import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration # Load the tokenizer and model from Hugging Face model_name = 'alexdong/query-reformulation-knowledge-base-t5-small' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) # Define the function that will be run for every input def generate_text(input_text): input_ids = tokenizer(f"reformulate: {input_text}", return_tensors="pt").input_ids output_ids = model.generate(input_ids, max_length=50) decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(decoded_output) return decoded_output # Define the Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Query Reformulation", description="Enter a search query to see how the model rewrites it into RAG friendly subqueries.", # Description ) # Display the interface iface.launch()