File size: 42,459 Bytes
0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
// Initialize the application when the DOM is fully loaded
document.addEventListener('DOMContentLoaded', () => {
console.log('Neural Network Playground Initialized');
// Initialize the canvas and tooltip
const canvas = document.getElementById('network-canvas');
const tooltip = document.createElement('div');
tooltip.className = 'canvas-tooltip';
tooltip.innerHTML = `
<div class="tooltip-header"></div>
<div class="tooltip-content"></div>
`;
document.body.appendChild(tooltip);
// Initialize drag and drop functionality
initializeDragAndDrop();
// Network configuration (from UI controls)
let networkConfig = {
learningRate: 0.01,
activation: 'relu',
batchSize: 32,
epochs: 10
};
// Initialize UI controls
setupUIControls();
// Layer editor modal
setupLayerEditor();
// Listen for network updates
document.addEventListener('networkUpdated', handleNetworkUpdate);
// Listen for layer editor events
document.addEventListener('openLayerEditor', handleOpenLayerEditor);
// Setup UI controls and event listeners
function setupUIControls() {
// Learning rate slider
const learningRateSlider = document.getElementById('learning-rate');
const learningRateValue = document.getElementById('learning-rate-value');
if (learningRateSlider && learningRateValue) {
learningRateSlider.value = networkConfig.learningRate;
learningRateValue.textContent = networkConfig.learningRate.toFixed(3);
learningRateSlider.addEventListener('input', (e) => {
networkConfig.learningRate = parseFloat(e.target.value);
learningRateValue.textContent = networkConfig.learningRate.toFixed(3);
});
}
// Activation function dropdown
const activationSelect = document.getElementById('activation');
if (activationSelect) {
activationSelect.value = networkConfig.activation;
activationSelect.addEventListener('change', (e) => {
networkConfig.activation = e.target.value;
updateActivationFunctionGraph(networkConfig.activation);
});
}
// Initialize activation function graph
updateActivationFunctionGraph(networkConfig.activation);
// Sample data event handlers
const sampleItems = document.querySelectorAll('.sample-item');
sampleItems.forEach(item => {
item.addEventListener('click', () => {
const sampleId = item.getAttribute('data-sample');
handleSampleSelection(sampleId);
});
});
// Button event listeners
const runButton = document.getElementById('run-network');
if (runButton) {
runButton.addEventListener('click', runNetwork);
}
const clearButton = document.getElementById('clear-canvas');
if (clearButton) {
clearButton.addEventListener('click', clearCanvas);
}
// Modal handlers
setupModals();
}
// Setup modal handlers
function setupModals() {
const aboutModal = document.getElementById('about-modal');
const aboutLink = document.getElementById('about-link');
if (aboutLink && aboutModal) {
aboutLink.addEventListener('click', (e) => {
e.preventDefault();
openModal(aboutModal);
});
const closeButtons = aboutModal.querySelectorAll('.close-modal');
closeButtons.forEach(btn => {
btn.addEventListener('click', () => {
closeModal(aboutModal);
});
});
// Close modal when clicking outside
aboutModal.addEventListener('click', (e) => {
if (e.target === aboutModal) {
closeModal(aboutModal);
}
});
}
}
// Setup layer editor modal
function setupLayerEditor() {
const layerEditorModal = document.getElementById('layer-editor-modal');
if (layerEditorModal) {
const closeButtons = layerEditorModal.querySelectorAll('.close-modal');
closeButtons.forEach(btn => {
btn.addEventListener('click', () => {
closeModal(layerEditorModal);
});
});
// Close modal when clicking outside
layerEditorModal.addEventListener('click', (e) => {
if (e.target === layerEditorModal) {
closeModal(layerEditorModal);
}
});
// Save button
const saveButton = layerEditorModal.querySelector('.save-layer-btn');
if (saveButton) {
saveButton.addEventListener('click', saveLayerConfig);
}
}
}
// Open modal
function openModal(modal) {
if (modal) {
modal.style.display = 'flex';
}
}
// Close modal
