const layerCount = networkLayers.layers.length;
|
180 |
+
const connectionCount = networkLayers.connections.length;
|
181 |
+
|
182 |
+
let layerTypeCounts = {};
|
183 |
+
networkLayers.layers.forEach(layer => {
|
184 |
+
layerTypeCounts[layer.type] = (layerTypeCounts[layer.type] || 0) + 1;
|
185 |
+
});
|
186 |
+
|
187 |
+
// Check network validity
|
188 |
+
const validationResult = window.neuralNetwork.validateNetwork(
|
189 |
+
networkLayers.layers,
|
190 |
+
networkLayers.connections
|
191 |
+
);
|
192 |
+
|
193 |
+
// Update network architecture section
|
194 |
+
let networkArchitectureHTML = `
|
195 |
+
<div class="props-section">
|
196 |
+
<div class="props-heading">
|
197 |
+
<i class="icon">🔍</i> Network Architecture
|
198 |
+
</div>
|
199 |
+
<div class="props-row">
|
200 |
+
<div class="props-key">Total Layers</div>
|
201 |
+
<div class="props-value">${layerCount}</div>
|
202 |
+
</div>
|
203 |
+
<div class="props-row">
|
204 |
+
<div class="props-key">Connections</div>
|
205 |
+
<div class="props-value">${connectionCount}</div>
|
206 |
+
</div>
|
207 |
+
`;
|
208 |
+
|
209 |
+
// Add layer type counts
|
210 |
+
Object.entries(layerTypeCounts).forEach(([type, count]) => {
|
211 |
+
networkArchitectureHTML += `
|
212 |
+
<div class="props-row">
|
213 |
+
<div class="props-key">${type.charAt(0).toUpperCase() + type.slice(1)} Layers</div>
|
214 |
+
<div class="props-value">${count}</div>
|
215 |
+
</div>
|
216 |
+
`;
|
217 |
+
});
|
218 |
+
|
219 |
+
// Add validation status
|
220 |
+
networkArchitectureHTML += `
|
221 |
+
<div class="props-row">
|
222 |
+
<div class="props-key">Validity</div>
|
223 |
+
<div class="props-value" style="color: ${validationResult.valid ? 'var(--secondary-color)' : 'var(--warning-color)'}">
|
224 |
+
${validationResult.valid ? 'Valid' : 'Invalid'}
|
225 |
+
</div>
|
226 |
+
</div>
|
227 |
+
`;
|
228 |
+
|
229 |
+
// If there are validation errors, show them
|
230 |
+
if (!validationResult.valid && validationResult.errors.length > 0) {
|
231 |
+
networkArchitectureHTML += `
|
232 |
+
<div class="props-row">
|
233 |
+
<div class="props-key">Errors</div>
|
234 |
+
<div class="props-value" style="color: var(--warning-color)">
|
235 |
+
${validationResult.errors.join('<br>')}
|
236 |
+
</div>
|
237 |
+
</div>
|
238 |
+
`;
|
239 |
+
}
|
240 |
+
|
241 |
+
networkArchitectureHTML += `</div>`;
|
242 |
+
|
243 |
+
// Calculate total parameters if we have layers
|
244 |
+
let totalParameters = 0;
|
245 |
+
let totalFlops = 0;
|
246 |
+
let totalMemory = 0;
|
247 |
+
|
248 |
+
if (layerCount > 0) {
|
249 |
+
// Calculate model stats
|
250 |
+
const modelStatsHTML = `
|
251 |
+
<div class="props-section">
|
252 |
+
<div class="props-heading">
|
253 |
+
<i class="icon">📊</i> Model Statistics
|
254 |
+
</div>
|
255 |
+
<div class="props-row">
|
256 |
+
<div class="props-key">Parameters</div>
|
257 |
+
<div class="props-value">${formatNumber(totalParameters)}</div>
|
258 |
+
</div>
|
259 |
+
<div class="props-row">
|
260 |
+
<div class="props-key">FLOPs</div>
|
261 |
+
<div class="props-value">${formatNumber(totalFlops)}</div>
|
262 |
+
</div>
|
263 |
+
<div class="props-row">
|
264 |
+
<div class="props-key">Memory</div>
|
265 |
+
<div class="props-value">${formatMemorySize(totalMemory)}</div>
|
266 |
+
</div>
|
267 |
+
</div>
|
268 |
+
`;
|
269 |
+
|
270 |
+
// Update the properties content
|
271 |
+
propsContent.innerHTML = networkArchitectureHTML + modelStatsHTML;
|
272 |
+
} else {
|
273 |
+
// Just show basic architecture info
|
274 |
+
propsContent.innerHTML = networkArchitectureHTML;
|
275 |
+
}
|
276 |
+
}
|
277 |
+
|
278 |
+
// Format number with K, M, B suffixes
|
279 |
+
function formatNumber(num) {
|
280 |
+
if (num === 0) return '0';
|
281 |
+
if (!num) return 'N/A';
|
282 |
+
|
283 |
+
if (num >= 1e9) return (num / 1e9).toFixed(2) + 'B';
|
284 |
+
if (num >= 1e6) return (num / 1e6).toFixed(2) + 'M';
|
285 |
+
if (num >= 1e3) return (num / 1e3).toFixed(2) + 'K';
|
286 |
+
return num.toString();
|
287 |
+
}
|
288 |
+
|
289 |
+
// Format memory size in bytes to KB, MB, GB
|
290 |
+
function formatMemorySize(bytes) {
|
291 |
+
if (bytes === 0) return '0 Bytes';
|
292 |
+
if (!bytes) return 'N/A';
|
293 |
+
|
294 |
+
const k = 1024;
|
295 |
+
const sizes = ['Bytes', 'KB', 'MB', 'GB'];
|
296 |
+
const i = Math.floor(Math.log(bytes) / Math.log(k));
|
297 |
+
return parseFloat((bytes / Math.pow(k, i)).toFixed(2)) + ' ' + sizes[i];
|
298 |
+
}
|
299 |
+
|
300 |
+
// Handle opening the layer editor
|
301 |
+
function handleOpenLayerEditor(e) {
|
302 |
+
const layerDetails = e.detail;
|
303 |
+
console.log('Opening layer editor for:', layerDetails);
|
304 |
+
|
305 |
+
const layerEditorModal = document.getElementById('layer-editor-modal');
|
306 |
+
if (!layerEditorModal) return;
|
307 |
+
|
308 |
+
// Get the form and populate it
|
309 |
+
const layerForm = layerEditorModal.querySelector('.layer-form');
|
310 |
+
if (!layerForm) return;
|
311 |
+
|
312 |
+
// Set the layer ID in a data attribute for retrieval when saving
|
313 |
+
layerForm.setAttribute('data-layer-id', layerDetails.id);
|
314 |
+
layerForm.setAttribute('data-layer-type', layerDetails.type);
|
315 |
+
|
316 |
+
// Set modal title
|
317 |
+
