File size: 6,626 Bytes
e0668e2
 
 
 
04817a7
e0668e2
 
 
 
04817a7
9605f46
04817a7
e0668e2
 
04817a7
e0668e2
04817a7
e0668e2
 
69a5801
04817a7
e0668e2
 
69a5801
 
04817a7
e0668e2
9605f46
 
 
 
 
e0668e2
69a5801
9605f46
e0668e2
 
 
04817a7
e0668e2
 
9605f46
e0668e2
 
69a5801
e0668e2
 
 
 
 
 
 
04817a7
69a5801
e0668e2
 
 
 
 
 
 
 
04817a7
69a5801
e0668e2
 
04817a7
e0668e2
 
 
69a5801
9605f46
e0668e2
 
 
 
 
 
 
 
 
 
69a5801
e0668e2
69a5801
 
e0668e2
 
 
 
69a5801
 
e0668e2
 
 
69a5801
e0668e2
 
 
 
 
 
69a5801
e0668e2
69a5801
e0668e2
 
 
 
 
 
69a5801
e0668e2
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
e0668e2
 
 
 
69a5801
e0668e2
69a5801
e0668e2
 
 
 
 
 
 
69a5801
 
e0668e2
 
69a5801
 
e0668e2
 
 
69a5801
04817a7
e0668e2
69a5801
 
e0668e2
69a5801
e0668e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
e0668e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04817a7
69a5801
e0668e2
04817a7
69a5801
e0668e2
04817a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import base64
import io
import logging
from typing import List

import torch
import torchaudio
import gradio as gr
import numpy as np

from generator import Segment, Model, Generator

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

generator = None

def initialize_model():
    global generator
    logger.info("Loading CSM 1B model...")
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if device == "cpu":
        logger.warning("GPU not available. Using CPU, performance may be slow!")
    logger.info(f"Using device: {device}")
    
    try:
        model = Model.from_pretrained("sesame/csm-1b")
        model = model.to(device=device)
        generator = Generator(model)
        logger.info(f"Model loaded successfully on device: {device}")
        return True
    except Exception as e:
        logger.error(f"Could not load model: {str(e)}")
        return False

def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
    global generator
    
    if generator is None:
        if not initialize_model():
            return None, "Could not load model. Please try again later."
    
    try:
        # Process context if provided
        context_segments = []
        if context_texts and context_speakers:
            for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
                if ctx_text and ctx_speaker is not None:
                    context_segments.append(
                        Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32))
                    )
        
        # Generate audio from text
        audio = generator.generate(
            text=text,
            speaker=int(speaker_id),
            context=context_segments,
            max_audio_length_ms=float(max_audio_length_ms),
            temperature=float(temperature),
            topk=int(topk),
        )
        
        # Convert tensor to numpy array for Gradio
        audio_numpy = audio.cpu().numpy()
        sample_rate = generator.sample_rate
        
        return (sample_rate, audio_numpy), None
    
    except Exception as e:
        logger.error(f"Error generating audio: {str(e)}")
        return None, f"Error generating audio: {str(e)}"

def clear_context():
    return [], []

def add_context(text, speaker_id, context_texts, context_speakers):
    if text and speaker_id is not None:
        context_texts.append(text)
        context_speakers.append(int(speaker_id))
    return context_texts, context_speakers

# Set up Gradio interface
with gr.Blocks(title="CSM 1B Demo") as demo:
    gr.Markdown("# CSM 1B - Conversational Speech Model")
    gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
    
    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(
                label="Text to convert to speech",
                placeholder="Enter your text here...",
                lines=3
            )
            speaker_id = gr.Slider(
                label="Speaker ID",
                minimum=0,
                maximum=10,
                step=1,
                value=0
            )
            
            with gr.Accordion("Advanced Options", open=False):
                max_length = gr.Slider(
                    label="Maximum length (milliseconds)",
                    minimum=1000,
                    maximum=30000,
                    step=1000,
                    value=10000
                )
                temp = gr.Slider(
                    label="Temperature",
                    minimum=0.1,
                    maximum=1.5,
                    step=0.1,
                    value=0.9
                )
                top_k = gr.Slider(
                    label="Top K",
                    minimum=10,
                    maximum=100,
                    step=10,
                    value=50
                )
            
            with gr.Accordion("Conversation Context", open=False):
                context_list = gr.State([])
                context_speakers_list = gr.State([])
                
                with gr.Row():
                    context_text = gr.Textbox(label="Context text", lines=2)
                    context_speaker = gr.Slider(
                        label="Context speaker ID",
                        minimum=0,
                        maximum=10,
                        step=1,
                        value=0
                    )
                
                with gr.Row():
                    add_ctx_btn = gr.Button("Add Context")
                    clear_ctx_btn = gr.Button("Clear All Context")
                
                context_display = gr.Dataframe(
                    headers=["Text", "Speaker ID"],
                    label="Current Context",
                    interactive=False
                )
            
            generate_btn = gr.Button("Generate Audio", variant="primary")
        
        with gr.Column(scale=1):
            audio_output = gr.Audio(label="Generated Audio", type="numpy")
            error_output = gr.Textbox(label="Error Message", visible=False)
    
    # Connect events
    generate_btn.click(
        fn=generate_speech,
        inputs=[
            text_input,
            speaker_id,
            max_length,
            temp,
            top_k,
            context_list,
            context_speakers_list
        ],
        outputs=[audio_output, error_output]
    )
    
    add_ctx_btn.click(
        fn=add_context,
        inputs=[
            context_text,
            context_speaker,
            context_list,
            context_speakers_list
        ],
        outputs=[context_list, context_speakers_list]
    )
    
    clear_ctx_btn.click(
        fn=clear_context,
        inputs=[],
        outputs=[context_list, context_speakers_list]
    )
    
    # Update context display
    def update_context_display(texts, speakers):
        if not texts or not speakers:
            return []
        return [[text, speaker] for text, speaker in zip(texts, speakers)]
    
    context_list.change(
        fn=update_context_display,
        inputs=[context_list, context_speakers_list],
        outputs=[context_display]
    )
    
    context_speakers_list.change(
        fn=update_context_display,
        inputs=[context_list, context_speakers_list],
        outputs=[context_display]
    )

# Initialize model when page loads
initialize_model()

# Configuration for Hugging Face Spaces
demo.launch(share=False)