function closeModal(modal) {
if (modal) {
modal.style.display = 'none';
}
}
// Handle network updates
function handleNetworkUpdate(e) {
const networkLayers = e.detail;
console.log('Network updated:', networkLayers);
// Update the properties panel
updatePropertiesPanel(networkLayers);
}
// Update properties panel with network information
function updatePropertiesPanel(networkLayers) {
const propertiesPanel = document.querySelector('.props-panel');
if (!propertiesPanel) return;
// Find the properties content section
const propsContent = propertiesPanel.querySelector('.props-content');
if (!propsContent) return;
// Basic network stats
const layerCount = networkLayers.layers.length;
const connectionCount = networkLayers.connections.length;
let layerTypeCounts = {};
networkLayers.layers.forEach(layer => {
layerTypeCounts[layer.type] = (layerTypeCounts[layer.type] || 0) + 1;
});
// Check network validity
const validationResult = window.neuralNetwork.validateNetwork(
networkLayers.layers,
networkLayers.connections
);
// Update network architecture section
let networkArchitectureHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">🔍</i> Network Architecture
</div>
<div class="props-row">
<div class="props-key">Total Layers</div>
<div class="props-value">${layerCount}</div>
</div>
<div class="props-row">
<div class="props-key">Connections</div>
<div class="props-value">${connectionCount}</div>
</div>
`;
// Add layer type counts
Object.entries(layerTypeCounts).forEach(([type, count]) => {
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">${type.charAt(0).toUpperCase() + type.slice(1)} Layers</div>
<div class="props-value">${count}</div>
</div>
`;
});
// Add validation status
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">Validity</div>
<div class="props-value" style="color: ${validationResult.valid ? 'var(--secondary-color)' : 'var(--warning-color)'}">
${validationResult.valid ? 'Valid' : 'Invalid'}
</div>
</div>
`;
// If there are validation errors, show them
if (!validationResult.valid && validationResult.errors.length > 0) {
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">Errors</div>
<div class="props-value" style="color: var(--warning-color)">
${validationResult.errors.join('<br>')}
</div>
</div>
`;
}
networkArchitectureHTML += `</div>`;
// Calculate total parameters if we have layers
let totalParameters = 0;
let totalFlops = 0;
let totalMemory = 0;
if (layerCount > 0) {
// Calculate model stats
const modelStatsHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">📊</i> Model Statistics
</div>
<div class="props-row">
<div class="props-key">Parameters</div>
<div class="props-value">${formatNumber(totalParameters)}</div>
</div>
<div class="props-row">
<div class="props-key">FLOPs</div>
<div class="props-value">${formatNumber(totalFlops)}</div>
</div>
<div class="props-row">
<div class="props-key">Memory</div>
<div class="props-value">${formatMemorySize(totalMemory)}</div>
</div>
</div>
`;
// Update the properties content
propsContent.innerHTML = networkArchitectureHTML + modelStatsHTML;
} else {
// Just show basic architecture info
propsContent.innerHTML = networkArchitectureHTML;
}
}
// Format number with K, M, B suffixes
function formatNumber(num) {
if (num === 0) return '0';
if (!num) return 'N/A';
if (num >= 1e9) return (num / 1e9).toFixed(2) + 'B';
if (num >= 1e6) return (num / 1e6).toFixed(2) + 'M';
if (num >= 1e3) return (num / 1e3).toFixed(2) + 'K';
return num.toString();
}
// Format memory size in bytes to KB, MB, GB
function formatMemorySize(bytes) {
if (bytes === 0) return '0 Bytes';
if (!bytes) return 'N/A';
const k = 1024;
const sizes = ['Bytes', 'KB', 'MB', 'GB'];
const i = Math.floor(Math.log(bytes) / Math.log(k));
return parseFloat((bytes / Math.pow(k, i)).toFixed(2)) + ' ' + sizes[i];
}
// Handle opening the layer editor
function handleOpenLayerEditor(e) {
const node = e.detail.node;
const nodeType = node.getAttribute('data-type');
const layerId = node.getAttribute('data-id');
// Get current configuration
