import streamlit as st from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import torch import googletrans from googletrans import Translator import os from groq import Groq # Load Model MODEL_NAME = "linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification" processor = AutoImageProcessor.from_pretrained(MODEL_NAME) model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) # Groq API Key (Set in Hugging Face Secrets) GROQ_API_KEY = os.getenv("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") client = Groq(api_key=GROQ_API_KEY) # Disease Descriptions disease_info = { "Bacterial Spot": {"cause": "Bacteria (Xanthomonas spp.)", "remedy": "Use copper-based fungicides."}, "Leaf Mold": {"cause": "Fungus (Cladosporium fulvum)", "remedy": "Use resistant plant varieties."}, "Healthy": {"cause": "No disease detected", "remedy": "Your plant is healthy!"} } # Translator translator = Translator() # Streamlit UI st.set_page_config(page_title="Plant Disease Detection", page_icon="🌿", layout="wide") st.title("🌿 Plant Disease Detection App") st.write("Upload a leaf image to detect diseases and get solutions.") # Image Upload uploaded_file = st.file_uploader("📷 Upload a leaf image...", type=["jpg", "png", "jpeg"]) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) # Predict Disease inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_idx = logits.argmax(-1).item() predicted_label = model.config.id2label[predicted_class_idx] confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_idx].item() * 100 st.subheader(f"🔍 **Detected Disease:** {predicted_label} ({confidence:.2f}%)") # Get Disease Info if predicted_label in disease_info: cause = disease_info[predicted_label]["cause"] remedy = disease_info[predicted_label]["remedy"] else: cause = "Unknown cause." remedy = "Consult an expert." # Select Language language = st.selectbox("🌍 Select Language", list(googletrans.LANGUAGES.values()), index=21) # Default: English lang_code = list(googletrans.LANGUAGES.keys())[list(googletrans.LANGUAGES.values()).index(language)] # Translate Disease Info cause_translated = translator.translate(cause, dest=lang_code).text remedy_translated = translator.translate(remedy, dest=lang_code).text st.info(f"🦠 **Cause:** {cause_translated}") st.success(f"💊 **Remedy:** {remedy_translated}") # Chatbot st.subheader("💬 Chat with AI about Plant Diseases") user_query = st.text_input("Type your question about the disease:") if user_query: response = client.chat.completions.create( messages=[{"role": "user", "content": user_query}], model="llama-3.3-70b-versatile" ) chatbot_response = response.choices[0].message.content st.write("🤖 **Chatbot Response:**", chatbot_response)