Spaces:
Running
Running
alethanhson
commited on
Commit
·
69a5801
1
Parent(s):
e0668e2
fix
Browse files- .huggingface/space.yml +3 -2
- Procfile +1 -1
- README.md +20 -20
- app.py +34 -34
- app_huggingface.py +214 -0
.huggingface/space.yml
CHANGED
@@ -4,8 +4,9 @@ colorFrom: indigo
|
|
4 |
colorTo: purple
|
5 |
sdk: gradio
|
6 |
sdk_version: 4.19.2
|
7 |
-
app_file:
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
models:
|
11 |
-
- sesame/csm-1b
|
|
|
|
4 |
colorTo: purple
|
5 |
sdk: gradio
|
6 |
sdk_version: 4.19.2
|
7 |
+
app_file: app_huggingface.py
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
models:
|
11 |
+
- sesame/csm-1b
|
12 |
+
description: "Convert text to natural-sounding speech with Sesame's Conversational Speech Model"
|
Procfile
CHANGED
@@ -1 +1 @@
|
|
1 |
-
web: python
|
|
|
1 |
+
web: python app_huggingface.py
|
README.md
CHANGED
@@ -13,32 +13,32 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
13 |
|
14 |
# CSM-1B Gradio Demo
|
15 |
|
16 |
-
|
17 |
|
18 |
-
##
|
19 |
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
|
25 |
-
##
|
26 |
|
27 |
-
1.
|
28 |
-
2.
|
29 |
-
3.
|
30 |
-
4.
|
31 |
-
5.
|
32 |
|
33 |
-
##
|
34 |
|
35 |
-
|
36 |
|
37 |
-
1.
|
38 |
-
2. Upload
|
39 |
-
3.
|
40 |
-
4.
|
41 |
|
42 |
-
##
|
43 |
|
44 |
-
|
|
|
13 |
|
14 |
# CSM-1B Gradio Demo
|
15 |
|
16 |
+
Demo application for the CSM-1B (Conversational Speech Model) using Gradio to create a user-friendly interface.
|
17 |
|
18 |
+
## Features
|
19 |
|
20 |
+
- Convert text to natural-sounding speech
|
21 |
+
- Support for multiple speaker voices (Speaker IDs)
|
22 |
+
- Generate speech with conversation context
|
23 |
+
- Customize parameters like temperature and audio length
|
24 |
|
25 |
+
## Usage
|
26 |
|
27 |
+
1. Enter the text you want to convert to speech
|
28 |
+
2. Choose a speaker ID (from 0-10)
|
29 |
+
3. Customize advanced parameters (optional)
|
30 |
+
4. Add conversation context if needed
|
31 |
+
5. Click "Generate Audio" to hear the result
|
32 |
|
33 |
+
## Deployment on Hugging Face Spaces
|
34 |
|
35 |
+
This application is designed to run on Hugging Face Spaces. To deploy:
|
36 |
|
37 |
+
1. Create a new Space
|
38 |
+
2. Upload the source code to the Space
|
39 |
+
3. Select Gradio as the framework
|
40 |
+
4. Wait for the application to build and start
|
41 |
|
42 |
+
## Resources
|
43 |
|
44 |
+
Sesame AI's CSM-1B model: [sesame/csm-1b](https://huggingface.co/sesame/csm-1b)
|
app.py
CHANGED
@@ -17,19 +17,19 @@ generator = None
|
|
17 |
|
18 |
def initialize_model():
|
19 |
global generator
|
20 |
-
logger.info("
|
21 |
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
if device == "cpu":
|
24 |
-
logger.warning("GPU
|
25 |
-
logger.info(f"
|
26 |
|
27 |
try:
|
28 |
generator = load_csm_1b(device=device)
|
29 |
-
logger.info(f"
|
30 |
return True
|
31 |
except Exception as e:
|
32 |
-
logger.error(f"
|
33 |
return False
|
34 |
|
35 |
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
|
@@ -37,10 +37,10 @@ def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9
|
|
37 |