const layerConfig = node.layerConfig || window.neuralNetwork.createNodeConfig(nodeType);
// Update modal title
const modalTitle = document.querySelector('.layer-editor-modal .modal-title');
if (modalTitle) {
modalTitle.textContent = `Edit ${nodeType.charAt(0).toUpperCase() + nodeType.slice(1)} Layer`;
}
// Get layer form
const layerForm = document.querySelector('.layer-form');
if (!layerForm) return;
// Clear previous form fields
layerForm.innerHTML = '';
// Create form fields based on layer type
switch (nodeType) {
case 'input':
// Input shape fields
layerForm.innerHTML += `
<div class="form-group">
<label>Input Dimensions:</label>
<div class="form-row">
<input type="number" id="input-height" min="1" value="${layerConfig.shape[0]}" placeholder="Height">
<input type="number" id="input-width" min="1" value="${layerConfig.shape[1]}" placeholder="Width">
<input type="number" id="input-channels" min="1" value="${layerConfig.shape[2]}" placeholder="Channels">
</div>
<small>Input shape: [${layerConfig.shape.join(' × ')}]</small>
</div>
<div class="form-group">
<label>Batch Size:</label>
<input type="number" id="batch-size" min="1" value="${layerConfig.batchSize}" placeholder="Batch Size">
</div>
`;
break;
case 'hidden':
// Units and activation function
layerForm.innerHTML += `
<div class="form-group">
<label>Units:</label>
<input type="number" id="hidden-units" min="1" value="${layerConfig.units}" placeholder="Number of units">
<small>Output shape: [${layerConfig.units}]</small>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="hidden-activation">
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
</select>
</div>
<div class="form-group">
<label>Dropout Rate:</label>
<input type="range" id="dropout-rate" min="0" max="0.9" step="0.1" value="${layerConfig.dropoutRate}">
<span id="dropout-value">${layerConfig.dropoutRate}</span>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
`;
// Add listener for dropout rate slider
setTimeout(() => {
const dropoutSlider = document.getElementById('dropout-rate');
const dropoutValue = document.getElementById('dropout-value');
if (dropoutSlider && dropoutValue) {
dropoutSlider.addEventListener('input', (e) => {
dropoutValue.textContent = e.target.value;
});
}
}, 100);
break;
case 'output':
// Output units and activation
layerForm.innerHTML += `
<div class="form-group">
<label>Units:</label>
<input type="number" id="output-units" min="1" value="${layerConfig.units}" placeholder="Number of output units">
<small>Output shape: [${layerConfig.units}]</small>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="output-activation">
<option value="softmax" ${layerConfig.activation === 'softmax' ? 'selected' : ''}>Softmax (Classification)</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid (Binary Classification)</option>
<option value="linear" ${layerConfig.activation === 'linear' ? 'selected' : ''}>Linear (Regression)</option>
</select>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="output-use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
`;
break;
case 'conv':
// Convolutional layer parameters
layerForm.innerHTML += `
<div class="form-group">
<label>Filters:</label>
<input type="number" id="conv-filters" min="1" value="${layerConfig.filters}" placeholder="Number of filters">
<small>Output channels</small>
</div>
<div class="form-group">
<label>Kernel Size:</label>
<div class="form-row">
<input type="number" id="kernel-size-h" min="1" max="7" value="${layerConfig.kernelSize[0]}" placeholder="Height">
<input type="number" id="kernel-size-w" min="1" max="7" value="${layerConfig.kernelSize[1]}" placeholder="Width">
</div>
<small>Filter dimensions: ${layerConfig.kernelSize.join(' × ')}</small>
</div>
<div class="form-group">
<label>Strides:</label>
<div class="form-row">
<input type="number" id="stride-h" min="1" max="4" value="${layerConfig.strides[0]}" placeholder="Height">
<input type="number" id="stride-w" min="1" max="4" value="${layerConfig.strides[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Padding:</label>