const modalTitle = layerEditorModal.querySelector('.modal-title');
|
318 |
+
if (modalTitle) {
|
319 |
+
modalTitle.textContent = `Edit ${layerDetails.name}`;
|
320 |
+
}
|
321 |
+
|
322 |
+
// Get layer config template
|
323 |
+
const layerConfig = window.neuralNetwork.nodeConfigTemplates[layerDetails.type];
|
324 |
+
|
325 |
+
// Generate form fields based on layer type
|
326 |
+
layerForm.innerHTML = '';
|
327 |
+
|
328 |
+
// Add common fields
|
329 |
+
layerForm.innerHTML += `
|
330 |
+
<div class="form-group">
|
331 |
+
<label for="layer-name">Layer Name</label>
|
332 |
+
<input type="text" id="layer-name" value="${layerDetails.name}">
|
333 |
+
</div>
|
334 |
+
`;
|
335 |
+
|
336 |
+
// Add type-specific fields
|
337 |
+
switch (layerDetails.type) {
|
338 |
+
case 'input':
|
339 |
+
layerForm.innerHTML += `
|
340 |
+
<div class="form-group">
|
341 |
+
<label for="input-shape">Input Shape</label>
|
342 |
+
<input type="text" id="input-shape" value="${layerConfig.shape.join(' × ')}">
|
343 |
+
</div>
|
344 |
+
<div class="form-group">
|
345 |
+
<label for="batch-size">Batch Size</label>
|
346 |
+
<input type="number" id="batch-size" value="${layerConfig.batchSize}">
|
347 |
+
</div>
|
348 |
+
`;
|
349 |
+
break;
|
350 |
+
|
351 |
+
case 'hidden':
|
352 |
+
layerForm.innerHTML += `
|
353 |
+
<div class="form-group">
|
354 |
+
<label for="units">Units</label>
|
355 |
+
<input type="number" id="units" value="${layerConfig.units}">
|
356 |
+
</div>
|
357 |
+
<div class="form-group">
|
358 |
+
<label for="activation">Activation</label>
|
359 |
+
<select id="activation">
|
360 |
+
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
|
361 |
+
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
|
362 |
+
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
|
363 |
+
<option value="linear" ${layerConfig.activation === 'linear' ? 'selected' : ''}>Linear</option>
|
364 |
+
</select>
|
365 |
+
</div>
|
366 |
+
<div class="form-group">
|
367 |
+
<label for="use-bias">Use Bias</label>
|
368 |
+
<select id="use-bias">
|
369 |
+
<option value="true" ${layerConfig.useBias ? 'selected' : ''}>Yes</option>
|
370 |
+
<option value="false" ${!layerConfig.useBias ? 'selected' : ''}>No</option>
|
371 |
+
</select>
|
372 |
+
</div>
|
373 |
+
<div class="form-group">
|
374 |
+
<label for="dropout-rate">Dropout Rate</label>
|
375 |
+
<input type="number" id="dropout-rate" min="0" max="0.9" step="0.1" value="${layerConfig.dropoutRate}">
|
376 |
+
</div>
|
377 |
+
`;
|
378 |
+
break;
|
379 |
+
|
380 |
+
case 'output':
|
381 |
+
layerForm.innerHTML += `
|
382 |
+
<div class="form-group">
|
383 |
+
<label for="units">Units</label>
|
384 |
+
<input type="number" id="units" value="${layerConfig.units}">
|
385 |
+
</div>
|
386 |
+
<div class="form-group">
|
387 |
+
<label for="activation">Activation</label>
|
388 |
+
<select id="activation">
|
389 |
+
<option value="softmax" ${layerConfig.activation === 'softmax' ? 'selected' : ''}>Softmax</option>
|
390 |
+
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
|
391 |
+
<option value="linear" ${layerConfig.activation === 'linear' ? 'selected' : ''}>Linear</option>
|
392 |
+
</select>
|
393 |
+
</div>
|
394 |
+
`;
|
395 |
+
break;
|
396 |
+
|
397 |
+
case 'conv':
|
398 |
+
layerForm.innerHTML += `
|
399 |
+
<div class="form-group">
|
400 |
+
<label for="filters">Filters</label>
|
401 |
+
<input type="number" id="filters" value="${layerConfig.filters}">
|
402 |
+
</div>
|
403 |
+
<div class="form-group">
|
404 |
+
<label for="kernel-size">Kernel Size</label>
|
405 |
+
<input type="text" id="kernel-size" value="${layerConfig.kernelSize.join(' × ')}">
|
406 |
+
</div>
|
407 |
+
<div class="form-group">
|
408 |
+
<label for="strides">Strides</label>
|
409 |
+
<input type="text" id="strides" value="${layerConfig.strides.join(' × ')}">
|
410 |
+
</div>
|
411 |
+
<div class="form-group">
|
412 |
+
<label for="padding">Padding</label>
|
413 |
+
<select id="padding">
|
414 |
+
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid</option>
|
415 |
+
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same</option>
|
416 |
+
</select>
|
417 |
+
</div>
|
418 |
+
<div class="form-group">
|
419 |
+
<label for="activation">Activation</label>
|
420 |
+
<select id="activation">
|
421 |
+
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
|
422 |
+
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
|
423 |
+
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
|
424 |
+
<option value="linear" ${layerConfig.activation === 'linear' ? 'selected' : ''}>Linear</option>
|
425 |
+
</select>
|
426 |
+
</div>
|
427 |
+
`;
|
428 |
+
break;
|
429 |
+
|
430 |
+
case 'pool':
|
431 |
+
layerForm.innerHTML += `
|
432 |
+
<div class="form-group">
|
433 |
+
<label for="pool-size">Pool Size</label>
|
434 |
+
<input type="text" id="pool-size" value="${layerConfig.poolSize.join(' × ')}">
|
435 |
+
</div>
|
436 |
+
<div class="form-group">
|
437 |
+
<label for="strides">Strides</label>
|
438 |
+
<input type="text" id="strides" value="${layerConfig.strides.join(' × ')}">
|
439 |
+
</div>
|
440 |
+
<div class="form-group">
|
441 |
+
<label for="padding">Padding</label>
|
442 |
+
<select id="padding">
|
443 |
+
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid</option>
