Spaces:
Running
Running
import base64 | |
import io | |
import logging | |
from typing import List | |
import torch | |
import torchaudio | |
import gradio as gr | |
import numpy as np | |
from generator import Segment, Model, Generator | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
generator = None | |
def initialize_model(): | |
global generator | |
logger.info("Loading CSM 1B model...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if device == "cpu": | |
logger.warning("GPU not available. Using CPU, performance may be slow!") | |
logger.info(f"Using device: {device}") | |
try: | |
model = Model.from_pretrained("sesame/csm-1b") | |
model = model.to(device=device) | |
generator = Generator(model) | |
logger.info(f"Model loaded successfully on device: {device}") | |
return True | |
except Exception as e: | |
logger.error(f"Could not load model: {str(e)}") | |
return False | |
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None): | |
global generator | |
if generator is None: | |
if not initialize_model(): | |
return None, "Could not load model. Please try again later." | |
try: | |
# Process context if provided | |
context_segments = [] | |
if context_texts and context_speakers: | |
for ctx_text, ctx_speaker in zip(context_texts, context_speakers): | |
if ctx_text and ctx_speaker is not None: | |
context_segments.append( | |
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32)) | |
) | |
# Generate audio from text | |
audio = generator.generate( | |
text=text, | |
speaker=int(speaker_id), | |
context=context_segments, | |
max_audio_length_ms=float(max_audio_length_ms), | |
temperature=float(temperature), | |
topk=int(topk), | |
) | |
# Convert tensor to numpy array for Gradio | |
audio_numpy = audio.cpu().numpy() | |
sample_rate = generator.sample_rate | |
return (sample_rate, audio_numpy), None | |
except Exception as e: | |
logger.error(f"Error generating audio: {str(e)}") | |
return None, f"Error generating audio: {str(e)}" | |
def clear_context(): | |
return [], [] | |
def add_context(text, speaker_id, context_texts, context_speakers): | |
if text and speaker_id is not None: | |
context_texts.append(text) | |
context_speakers.append(int(speaker_id)) | |
return context_texts, context_speakers | |
# Set up Gradio interface | |
with gr.Blocks(title="CSM 1B Demo") as demo: | |
gr.Markdown("# CSM 1B - Conversational Speech Model") | |
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
text_input = gr.Textbox( | |
label="Text to convert to speech", | |
placeholder="Enter your text here...", | |
lines=3 | |
) | |
speaker_id = gr.Slider( | |
label="Speaker ID", | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=0 | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
max_length = gr.Slider( | |
label="Maximum length (milliseconds)", | |
minimum=1000, | |
maximum=30000, | |
step=1000, | |
value=10000 | |
) | |
temp = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.5, | |
step=0.1, | |
value=0.9 | |
) | |
top_k = gr.Slider( | |
label="Top K", | |
minimum=10, | |
maximum=100, | |
step=10, | |
value=50 | |
) | |
with gr.Accordion("Conversation Context", open=False): | |
context_list = gr.State([]) | |
context_speakers_list = gr.State([]) | |
with gr.Row(): | |
context_text = gr.Textbox(label="Context text", lines=2) | |
context_speaker = gr.Slider( | |
label="Context speaker ID", | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=0 | |
) | |
with gr.Row(): | |
add_ctx_btn = gr.Button("Add Context") | |
clear_ctx_btn = gr.Button("Clear All Context") | |
context_display = gr.Dataframe( | |
headers=["Text", "Speaker ID"], | |
label="Current Context", | |
interactive=False | |
) | |
generate_btn = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(scale=1): | |
audio_output = gr.Audio(label="Generated Audio", type="numpy") | |
error_output = gr.Textbox(label="Error Message", visible=False) | |
# Connect events | |
generate_btn.click( | |
fn=generate_speech, | |
inputs=[ | |
text_input, | |
speaker_id, | |
max_length, | |
temp, | |
top_k, | |
context_list, | |
context_speakers_list | |
], | |
outputs=[audio_output, error_output] | |
) | |
add_ctx_btn.click( | |
fn=add_context, | |
inputs=[ | |
context_text, | |
context_speaker, | |
context_list, | |
context_speakers_list | |
], | |
outputs=[context_list, context_speakers_list] | |
) | |
clear_ctx_btn.click( | |
fn=clear_context, | |
inputs=[], | |
outputs=[context_list, context_speakers_list] | |
) | |
# Update context display | |
def update_context_display(texts, speakers): | |
if not texts or not speakers: | |
return [] | |
return [[text, speaker] for text, speaker in zip(texts, speakers)] | |
context_list.change( | |
fn=update_context_display, | |
inputs=[context_list, context_speakers_list], | |
outputs=[context_display] | |
) | |
context_speakers_list.change( | |
fn=update_context_display, | |
inputs=[context_list, context_speakers_list], | |
outputs=[context_display] | |
) | |
# Initialize model when page loads | |
initialize_model() | |
# Configuration for Hugging Face Spaces | |
demo.launch(share=False) | |