<select id="padding-type">
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid (No Padding)</option>
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same (Preserve Dimensions)</option>
</select>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="conv-activation">
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
</select>
</div>
`;
break;
case 'pool':
// Pooling layer parameters
layerForm.innerHTML += `
<div class="form-group">
<label>Pool Size:</label>
<div class="form-row">
<input type="number" id="pool-size-h" min="1" max="4" value="${layerConfig.poolSize[0]}" placeholder="Height">
<input type="number" id="pool-size-w" min="1" max="4" value="${layerConfig.poolSize[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Strides:</label>
<div class="form-row">
<input type="number" id="pool-stride-h" min="1" max="4" value="${layerConfig.strides[0]}" placeholder="Height">
<input type="number" id="pool-stride-w" min="1" max="4" value="${layerConfig.strides[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Padding:</label>
<select id="pool-padding">
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid (No Padding)</option>
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same (Preserve Dimensions)</option>
</select>
</div>
<div class="form-group">
<label>Pool Type:</label>
<select id="pool-type">
<option value="max" selected>Max Pooling</option>
<option value="avg">Average Pooling</option>
</select>
</div>
`;
break;
case 'linear':
// Linear regression layer parameters
layerForm.innerHTML += `
<div class="form-group">
<label>Input Features:</label>
<input type="number" id="input-features" min="1" value="${layerConfig.inputFeatures}" placeholder="Number of input features">
<small>Input shape: [${layerConfig.inputFeatures}]</small>
</div>
<div class="form-group">
<label>Output Features:</label>
<input type="number" id="output-features" min="1" value="${layerConfig.outputFeatures}" placeholder="Number of output features">
<small>Output shape: [${layerConfig.outputFeatures}]</small>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="linear-use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
<div class="form-group">
<label>Learning Rate:</label>
<input type="range" id="learning-rate-slider" min="0.001" max="0.1" step="0.001" value="${layerConfig.learningRate}">
<span id="learning-rate-value">${layerConfig.learningRate}</span>
</div>
<div class="form-group">
<label>Loss Function:</label>
<select id="loss-function">
<option value="mse" ${layerConfig.lossFunction === 'mse' ? 'selected' : ''}>Mean Squared Error</option>
<option value="mae" ${layerConfig.lossFunction === 'mae' ? 'selected' : ''}>Mean Absolute Error</option>
<option value="huber" ${layerConfig.lossFunction === 'huber' ? 'selected' : ''}>Huber Loss</option>
</select>
</div>
<div class="form-group">
<label>Optimizer:</label>
<select id="optimizer">
<option value="sgd" ${layerConfig.optimizer === 'sgd' ? 'selected' : ''}>Stochastic Gradient Descent</option>
<option value="adam" ${layerConfig.optimizer === 'adam' ? 'selected' : ''}>Adam</option>
<option value="rmsprop" ${layerConfig.optimizer === 'rmsprop' ? 'selected' : ''}>RMSprop</option>
</select>
</div>
`;
// Add listener for learning rate slider
setTimeout(() => {
const learningRateSlider = document.getElementById('learning-rate-slider');
const learningRateValue = document.getElementById('learning-rate-value');
if (learningRateSlider && learningRateValue) {
learningRateSlider.addEventListener('input', (e) => {
learningRateValue.textContent = parseFloat(e.target.value).toFixed(3);
});
}
}, 100);
break;
default:
layerForm.innerHTML = '<p>No editable properties for this layer type.</p>';
}
// Add a preview of calculated parameters if available
if (nodeType !== 'input') {
const parameterCount = window.neuralNetwork.calculateParameters(nodeType, layerConfig);
if (parameterCount) {
layerForm.innerHTML += `
<div class="form-group">
<label>Parameter Summary:</label>
<div class="parameters-summary">