|
444 |
+
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same</option>
|
445 |
+
</select>
|
446 |
+
</div>
|
447 |
+
`;
|
448 |
+
break;
|
449 |
+
}
|
450 |
+
|
451 |
+
// Add save button
|
452 |
+
layerForm.innerHTML += `
|
453 |
+
<div class="form-group form-grid-full">
|
454 |
+
<button type="button" class="btn btn-primary save-layer-btn">Save Changes</button>
|
455 |
+
</div>
|
456 |
+
`;
|
457 |
+
|
458 |
+
// Show the modal
|
459 |
+
openModal(layerEditorModal);
|
460 |
+
}
|
461 |
+
|
462 |
+
// Save layer configuration
|
463 |
+
function saveLayerConfig() {
|
464 |
+
const layerEditorModal = document.getElementById('layer-editor-modal');
|
465 |
+
if (!layerEditorModal) return;
|
466 |
+
|
467 |
+
const layerForm = layerEditorModal.querySelector('.layer-form');
|
468 |
+
if (!layerForm) return;
|
469 |
+
|
470 |
+
const layerId = layerForm.getAttribute('data-layer-id');
|
471 |
+
const layerType = layerForm.getAttribute('data-layer-type');
|
472 |
+
|
473 |
+
// Get node on canvas
|
474 |
+
const node = document.querySelector(`.canvas-node[data-id="${layerId}"]`);
|
475 |
+
if (!node) return;
|
476 |
+
|
477 |
+
// Get form values
|
478 |
+
const name = document.getElementById('layer-name').value;
|
479 |
+
|
480 |
+
// Update node title
|
481 |
+
const nodeTitle = node.querySelector('.node-title');
|
482 |
+
if (nodeTitle) {
|
483 |
+
nodeTitle.textContent = name;
|
484 |
+
}
|
485 |
+
|
486 |
+
// Update node data attribute
|
487 |
+
node.setAttribute('data-name', name);
|
488 |
+
|
489 |
+
// Update dimensions based on layer type
|
490 |
+
let dimensions = '';
|
491 |
+
switch (layerType) {
|
492 |
+
case 'input':
|
493 |
+
const inputShape = document.getElementById('input-shape').value;
|
494 |
+
dimensions = inputShape;
|
495 |
+
break;
|
496 |
+
|
497 |
+
case 'hidden':
|
498 |
+
case 'output':
|
499 |
+
const units = document.getElementById('units').value;
|
500 |
+
dimensions = units;
|
501 |
+
break;
|
502 |
+
|
503 |
+
case 'conv':
|
504 |
+
const filters = document.getElementById('filters').value;
|
505 |
+
dimensions = `${filters} × 26 × 26`; // Simplified
|
506 |
+
break;
|
507 |
+
|
508 |
+
case 'pool':
|
509 |
+
dimensions = '32 × 13 × 13'; // Simplified
|
510 |
+
break;
|
511 |
+
}
|
512 |
+
|
513 |
+
// Update node dimensions
|
514 |
+
const nodeDimensions = node.querySelector('.node-dimensions');
|
515 |
+
if (nodeDimensions) {
|
516 |
+
nodeDimensions.textContent = dimensions;
|
517 |
+
}
|
518 |
+
|
519 |
+
// Update node data attribute
|
520 |
+
node.setAttribute('data-dimensions', dimensions);
|
521 |
+
|
522 |
+
// Update network layers in drag-drop module
|
523 |
+
const networkLayers = window.dragDrop.getNetworkArchitecture();
|
524 |
+
const layerIndex = networkLayers.layers.findIndex(layer => layer.id === layerId);
|
525 |
+
|
526 |
+
if (layerIndex !== -1) {
|
527 |
+
networkLayers.layers[layerIndex].name = name;
|
528 |
+
networkLayers.layers[layerIndex].dimensions = dimensions;
|
529 |
+
}
|
530 |
+
|
531 |
+
// Trigger network updated event
|
532 |
+
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
533 |
+
document.dispatchEvent(event);
|
534 |
+
|
535 |
+
// Close the modal
|
536 |
+
closeModal(layerEditorModal);
|
537 |
+
}
|
538 |
+
|
539 |
+
// Handle sample selection
|
540 |
+
function handleSampleSelection(sampleId) {
|
541 |
+
// Set active sample
|
542 |
+
document.querySelectorAll('.sample-item').forEach(item => {
|
543 |
+
item.classList.remove('active');
|
544 |
+
if (item.getAttribute('data-sample') === sampleId) {
|
545 |
+
item.classList.add('active');
|
546 |
+
}
|
547 |
+
});
|
548 |
+
|
549 |
+
// Get sample data
|
550 |
+
const sampleData = window.neuralNetwork.sampleData[sampleId];
|
551 |
+
if (!sampleData) return;
|
552 |
+
|
553 |
+
console.log(`Selected sample: ${sampleData.name}`);
|
554 |
+
|
555 |
+
// Update properties panel to show sample info
|
556 |
+
const propertiesPanel = document.querySelector('.props-panel');
|
557 |
+
if (!propertiesPanel) return;
|
558 |
+
|
559 |
+
const propsContent = propertiesPanel.querySelector('.props-content');
|
560 |
+
if (!propsContent) return;
|
561 |
+
|
562 |
+
propsContent.innerHTML = `
|
563 |
+
<div class="props-section">
|
564 |
+
<div class="props-heading">
|
565 |
+
<i class="icon">📊</i> ${sampleData.name}
|
566 |
+
</div>
|
567 |
+
<div class="props-row">
|
568 |
+
<div class="props-key">Input Shape</div>
|
569 |
+
<div class="props-value">${sampleData.inputShape.join(' × ')}</div>
|
570 |
+
</div>
|
571 |
+
<div class="props-row">
|
572 |
+
<div class="props-key">Classes</div>
|
573 |
+
<div class="props-value">${sampleData.numClasses}</div>
|
574 |
+
</div>
|
575 |
+
<div class="props-row">
|
576 |
+
<div class="props-key">Training Samples</div>
|
577 |
+
<div class="props-value">${sampleData.trainSamples.toLocaleString()}</div>
|
578 |
+
</div>
|
579 |
+
<div class="props-row">
|
580 |
+
<div class="props-key">Test Samples</div>
|
581 |
+
<div class="props-value">${sampleData.testSamples.toLocaleString()}</div>
|
582 |
+
</div>
|
583 |
+
<div class="props-row">
|
584 |
+
<div class="props-key">Description</div>
|
585 |
+
<div class="props-value">${sampleData.description}</div>
|
586 |
