Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
from PIL import Image | |
import torch | |
import googletrans | |
from googletrans import Translator | |
import os | |
from groq import Groq | |
# Load Model | |
MODEL_NAME = "linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification" | |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME) | |
model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) | |
# Groq API Key (Set in Hugging Face Secrets) | |
GROQ_API_KEY = os.getenv("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") | |
client = Groq(api_key=GROQ_API_KEY) | |
# Disease Descriptions | |
disease_info = { | |
"Bacterial Spot": {"cause": "Bacteria (Xanthomonas spp.)", "remedy": "Use copper-based fungicides."}, | |
"Leaf Mold": {"cause": "Fungus (Cladosporium fulvum)", "remedy": "Use resistant plant varieties."}, | |
"Healthy": {"cause": "No disease detected", "remedy": "Your plant is healthy!"} | |
} | |
# Translator | |
translator = Translator() | |
# Streamlit UI | |
st.set_page_config(page_title="Plant Disease Detection", page_icon="🌿", layout="wide") | |
st.title("🌿 Plant Disease Detection App") | |
st.write("Upload a leaf image to detect diseases and get solutions.") | |
# Image Upload | |
uploaded_file = st.file_uploader("📷 Upload a leaf image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file: | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Predict Disease | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_idx].item() * 100 | |
st.subheader(f"🔍 **Detected Disease:** {predicted_label} ({confidence:.2f}%)") | |
# Get Disease Info | |
if predicted_label in disease_info: | |
cause = disease_info[predicted_label]["cause"] | |
remedy = disease_info[predicted_label]["remedy"] | |
else: | |
cause = "Unknown cause." | |
remedy = "Consult an expert." | |
# Select Language | |
language = st.selectbox("🌍 Select Language", list(googletrans.LANGUAGES.values()), index=21) # Default: English | |
lang_code = list(googletrans.LANGUAGES.keys())[list(googletrans.LANGUAGES.values()).index(language)] | |
# Translate Disease Info | |
cause_translated = translator.translate(cause, dest=lang_code).text | |
remedy_translated = translator.translate(remedy, dest=lang_code).text | |
st.info(f"🦠 **Cause:** {cause_translated}") | |
st.success(f"💊 **Remedy:** {remedy_translated}") | |
# Chatbot | |
st.subheader("💬 Chat with AI about Plant Diseases") | |
user_query = st.text_input("Type your question about the disease:") | |
if user_query: | |
response = client.chat.completions.create( | |
messages=[{"role": "user", "content": user_query}], | |
model="llama-3.3-70b-versatile" | |
) | |
chatbot_response = response.choices[0].message.content | |
st.write("🤖 **Chatbot Response:**", chatbot_response) | |