<p>Total parameters: <strong>${formatNumber(parameterCount)}</strong></p>
<p>Memory usage (32-bit): ~${formatMemorySize(parameterCount * 4)}</p>
</div>
</div>
`;
}
}
// Add save and cancel buttons
layerForm.innerHTML += `
<div class="form-buttons">
<button type="button" id="save-layer-config" class="btn-primary">Save Changes</button>
<button type="button" id="cancel-layer-edit" class="btn-secondary">Cancel</button>
</div>
`;
// Open the modal
const modal = document.getElementById('layer-editor-modal');
if (modal) {
openModal(modal);
// Add event listeners for buttons
const saveButton = document.getElementById('save-layer-config');
if (saveButton) {
saveButton.addEventListener('click', () => {
saveLayerConfig(node, nodeType, layerId);
closeModal(modal);
});
}
const cancelButton = document.getElementById('cancel-layer-edit');
if (cancelButton) {
cancelButton.addEventListener('click', () => {
closeModal(modal);
});
}
}
}
// Save layer configuration
function saveLayerConfig(node, nodeType, layerId) {
// Get form values
const form = document.querySelector('.layer-form');
if (!form) return;
const values = {};
const inputs = form.querySelectorAll('input, select');
inputs.forEach(input => {
values[input.id] = input.value;
});
// Update node configuration
node.layerConfig = {
type: nodeType,
shape: [
parseInt(values['input-height']),
parseInt(values['input-width']),
parseInt(values['input-channels'])
],
batchSize: parseInt(values['batch-size']),
units: parseInt(values['hidden-units']),
activation: values['hidden-activation'],
dropoutRate: parseFloat(values['dropout-rate']),
useBias: values['use-bias'] === 'true',
learningRate: parseFloat(values['learning-rate-slider']),
lossFunction: values['loss-function'],
optimizer: values['optimizer'],
inputFeatures: parseInt(values['input-features']),
outputFeatures: parseInt(values['output-features'])
};
// Update node title
const nodeTitle = node.querySelector('.node-title');
if (nodeTitle) {
nodeTitle.textContent = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
}
// Update node data attribute
node.setAttribute('data-name', nodeType.charAt(0).toUpperCase() + nodeType.slice(1));
// Update dimensions based on layer type
let dimensions = '';
switch (nodeType) {
case 'input':
dimensions = values['input-height'] + ' × ' + values['input-width'] + ' × ' + values['input-channels'];
break;
case 'hidden':
case 'output':
dimensions = values['hidden-units'];
break;
case 'conv':
dimensions = values['conv-filters'] + ' × ' + values['kernel-size-h'] + ' × ' + values['kernel-size-w'];
break;
case 'pool':
dimensions = values['pool-size-h'] + ' × ' + values['pool-size-w'];
break;
case 'linear':
dimensions = values['input-features'] + ' → ' + values['output-features'];
break;
}
// Update node dimensions
const nodeDimensions = node.querySelector('.node-dimensions');
if (nodeDimensions) {
nodeDimensions.textContent = dimensions;
}
// Update node data attribute
node.setAttribute('data-dimensions', dimensions);
// Update network layers in drag-drop module
const networkLayers = window.dragDrop.getNetworkArchitecture();
const layerIndex = networkLayers.layers.findIndex(layer => layer.id === layerId);
if (layerIndex !== -1) {
networkLayers.layers[layerIndex].name = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
networkLayers.layers[layerIndex].dimensions = dimensions;
}
// Trigger network updated event
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
document.dispatchEvent(event);
}
// Handle sample selection
function handleSampleSelection(sampleId) {
// Set active sample
document.querySelectorAll('.sample-item').forEach(item => {
item.classList.remove('active');
if (item.getAttribute('data-sample') === sampleId) {
item.classList.add('active');
}
});
// Get sample data
const sampleData = window.neuralNetwork.sampleData[sampleId];
if (!sampleData) return;
console.log(`Selected sample: ${sampleData.name}`);
// Update properties panel to show sample info
const propertiesPanel = document.querySelector('.props-panel');