+
</div>
|
587 |
+
</div>
|
588 |
+
|
589 |
+
<div class="props-section">
|
590 |
+
<p class="hint-text">Click "Run Network" to train on this dataset</p>
|
591 |
+
</div>
|
592 |
+
`;
|
593 |
+
}
|
594 |
+
|
595 |
+
// Function to run the neural network simulation
|
596 |
+
function runNetwork() {
|
597 |
+
console.log('Running neural network simulation with config:', networkConfig);
|
598 |
+
|
599 |
+
// Get the current network architecture
|
600 |
+
const networkLayers = window.dragDrop.getNetworkArchitecture();
|
601 |
+
|
602 |
+
// Check if we have a valid network
|
603 |
+
if (networkLayers.layers.length === 0) {
|
604 |
+
alert('Please add some nodes to the network first!');
|
605 |
+
return;
|
606 |
+
}
|
607 |
+
|
608 |
+
// Validate the network
|
609 |
+
const validationResult = window.neuralNetwork.validateNetwork(
|
610 |
+
networkLayers.layers,
|
611 |
+
networkLayers.connections
|
612 |
+
);
|
613 |
+
|
614 |
+
if (!validationResult.valid) {
|
615 |
+
alert('Network is not valid: ' + validationResult.errors.join('\n'));
|
616 |
+
return;
|
617 |
+
}
|
618 |
+
|
619 |
+
// Add animation class to all nodes
|
620 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
621 |
+
node.classList.add('highlight-pulse');
|
622 |
+
});
|
623 |
+
|
624 |
+
// Animate connections to show data flow
|
625 |
+
document.querySelectorAll('.connection').forEach((connection, index) => {
|
626 |
+
setTimeout(() => {
|
627 |
+
connection.style.background = 'linear-gradient(90deg, var(--primary-color), var(--accent-color))';
|
628 |
+
|
629 |
+
// Reset after animation
|
630 |
+
setTimeout(() => {
|
631 |
+
connection.style.background = '';
|
632 |
+
}, 800);
|
633 |
+
}, 300 * index);
|
634 |
+
});
|
635 |
+
|
636 |
+
// Simulate training
|
637 |
+
simulateTraining();
|
638 |
+
|
639 |
+
// Reset animations after completion
|
640 |
+
setTimeout(() => {
|
641 |
+
document.querySelectorAll('.canvas-node').forEach(node => {
|
642 |
+
node.classList.remove('highlight-pulse');
|
643 |
+
});
|
644 |
+
}, 3000);
|
645 |
+
}
|
646 |
+
|
647 |
+
// Simulate training progress
|
648 |
+
function simulateTraining() {
|
649 |
+
const progressBar = document.querySelector('.progress-bar');
|
650 |
+
const lossValue = document.getElementById('loss-value');
|
651 |
+
const accuracyValue = document.getElementById('accuracy-value');
|
652 |
+
|
653 |
+
if (!progressBar || !lossValue || !accuracyValue) return;
|
654 |
+
|
655 |
+
// Reset progress
|
656 |
+
progressBar.style.width = '0%';
|
657 |
+
lossValue.textContent = '2.3021';
|
658 |
+
accuracyValue.textContent = '0.12';
|
659 |
+
|
660 |
+
// Simulate progress over time
|
661 |
+
let progress = 0;
|
662 |
+
let loss = 2.3021;
|
663 |
+
let accuracy = 0.12;
|
664 |
+
|
665 |
+
const interval = setInterval(() => {
|
666 |
+
progress += 10;
|
667 |
+
loss *= 0.85; // Decrease loss over time
|
668 |
+
accuracy = Math.min(0.99, accuracy * 1.2); // Increase accuracy over time
|
669 |
+
|
670 |
+
progressBar.style.width = `${progress}%`;
|
671 |
+
lossValue.textContent = loss.toFixed(4);
|
672 |
+
accuracyValue.textContent = accuracy.toFixed(2);
|
673 |
+
|
674 |
+
if (progress >= 100) {
|
675 |
+
clearInterval(interval);
|
676 |
+
}
|
677 |
+
}, 300);
|
678 |
+
}
|
679 |
+
|
680 |
+
// Function to clear all nodes from the canvas
|
681 |
+
function clearCanvas() {
|
682 |
+
if (window.dragDrop && typeof window.dragDrop.clearAllNodes === 'function') {
|
683 |
+
window.dragDrop.clearAllNodes();
|
684 |
+
}
|
685 |
+
|
686 |
+
// Reset progress indicators
|
687 |
+
const progressBar = document.querySelector('.progress-bar');
|
688 |
+
const lossValue = document.getElementById('loss-value');
|
689 |
+
const accuracyValue = document.getElementById('accuracy-value');
|
690 |
+
|
691 |
+
if (progressBar) progressBar.style.width = '0%';
|
692 |
+
if (lossValue) lossValue.textContent = '-';
|
693 |
+
if (accuracyValue) accuracyValue.textContent = '-';
|
694 |
+
}
|
695 |
+
|
696 |
+
// Update activation function graph
|
697 |
+
function updateActivationFunctionGraph(activationType) {
|
698 |
+
const activationGraph = document.querySelector('.activation-function');
|
699 |
+
if (!activationGraph) return;
|
700 |
+
|
701 |
+
// Clear previous graph
|
702 |
+
let canvas = activationGraph.querySelector('canvas');
|
703 |
+
if (!canvas) {
|
704 |
+
canvas = document.createElement('canvas');
|
705 |
+
canvas.width = 200;
|
706 |
+
canvas.height = 100;
|
707 |
+
activationGraph.appendChild(canvas);
|
708 |
+
}
|
709 |
+
|
710 |
+
const ctx = canvas.getContext('2d');
|
711 |
+
|
712 |
+
// Clear canvas
|
713 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
714 |
+
|
715 |
+
// Set background
|
716 |
+
ctx.fillStyle = '#f8f9fa';
|
717 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
718 |
+
|
719 |
+
// Draw axes
|
720 |
+
ctx.strokeStyle = '#ccc';
|
721 |
+
ctx.lineWidth = 1;
|
722 |
+
ctx.beginPath();
|
723 |
+
ctx.moveTo(0, canvas.height / 2);
|
724 |
+
ctx.lineTo(canvas.width, canvas.height / 2);
|
725 |
+
ctx.moveTo(canvas.width / 2, 0);
|
726 |
+
ctx.lineTo(canvas.width / 2, canvas.height);
|
727 |
+
ctx.stroke();
|
728 |
+
|
729 |
+
// Draw function
|
730 |
+
ctx.strokeStyle = 'var(--primary-color)';
|
731 |
+
