Spaces:
Running
Running
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# Load the tokenizer and model from Hugging Face | |
model_name = 'alexdong/query-reformulation-knowledge-base-t5-small' | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
# Define the function that will be run for every input | |
def generate_text(input_text): | |
input_ids = tokenizer(f"reformulate: {input_text}", return_tensors="pt").input_ids | |
output_ids = model.generate(input_ids, max_length=50) | |
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
print(decoded_output) | |
return decoded_output | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Query Reformulation", | |
description="Enter a search query to see how the model rewrites it into RAG friendly subqueries.", # Description | |
) | |
# Display the interface | |
iface.launch() |