if (!propertiesPanel) return;
const propsContent = propertiesPanel.querySelector('.props-content');
if (!propsContent) return;
propsContent.innerHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">📊</i> ${sampleData.name}
</div>
<div class="props-row">
<div class="props-key">Input Shape</div>
<div class="props-value">${sampleData.inputShape.join(' × ')}</div>
</div>
<div class="props-row">
<div class="props-key">Classes</div>
<div class="props-value">${sampleData.numClasses}</div>
</div>
<div class="props-row">
<div class="props-key">Training Samples</div>
<div class="props-value">${sampleData.trainSamples.toLocaleString()}</div>
</div>
<div class="props-row">
<div class="props-key">Test Samples</div>
<div class="props-value">${sampleData.testSamples.toLocaleString()}</div>
</div>
<div class="props-row">
<div class="props-key">Description</div>
<div class="props-value">${sampleData.description}</div>
</div>
</div>
<div class="props-section">
<p class="hint-text">Click "Run Network" to train on this dataset</p>
</div>
`;
}
// Function to run the neural network simulation
function runNetwork() {
console.log('Running neural network simulation with config:', networkConfig);
// Get the current network architecture
const networkLayers = window.dragDrop.getNetworkArchitecture();
// Check if we have a valid network
if (networkLayers.layers.length === 0) {
alert('Please add some nodes to the network first!');
return;
}
// Validate the network
const validationResult = window.neuralNetwork.validateNetwork(
networkLayers.layers,
networkLayers.connections
);
if (!validationResult.valid) {
alert('Network is not valid: ' + validationResult.errors.join('\n'));
return;
}
// Add animation class to all nodes
document.querySelectorAll('.canvas-node').forEach(node => {
node.classList.add('highlight-pulse');
});
// Animate connections to show data flow
document.querySelectorAll('.connection').forEach((connection, index) => {
setTimeout(() => {
connection.style.background = 'linear-gradient(90deg, var(--primary-color), var(--accent-color))';
// Reset after animation
setTimeout(() => {
connection.style.background = '';
}, 800);
}, 300 * index);
});
// Simulate training
simulateTraining();
// Reset animations after completion
setTimeout(() => {
document.querySelectorAll('.canvas-node').forEach(node => {
node.classList.remove('highlight-pulse');
});
}, 3000);
}
// Simulate training progress
function simulateTraining() {
const progressBar = document.querySelector('.progress-bar');
const lossValue = document.getElementById('loss-value');
const accuracyValue = document.getElementById('accuracy-value');
if (!progressBar || !lossValue || !accuracyValue) return;
// Reset progress
progressBar.style.width = '0%';
lossValue.textContent = '2.3021';
accuracyValue.textContent = '0.12';
// Simulate progress over time
let progress = 0;
let loss = 2.3021;
let accuracy = 0.12;
const interval = setInterval(() => {
progress += 10;
loss *= 0.85; // Decrease loss over time
accuracy = Math.min(0.99, accuracy * 1.2); // Increase accuracy over time
progressBar.style.width = `${progress}%`;
lossValue.textContent = loss.toFixed(4);
accuracyValue.textContent = accuracy.toFixed(2);
if (progress >= 100) {
clearInterval(interval);
}
}, 300);
}
// Function to clear all nodes from the canvas
function clearCanvas() {
if (window.dragDrop && typeof window.dragDrop.clearAllNodes === 'function') {
window.dragDrop.clearAllNodes();
}
// Reset progress indicators
const progressBar = document.querySelector('.progress-bar');
const lossValue = document.getElementById('loss-value');
const accuracyValue = document.getElementById('accuracy-value');
if (progressBar) progressBar.style.width = '0%';
if (lossValue) lossValue.textContent = '-';
if (accuracyValue) accuracyValue.textContent = '-';
}
// Update activation function graph
function updateActivationFunctionGraph(activationType) {
const activationGraph = document.querySelector('.activation-function');
if (!activationGraph) return;
// Clear previous graph