ctx.lineWidth = 2;
|
732 |
+
ctx.beginPath();
|
733 |
+
|
734 |
+
switch(activationType) {
|
735 |
+
case 'relu':
|
736 |
+
ctx.moveTo(0, canvas.height / 2);
|
737 |
+
ctx.lineTo(canvas.width / 2, canvas.height / 2);
|
738 |
+
ctx.lineTo(canvas.width, 0);
|
739 |
+
break;
|
740 |
+
|
741 |
+
case 'sigmoid':
|
742 |
+
for (let x = 0; x < canvas.width; x++) {
|
743 |
+
const normalizedX = (x / canvas.width - 0.5) * 10;
|
744 |
+
const sigmoidY = 1 / (1 + Math.exp(-normalizedX));
|
745 |
+
const y = canvas.height - sigmoidY * canvas.height;
|
746 |
+
if (x === 0) ctx.moveTo(x, y);
|
747 |
+
else ctx.lineTo(x, y);
|
748 |
+
}
|
749 |
+
break;
|
750 |
+
|
751 |
+
case 'tanh':
|
752 |
+
for (let x = 0; x < canvas.width; x++) {
|
753 |
+
const normalizedX = (x / canvas.width - 0.5) * 6;
|
754 |
+
const tanhY = Math.tanh(normalizedX);
|
755 |
+
const y = canvas.height / 2 - tanhY * canvas.height / 2;
|
756 |
+
if (x === 0) ctx.moveTo(x, y);
|
757 |
+
else ctx.lineTo(x, y);
|
758 |
+
}
|
759 |
+
break;
|
760 |
+
|
761 |
+
case 'softmax':
|
762 |
+
// Just a representative curve for softmax
|
763 |
+
ctx.moveTo(0, canvas.height * 0.8);
|
764 |
+
ctx.bezierCurveTo(
|
765 |
+
canvas.width * 0.3, canvas.height * 0.7,
|
766 |
+
canvas.width * 0.6, canvas.height * 0.3,
|
767 |
+
canvas.width, canvas.height * 0.2
|
768 |
+
);
|
769 |
+
break;
|
770 |
+
|
771 |
+
default: // Linear
|
772 |
+
ctx.moveTo(0, canvas.height * 0.8);
|
773 |
+
ctx.lineTo(canvas.width, canvas.height * 0.2);
|
774 |
+
}
|
775 |
+
|
776 |
+
ctx.stroke();
|
777 |
+
|
778 |
+
// Add label
|
779 |
+
ctx.fillStyle = 'var(--text-color)';
|
780 |
+
ctx.font = '12px Arial';
|
781 |
+
ctx.textAlign = 'center';
|
782 |
+
ctx.fillText(activationType, canvas.width / 2, canvas.height - 10);
|
783 |
+
}
|
784 |
+
|
785 |
+
// Setup node hover effects for tooltips
|
786 |
+
canvas.addEventListener('mouseover', (e) => {
|
787 |
+
const node = e.target.closest('.canvas-node');
|
788 |
+
if (node) {
|
789 |
+
const rect = node.getBoundingClientRect();
|
790 |
+
const nodeType = node.getAttribute('data-type');
|
791 |
+
const nodeName = node.getAttribute('data-name');
|
792 |
+
const dimensions = node.getAttribute('data-dimensions');
|
793 |
+
|
794 |
+
// Show tooltip
|
795 |
+
tooltip.style.display = 'block';
|
796 |
+
tooltip.style.left = `${rect.right + 10}px`;
|
797 |
+
tooltip.style.top = `${rect.top}px`;
|
798 |
+
|
799 |
+
const tooltipHeader = tooltip.querySelector('.tooltip-header');
|
800 |
+
const tooltipContent = tooltip.querySelector('.tooltip-content');
|
801 |
+
|
802 |
+
if (tooltipHeader && tooltipContent) {
|
803 |
+
tooltipHeader.textContent = nodeName;
|
804 |
+
|
805 |
+
let content = '';
|
806 |
+
content += `<div class="tooltip-row">
|
807 |
+
<div class="tooltip-label">Type:</div>
|
808 |
+
<div class="tooltip-value">${nodeType.charAt(0).toUpperCase() + nodeType.slice(1)}</div>
|
809 |
+
</div>`;
|
810 |
+
|
811 |
+
content += `<div class="tooltip-row">
|
812 |
+
<div class="tooltip-label">Dimensions:</div>
|
813 |
+
<div class="tooltip-value">${dimensions}</div>
|
814 |
+
</div>`;
|
815 |
+
|
816 |
+
// Get config template
|
817 |
+
const configTemplate = window.neuralNetwork.nodeConfigTemplates[nodeType];
|
818 |
+
|
819 |
+
if (configTemplate) {
|
820 |
+
if (configTemplate.activation) {
|
821 |
+
content += `<div class="tooltip-row">
|
822 |
+
<div class="tooltip-label">Activation:</div>
|
823 |
+
<div class="tooltip-value">${configTemplate.activation}</div>
|
824 |
+
</div>`;
|
825 |
+
}
|
826 |
+
|
827 |
+
if (configTemplate.description) {
|
828 |
+
content += `<div class="tooltip-row">
|
829 |
+
<div class="tooltip-label">Description:</div>
|
830 |
+
<div class="tooltip-value">${configTemplate.description}</div>
|
831 |
+
</div>`;
|
832 |
+
}
|
833 |
+
}
|
834 |
+
|
835 |
+
tooltipContent.innerHTML = content;
|
836 |
+
}
|
837 |
+
}
|
838 |
+
});
|
839 |
+
|
840 |
+
canvas.addEventListener('mouseout', (e) => {
|
841 |
+
const node = e.target.closest('.canvas-node');
|
842 |
+
if (node) {
|
843 |
+
tooltip.style.display = 'none';
|
844 |
+
}
|
845 |
+
});
|
846 |
+
|
847 |
+
// Make sure tooltip follows cursor for nodes that are being dragged
|
848 |
+
canvas.addEventListener('mousemove', (e) => {
|
849 |
+
const node = e.target.closest('.canvas-node');
|
850 |
+
if (node && node.classList.contains('dragging')) {
|
851 |
+
const rect = node.getBoundingClientRect();
|
852 |
+
tooltip.style.left = `${rect.right + 10}px`;
|
853 |
+
tooltip.style.top = `${rect.top}px`;
|
854 |
+
}
|
855 |
+
});
|
856 |
+
});
|
js/neural-network.js
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* Neural Network Tools and Utilities
|
3 |
+
* Provides helper functions for managing neural network layers,
|
4 |
+
* calculating parameters, and managing network architecture
|
5 |
+
*/
|
6 |
+
|
7 |
+
(function() {
|
8 |
+
// Layer counters to track unique IDs for each layer type
|
9 |
+
const layerCounters = {
|
10 |
+
'input': 0,
|
11 |
+
'hidden': 0,
|
12 |
+
'output': 0,
|
13 |
+
'conv': 0,
|
14 |
+
'pool': 0
|
15 |
+
};
|
16 |
+
|
17 |
+
// Default configuration templates for different layer types
|
18 |
+
const nodeConfigTemplates = {
|
19 |
+
'input': {
|
20 |
+
units: 784,
|
21 |
+
