csm-1b-gradio / app.py
alethanhson
fix
9605f46
import base64
import io
import logging
from typing import List
import torch
import torchaudio
import gradio as gr
import numpy as np
from generator import Segment, Model, Generator
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
generator = None
def initialize_model():
global generator
logger.info("Loading CSM 1B model...")
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
logger.warning("GPU not available. Using CPU, performance may be slow!")
logger.info(f"Using device: {device}")
try:
model = Model.from_pretrained("sesame/csm-1b")
model = model.to(device=device)
generator = Generator(model)
logger.info(f"Model loaded successfully on device: {device}")
return True
except Exception as e:
logger.error(f"Could not load model: {str(e)}")
return False
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
global generator
if generator is None:
if not initialize_model():
return None, "Could not load model. Please try again later."
try:
# Process context if provided
context_segments = []
if context_texts and context_speakers:
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
if ctx_text and ctx_speaker is not None:
context_segments.append(
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32))
)
# Generate audio from text
audio = generator.generate(
text=text,
speaker=int(speaker_id),
context=context_segments,
max_audio_length_ms=float(max_audio_length_ms),
temperature=float(temperature),
topk=int(topk),
)
# Convert tensor to numpy array for Gradio
audio_numpy = audio.cpu().numpy()
sample_rate = generator.sample_rate
return (sample_rate, audio_numpy), None
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
return None, f"Error generating audio: {str(e)}"
def clear_context():
return [], []
def add_context(text, speaker_id, context_texts, context_speakers):
if text and speaker_id is not None:
context_texts.append(text)
context_speakers.append(int(speaker_id))
return context_texts, context_speakers
# Set up Gradio interface
with gr.Blocks(title="CSM 1B Demo") as demo:
gr.Markdown("# CSM 1B - Conversational Speech Model")
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter your text here...",
lines=3
)
speaker_id = gr.Slider(
label="Speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Accordion("Advanced Options", open=False):
max_length = gr.Slider(
label="Maximum length (milliseconds)",
minimum=1000,
maximum=30000,
step=1000,
value=10000
)
temp = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.9
)
top_k = gr.Slider(
label="Top K",
minimum=10,
maximum=100,
step=10,
value=50
)
with gr.Accordion("Conversation Context", open=False):
context_list = gr.State([])
context_speakers_list = gr.State([])
with gr.Row():
context_text = gr.Textbox(label="Context text", lines=2)
context_speaker = gr.Slider(
label="Context speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Row():
add_ctx_btn = gr.Button("Add Context")
clear_ctx_btn = gr.Button("Clear All Context")
context_display = gr.Dataframe(
headers=["Text", "Speaker ID"],
label="Current Context",
interactive=False
)
generate_btn = gr.Button("Generate Audio", variant="primary")
with gr.Column(scale=1):
audio_output = gr.Audio(label="Generated Audio", type="numpy")
error_output = gr.Textbox(label="Error Message", visible=False)
# Connect events
generate_btn.click(
fn=generate_speech,
inputs=[
text_input,
speaker_id,
max_length,
temp,
top_k,
context_list,
context_speakers_list
],
outputs=[audio_output, error_output]
)
add_ctx_btn.click(
fn=add_context,
inputs=[
context_text,
context_speaker,
context_list,
context_speakers_list
],
outputs=[context_list, context_speakers_list]
)
clear_ctx_btn.click(
fn=clear_context,
inputs=[],
outputs=[context_list, context_speakers_list]
)
# Update context display
def update_context_display(texts, speakers):
if not texts or not speakers:
return []
return [[text, speaker] for text, speaker in zip(texts, speakers)]
context_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
context_speakers_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
# Initialize model when page loads
initialize_model()
# Configuration for Hugging Face Spaces
demo.launch(share=False)