let canvas = activationGraph.querySelector('canvas');
if (!canvas) {
canvas = document.createElement('canvas');
canvas.width = 200;
canvas.height = 100;
activationGraph.appendChild(canvas);
}
const ctx = canvas.getContext('2d');
// Clear canvas
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Set background
ctx.fillStyle = '#f8f9fa';
ctx.fillRect(0, 0, canvas.width, canvas.height);
// Draw axes
ctx.strokeStyle = '#ccc';
ctx.lineWidth = 1;
ctx.beginPath();
ctx.moveTo(0, canvas.height / 2);
ctx.lineTo(canvas.width, canvas.height / 2);
ctx.moveTo(canvas.width / 2, 0);
ctx.lineTo(canvas.width / 2, canvas.height);
ctx.stroke();
// Draw function
ctx.strokeStyle = 'var(--primary-color)';
ctx.lineWidth = 2;
ctx.beginPath();
switch(activationType) {
case 'relu':
ctx.moveTo(0, canvas.height / 2);
ctx.lineTo(canvas.width / 2, canvas.height / 2);
ctx.lineTo(canvas.width, 0);
break;
case 'sigmoid':
for (let x = 0; x < canvas.width; x++) {
const normalizedX = (x / canvas.width - 0.5) * 10;
const sigmoidY = 1 / (1 + Math.exp(-normalizedX));
const y = canvas.height - sigmoidY * canvas.height;
if (x === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
}
break;
case 'tanh':
for (let x = 0; x < canvas.width; x++) {
const normalizedX = (x / canvas.width - 0.5) * 6;
const tanhY = Math.tanh(normalizedX);
const y = canvas.height / 2 - tanhY * canvas.height / 2;
if (x === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
}
break;
case 'softmax':
// Just a representative curve for softmax
ctx.moveTo(0, canvas.height * 0.8);
ctx.bezierCurveTo(
canvas.width * 0.3, canvas.height * 0.7,
canvas.width * 0.6, canvas.height * 0.3,
canvas.width, canvas.height * 0.2
);
break;
default: // Linear
ctx.moveTo(0, canvas.height * 0.8);
ctx.lineTo(canvas.width, canvas.height * 0.2);
}
ctx.stroke();
// Add label
ctx.fillStyle = 'var(--text-color)';
ctx.font = '12px Arial';
ctx.textAlign = 'center';
ctx.fillText(activationType, canvas.width / 2, canvas.height - 10);
}
// Setup node hover effects for tooltips
canvas.addEventListener('mouseover', (e) => {
const node = e.target.closest('.canvas-node');
if (node) {
const rect = node.getBoundingClientRect();
const nodeType = node.getAttribute('data-type');
const nodeName = node.getAttribute('data-name');
const dimensions = node.getAttribute('data-dimensions');
// Show tooltip
tooltip.style.display = 'block';
tooltip.style.left = `${rect.right + 10}px`;
tooltip.style.top = `${rect.top}px`;
const tooltipHeader = tooltip.querySelector('.tooltip-header');
const tooltipContent = tooltip.querySelector('.tooltip-content');
if (tooltipHeader && tooltipContent) {
tooltipHeader.textContent = nodeName;
let content = '';
content += `<div class="tooltip-row">
<div class="tooltip-label">Type:</div>
<div class="tooltip-value">${nodeType.charAt(0).toUpperCase() + nodeType.slice(1)}</div>
</div>`;
content += `<div class="tooltip-row">
<div class="tooltip-label">Dimensions:</div>
<div class="tooltip-value">${dimensions}</div>
</div>`;
// Get config template
const configTemplate = window.neuralNetwork.nodeConfigTemplates[nodeType];
if (configTemplate) {
if (configTemplate.activation) {
content += `<div class="tooltip-row">
<div class="tooltip-label">Activation:</div>
<div class="tooltip-value">${configTemplate.activation}</div>
</div>`;
}
if (configTemplate.description) {
content += `<div class="tooltip-row">
<div class="tooltip-label">Description:</div>
<div class="tooltip-value">${configTemplate.description}</div>
</div>`;
}
}
tooltipContent.innerHTML = content;
}
}
});
canvas.addEventListener('mouseout', (e) => {
const node = e.target.closest('.canvas-node');
if (node) {
tooltip.style.display = 'none';
}
});
// Make sure tooltip follows cursor for nodes that are being dragged
canvas.addEventListener('mousemove', (e) => {
const node = e.target.closest('.canvas-node');
if (node && node.classList.contains('dragging')) {
const rect = node.getBoundingClientRect();
tooltip.style.left = `${rect.right + 10}px`;
tooltip.style.top = `${rect.top}px`;
}
});
}); |