shape: [28, 28, 1],
|
22 |
+
batchSize: 32,
|
23 |
+
description: 'Input layer for raw data',
|
24 |
+
parameters: 0
|
25 |
+
},
|
26 |
+
'hidden': {
|
27 |
+
units: 128,
|
28 |
+
activation: 'relu',
|
29 |
+
useBias: true,
|
30 |
+
kernelInitializer: 'glorotUniform',
|
31 |
+
biasInitializer: 'zeros',
|
32 |
+
dropoutRate: 0.2,
|
33 |
+
description: 'Dense hidden layer with ReLU activation'
|
34 |
+
},
|
35 |
+
'output': {
|
36 |
+
units: 10,
|
37 |
+
activation: 'softmax',
|
38 |
+
useBias: true,
|
39 |
+
kernelInitializer: 'glorotUniform',
|
40 |
+
biasInitializer: 'zeros',
|
41 |
+
description: 'Output layer with Softmax activation for classification'
|
42 |
+
},
|
43 |
+
'conv': {
|
44 |
+
filters: 32,
|
45 |
+
kernelSize: [3, 3],
|
46 |
+
strides: [1, 1],
|
47 |
+
padding: 'valid',
|
48 |
+
activation: 'relu',
|
49 |
+
useBias: true,
|
50 |
+
kernelInitializer: 'glorotUniform',
|
51 |
+
biasInitializer: 'zeros',
|
52 |
+
description: 'Convolutional layer for feature extraction'
|
53 |
+
},
|
54 |
+
'pool': {
|
55 |
+
poolSize: [2, 2],
|
56 |
+
strides: [2, 2],
|
57 |
+
padding: 'valid',
|
58 |
+
description: 'Max pooling layer for spatial downsampling'
|
59 |
+
}
|
60 |
+
};
|
61 |
+
|
62 |
+
// Mock data structure for sample datasets
|
63 |
+
const sampleData = {
|
64 |
+
'mnist': {
|
65 |
+
name: 'MNIST Handwritten Digits',
|
66 |
+
inputShape: [28, 28, 1],
|
67 |
+
numClasses: 10,
|
68 |
+
trainSamples: 60000,
|
69 |
+
testSamples: 10000,
|
70 |
+
description: 'Dataset of handwritten digits for classification'
|
71 |
+
},
|
72 |
+
'cifar10': {
|
73 |
+
name: 'CIFAR-10',
|
74 |
+
inputShape: [32, 32, 3],
|
75 |
+
numClasses: 10,
|
76 |
+
trainSamples: 50000,
|
77 |
+
testSamples: 10000,
|
78 |
+
description: 'Dataset of common objects like airplanes, cars, birds, etc.'
|
79 |
+
},
|
80 |
+
'fashion': {
|
81 |
+
name: 'Fashion MNIST',
|
82 |
+
inputShape: [28, 28, 1],
|
83 |
+
numClasses: 10,
|
84 |
+
trainSamples: 60000,
|
85 |
+
testSamples: 10000,
|
86 |
+
description: 'Dataset of fashion items like shirts, shoes, bags, etc.'
|
87 |
+
}
|
88 |
+
};
|
89 |
+
|
90 |
+
/**
|
91 |
+
* Get the next unique ID for a specific layer type
|
92 |
+
* @param {string} layerType - The type of the layer (input, hidden, output, conv, pool)
|
93 |
+
* @returns {string} - A unique ID for the layer
|
94 |
+
*/
|
95 |
+
function getNextLayerId(layerType) {
|
96 |
+
layerCounters[layerType]++;
|
97 |
+
return `${layerType}-${layerCounters[layerType]}`;
|
98 |
+
}
|
99 |
+
|
100 |
+
/**
|
101 |
+
* Reset all layer counters
|
102 |
+
* Used when clearing the canvas
|
103 |
+
*/
|
104 |
+
function resetLayerCounter() {
|
105 |
+
for (let key in layerCounters) {
|
106 |
+
layerCounters[key] = 0;
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
/**
|
111 |
+
* Create a configuration object for a layer
|
112 |
+
* @param {string} layerType - The type of the layer
|
113 |
+
* @param {Object} customConfig - Custom configuration for the layer
|
114 |
+
* @returns {Object} - Complete layer configuration
|
115 |
+
*/
|
116 |
+
function createNodeConfig(layerType, customConfig = {}) {
|
117 |
+
const baseConfig = { ...nodeConfigTemplates[layerType] };
|
118 |
+
|
119 |
+
// Merge custom config with base config
|
120 |
+
const config = { ...baseConfig, ...customConfig };
|
121 |
+
|
122 |
+
// Calculate parameters if not provided
|
123 |
+
if (config.parameters === undefined) {
|
124 |
+
config.parameters = calculateParameters(layerType, config);
|
125 |
+
}
|
126 |
+
|
127 |
+
return config;
|
128 |
+
}
|
129 |
+
|
130 |
+
/**
|
131 |
+
* Calculate the number of parameters for a layer
|
132 |
+
* @param {string} layerType - The type of the layer
|
133 |
+
* @param {Object} config - Layer configuration
|
134 |
+
* @param {Object} prevLayerConfig - Previous layer configuration (for connections)
|
135 |
+
* @returns {number} - Number of trainable parameters
|
136 |
+
*/
|
137 |
+
function calculateParameters(layerType, config, prevLayerConfig = null) {
|
138 |
+
let parameters = 0;
|
139 |
+
|
140 |
+
switch(layerType) {
|
141 |
+
case 'input':
|
142 |
+
parameters = 0; // Input layer has no trainable parameters
|
143 |
+
break;
|
144 |
+
|
145 |
+
case 'hidden':
|
146 |
+
if (prevLayerConfig) {
|
147 |
+
const inputUnits = prevLayerConfig.units ||
|
148 |
+
(prevLayerConfig.shape ?
|
149 |
+
prevLayerConfig.shape.reduce((a, b) => a * b, 1) :
|
150 |
+
784);
|
151 |
+
|
152 |
+
// Weight parameters: input_units * output_units
|
153 |
+
parameters = inputUnits * config.units;
|
154 |
+
|
155 |
+
// Add bias parameters if using bias
|
156 |
+
if (config.useBias) {
|
157 |
+
parameters += config.units;
|
158 |
+
}
|
159 |
+
}
|
160 |
+
break;
|
161 |
+
|
162 |
+
case 'output':
|
163 |
+
if (prevLayerConfig) {
|
164 |
+
const inputUnits = prevLayerConfig.units || 128;
|
165 |
+
|
166 |
+
// Weight parameters: input_units * output_units
|
167 |
+
parameters = inputUnits * config.units;
|
168 |
+
|
169 |
+
// Add bias parameters if using bias
|
170 |
+
if (config.useBias) {
|
171 |
+
parameters += config.units;
|
172 |
+
}
|
173 |
+
}
|
174 |
+
break;
|
175 |
+
|
176 |
+
case 'conv':
|
177 |
+
if (prevLayerConfig) {
|
178 |
+
const inputChannels = prevLayerConfig.shape ?
|
179 |
+
prevLayerConfig.shape[2] || 1 :
|
180 |
+
(prevLayerConfig.filters || 1);
|
181 |
+
|
182 |
+
// Weight parameters: kernel_height * kernel_width * input_channels * filters
|
183 |
+
const kernelSize = Array.isArray(config.kernelSize) ?
|
184 |
+
config.kernelSize[0] * config.kernelSize[1] :
|
185 |
+
config.kernelSize * config.kernelSize;
|
186 |
+
|
187 |
+
parameters = kernelSize * inputChannels * config.filters;
|
188 |
+
|
189 |
+
// Add bias parameters if using bias
|
190 |
+
if (config.useBias) {
|
191 |
+
parameters += config.filters;
|
192 |
+
}
|
193 |
+
}
|
194 |
+
break;
|
195 |
+
|
196 |
+
case 'pool':
|
197 |
+
parameters = 0; // Pooling layers have no trainable parameters
|
198 |
+
break;
|
199 |
+
|
200 |
+
default:
|
201 |
+
parameters = 0;
|
202 |
+
}
|
203 |
+
|
204 |
+
return parameters;
|
205 |
+
}
|
206 |
+
|
207 |
+
/**
|
208 |
+
* Calculate FLOPs (floating point operations) for a layer
|
209 |
+
* @param {string} layerType - The type of the layer
|
210 |
+
* @param {Object} config - Layer configuration
|
211 |
+
* @param {Object} inputDims - Input dimensions
|
212 |
+
* @returns {number} - Approximate FLOPs for forward pass
|
213 |
+
*/
|
214 |
+
function calculateFLOPs(layerType, config, inputDims) {
|
215 |
+
let flops = 0;
|
216 |
+
|
217 |
+
switch(layerType) {
|
218 |
+
case 'input':
|
219 |
+
flops = 0;
|
220 |
+
break;
|
221 |
+
|
222 |
+
case 'hidden':
|
223 |
+
// FLOPs = 2 * input_dim * output_dim (multiply-add operations)
|
224 |
+
flops = 2 * inputDims.reduce((a, b) => a * b, 1) * config.units;
|
225 |
+
break;
|
226 |
+
|
227 |
+
case 'output':
|
228 |
+
// Same as hidden layer
|
229 |
+
flops = 2 * inputDims.reduce((a, b) => a * b, 1) * config.units;
|
230 |
+
break;
|
231 |
+
|
232 |
+
case 'conv':
|
233 |
+
// Output dimensions after convolution
|
234 |
+
const outputHeight = Math.floor((inputDims[0] - config.kernelSize[0] + 2 *
|
235 |
+
(config.padding === 'same' ? config.kernelSize[0] / 2 : 0)) /
|
236 |
+
config.strides[0] + 1);
|
237 |
+
|
238 |
+
const outputWidth = Math.floor((inputDims[1] - config.kernelSize[1] + 2 *
|
239 |
+
(config.padding === 'same' ? config.kernelSize[1] / 2 : 0)) /
|
240 |
+
config.strides[1] + 1);
|
241 |
+
|
242 |
+
// FLOPs per output point = 2 * kernel_height * kernel_width * input_channels
|
243 |
+
const flopsPerPoint = 2 * config.kernelSize[0] * config.kernelSize[1] * inputDims[2];
|
244 |
+
|
245 |
+
// Total FLOPs = output_points * flops_per_point * output_channels
|
246 |
+
flops = outputHeight * outputWidth * flopsPerPoint * config.filters;
|
247 |
+
break;
|
248 |
+
|
249 |
+
case 'pool':
|
250 |
+
// Output dimensions after pooling
|
251 |
+
const poolOutputHeight = Math.floor((inputDims[0] - config.poolSize[0]) /
|
252 |
+
config.strides[0] + 1);
|
253 |
+
|
254 |
+
const poolOutputWidth = Math.floor((inputDims[1] - config.poolSize[1]) /
|
255 |
+
config.strides[1] + 1);
|
256 |
+
|
257 |
+
// For max pooling, approximately one comparison per element in the pooling window
|
258 |
+
flops = poolOutputHeight * poolOutputWidth * inputDims[2] *
|
259 |
+
config.poolSize[0] * config.poolSize[1];
|
260 |
+
break;
|
261 |
+
|
262 |
+
default:
|
263 |
+
flops = 0;
|
264 |
+
}
|
265 |
+
|
266 |
+
return flops;
|
267 |
+
}
|
268 |
+
|
269 |
+
/**
|
270 |
+
* Calculate memory usage for a layer
|
271 |
+
* @param {string} layerType - The type of the layer
|
272 |
+
* @param {Object} config - Layer configuration
|
273 |
+
* @param {Object} batchSize - Batch size for calculation
|
274 |
+
* @returns {Object} - Memory usage statistics
|
275 |
+
*/
|
276 |
+
function calculateMemoryUsage(layerType, config, batchSize = 32) {
|
277 |
+
// Assume 4 bytes per parameter (float32)
|
278 |
+
const bytesPerParam = 4;
|
279 |
+
let outputShape = [];
|
280 |
+
let parameters = 0;
|
281 |
+
let activationMemory = 0;
|
282 |
+
|
283 |
+
switch(layerType) {
|
284 |
+
case 'input':
|
285 |
+
outputShape = config.shape || [28, 28, 1];
|
286 |
+
parameters = 0;
|
287 |
+
break;
|
288 |
+
|
289 |
+
case 'hidden':
|
290 |
+
outputShape = [config.units];
|
291 |
+
parameters = config.parameters || 0;
|
292 |
+
break;
|
293 |
+
|
294 |
+
case 'output':
|
295 |
+
outputShape = [config.units];
|
296 |
+
parameters = config.parameters || 0;
|
297 |
+
break;
|
298 |
+
|
299 |
+
case 'conv':
|
300 |
+
// This is a simplified calculation, actual dimensions depend on padding and strides
|
301 |
+
const inputShape = config.inputShape || [28, 28, 1];
|
302 |
+
const outputHeight = Math.floor((inputShape[0] - config.kernelSize[0] + 2 *
|
303 |
+
(config.padding === 'same' ? config.kernelSize[0] / 2 : 0)) /
|
304 |
+
config.strides[0] + 1);
|
305 |
+
|
306 |
+
const outputWidth = Math.floor((inputShape[1] - config.kernelSize[1] + 2 *
|
307 |
+
(config.padding === 'same' ? config.kernelSize[1] / 2 : 0)) /
|
308 |
+
config.strides[1] + 1);
|
309 |
+
|
310 |
+
outputShape = [outputHeight, outputWidth, config.filters];
|
311 |
+
parameters = config.parameters || 0;
|
312 |
+
break;
|
313 |
+
|
314 |
+
case 'pool':
|
315 |
+
const poolInputShape = config.inputShape || [28, 28, 32];
|
316 |
+
const poolOutputHeight = Math.floor((poolInputShape[0] - config.poolSize[0]) /
|
317 |
+
config.strides[0] + 1);
|
318 |
+
|
319 |
+
const poolOutputWidth = Math.floor((poolInputShape[1] - config.poolSize[1]) /
|
320 |
+
config.strides[1] + 1);
|
321 |
+
|
322 |
+
outputShape = [poolOutputHeight, poolOutputWidth, poolInputShape[2]];
|
323 |
+
parameters = 0;
|
324 |
+
break;
|
325 |
+
|
326 |
+
default:
|
327 |
+
outputShape = [0];
|
328 |
+
parameters = 0;
|
329 |
+
}
|
330 |
+
|
331 |
+
// Calculate memory for the activations (output of this layer)
|
332 |
+
activationMemory = batchSize * outputShape.reduce((a, b) => a * b, 1) * bytesPerParam;
|
333 |
+
|
334 |
+
// Calculate memory for the parameters
|
335 |
+
const paramMemory = parameters * bytesPerParam;
|
336 |
+
|
337 |
+
return {
|
338 |
+
parameters: parameters,
|
339 |
+
paramMemory: paramMemory, // in bytes
|
340 |
+
activationMemory: activationMemory, // in bytes
|
341 |
+
totalMemory: paramMemory + activationMemory, // in bytes
|
342 |
+
outputShape: outputShape
|
343 |
+
};
|
344 |
+
}
|
345 |
+
|
346 |
+
/**
|
347 |
+
* Generate a human-readable description of a layer
|
348 |
+
* @param {string} layerType - The type of the layer
|
349 |
+
* @param {Object} config - Layer configuration
|
350 |
+
* @returns {string} - Description of the layer
|
351 |
+
*/
|
352 |
+
function generateLayerDescription(layerType, config) {
|
353 |
+
let description = '';
|
354 |
+
|
355 |
+
switch(layerType) {
|
356 |
+
case 'input':
|
357 |
+
description = `Input Layer: Shape=${config.shape.join('×')}`;
|
358 |
+
break;
|
359 |
+
|
360 |
+
case 'hidden':
|
361 |
+
description = `Dense Layer: ${config.units} units, ${config.activation} activation`;
|
362 |
+
if (config.dropoutRate > 0) {
|
363 |
+
description += `, dropout ${config.dropoutRate}`;
|
364 |
+
}
|
365 |
+
break;
|
366 |
+
|
367 |
+
case 'output':
|
368 |
+
description = `Output Layer: ${config.units} units, ${config.activation} activation`;
|
369 |
+
break;
|
370 |
+
|
371 |
+
case 'conv':
|
372 |
+
description = `Conv2D: ${config.filters} filters, ${config.kernelSize.join('×')} kernel, ${config.activation} activation`;
|
373 |
+
break;
|
374 |
+
|
375 |
+
case 'pool':
|
376 |
+
description = `MaxPooling2D: ${config.poolSize.join('×')} pool size`;
|
377 |
+
break;
|
378 |
+
|
379 |
+
default:
|
380 |
+
description = 'Unknown layer type';
|
381 |
+
}
|
382 |
+
|
383 |
+
return description;
|
384 |
+
}
|
385 |
+
|
386 |
+
/**
|
387 |
+
* Validate a network architecture
|
388 |
+
* @param {Object} layers - Array of layer configurations
|
389 |
+
* @param {Object} connections - Array of connections between layers
|
390 |
+
* @returns {Object} - Validation result with errors if any
|
391 |
+
*/
|
392 |
+
function validateNetwork(layers, connections) {
|
393 |
+
const errors = [];
|
394 |
+
|
395 |
+
// Check if there's exactly one input layer
|
396 |
+
const inputLayers = layers.filter(layer => layer.type === 'input');
|
397 |
+
if (inputLayers.length === 0) {
|
398 |
+
errors.push('Network must have at least one input layer');
|
399 |
+
} else if (inputLayers.length > 1) {
|
400 |
+
errors.push('Network can have only one input layer');
|
401 |
+
}
|
402 |
+
|
403 |
+
// Check if there's at least one output layer
|
404 |
+
const outputLayers = layers.filter(layer => layer.type === 'output');
|
405 |
+
if (outputLayers.length === 0) {
|
406 |
+
errors.push('Network must have at least one output layer');
|
407 |
+
}
|
408 |
+
|
409 |
+
// Check for isolated nodes (nodes with no connections)
|
410 |
+
const connectedNodes = new Set();
|
411 |
+
connections.forEach(conn => {
|
412 |
+
connectedNodes.add(conn.source);
|
413 |
+
connectedNodes.add(conn.target);
|
414 |
+
});
|
415 |
+
|
416 |
+
const isolatedNodes = layers.filter(layer => !connectedNodes.has(layer.id));
|
417 |
+
if (isolatedNodes.length > 0) {
|
418 |
+
isolatedNodes.forEach(node => {
|
419 |
+
if (node.type !== 'input' && node.type !== 'output') {
|
420 |
+
errors.push(`Layer "${node.name}" (${node.id}) is isolated`);
|
421 |
+
}
|
422 |
+
});
|
423 |
+
}
|
424 |
+
|
425 |
+
// Check if input layer has incoming connections
|
426 |
+
inputLayers.forEach(layer => {
|
427 |
+
const incomingConnections = connections.filter(conn => conn.target === layer.id);
|
428 |
+
if (incomingConnections.length > 0) {
|
429 |
+
errors.push(`Input layer "${layer.name}" cannot have incoming connections`);
|
430 |
+
}
|
431 |
+
});
|
432 |
+
|
433 |
+
// Check if output layer has outgoing connections
|
434 |
+
outputLayers.forEach(layer => {
|
435 |
+
const outgoingConnections = connections.filter(conn => conn.source === layer.id);
|
436 |
+
if (outgoingConnections.length > 0) {
|
437 |
+
errors.push(`Output layer "${layer.name}" cannot have outgoing connections`);
|
438 |
+
}
|
439 |
+
});
|
440 |
+
|
441 |
+
return {
|
442 |
+
valid: errors.length === 0,
|
443 |
+
errors: errors
|
444 |
+
};
|
445 |
+
}
|
446 |
+
|
447 |
+
// Expose functions to the global scope
|
448 |
+
window.neuralNetwork = {
|
449 |
+
getNextLayerId,
|
450 |
+
resetLayerCounter,
|
451 |
+
createNodeConfig,
|
452 |
+
calculateParameters,
|
453 |
+
calculateFLOPs,
|
454 |
+
calculateMemoryUsage,
|
455 |
+
generateLayerDescription,
|
456 |
+
validateNetwork,
|
457 |
+
nodeConfigTemplates,
|
458 |
+
sampleData
|
459 |
+
};
|
460 |
+
})();
|