|
38 |
if generator is None:
|
39 |
if not initialize_model():
|
40 |
-
return None, "
|
41 |
|
42 |
try:
|
43 |
-
#
|
44 |
context_segments = []
|
45 |
if context_texts and context_speakers:
|
46 |
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
|
@@ -49,7 +49,7 @@ def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9
|
|
49 |
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32))
|
50 |
)
|
51 |
|
52 |
-
#
|
53 |
audio = generator.generate(
|
54 |
text=text,
|
55 |
speaker=int(speaker_id),
|
@@ -59,15 +59,15 @@ def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9
|
|
59 |
topk=int(topk),
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
audio_numpy = audio.cpu().numpy()
|
64 |
sample_rate = generator.sample_rate
|
65 |
|
66 |
return (sample_rate, audio_numpy), None
|
67 |
|
68 |
except Exception as e:
|
69 |
-
logger.error(f"
|
70 |
-
return None, f"
|
71 |
|
72 |
def clear_context():
|
73 |
return [], []
|
@@ -78,36 +78,36 @@ def add_context(text, speaker_id, context_texts, context_speakers):
|
|
78 |
context_speakers.append(int(speaker_id))
|
79 |
return context_texts, context_speakers
|
80 |
|
81 |
-
#
|
82 |
with gr.Blocks(title="CSM 1B Demo") as demo:
|
83 |
-
gr.Markdown("# CSM 1B -
|
84 |
-
gr.Markdown("
|
85 |
|
86 |
with gr.Row():
|
87 |
with gr.Column(scale=2):
|
88 |
text_input = gr.Textbox(
|
89 |
-
label="
|
90 |
-
placeholder="
|
91 |
lines=3
|
92 |
)
|
93 |
speaker_id = gr.Slider(
|
94 |
-
label="ID
|
95 |
minimum=0,
|
96 |
maximum=10,
|
97 |
step=1,
|
98 |
value=0
|
99 |
)
|
100 |
|
101 |
-
with gr.Accordion("
|
102 |
max_length = gr.Slider(
|
103 |
-
label="
|
104 |
minimum=1000,
|
105 |
maximum=30000,
|
106 |
step=1000,
|
107 |
value=10000
|
108 |
)
|
109 |
temp = gr.Slider(
|
110 |
-
label="
|
111 |
minimum=0.1,
|
112 |
maximum=1.5,
|
113 |
step=0.1,
|
@@ -121,14 +121,14 @@ with gr.Blocks(title="CSM 1B Demo") as demo:
|
|
121 |
value=50
|
122 |
)
|
123 |
|
124 |
-
with gr.Accordion("
|
125 |
context_list = gr.State([])
|
126 |
context_speakers_list = gr.State([])
|
127 |
|
128 |
with gr.Row():
|
129 |
-
context_text = gr.Textbox(label="
|
130 |
context_speaker = gr.Slider(
|
131 |
-
label="
|
132 |
minimum=0,
|
133 |
maximum=10,
|
134 |
step=1,
|
@@ -136,22 +136,22 @@ with gr.Blocks(title="CSM 1B Demo") as demo:
|
|
136 |
)
|
137 |
|
138 |
with gr.Row():
|
139 |
-
add_ctx_btn = gr.Button("
|
140 |
-
clear_ctx_btn = gr.Button("
|
141 |
|
142 |
context_display = gr.Dataframe(
|
143 |
-
headers=["
|
144 |
-
label="
|
145 |
interactive=False
|
146 |
)
|
147 |
|
148 |
-
generate_btn = gr.Button("
|
149 |
|
150 |
with gr.Column(scale=1):
|
151 |
-
audio_output = gr.Audio(label="
|
152 |
-
error_output = gr.Textbox(label="
|
153 |
|
154 |
-
#
|
155 |
generate_btn.click(
|
156 |
fn=generate_speech,
|
157 |
inputs=[
|
@@ -183,7 +183,7 @@ with gr.Blocks(title="CSM 1B Demo") as demo:
|
|
183 |
outputs=[context_list, context_speakers_list]
|
184 |
)
|
185 |
|
186 |
-
#
|
187 |
def update_context_display(texts, speakers):
|
188 |
if not texts or not speakers:
|
189 |
return []
|
@@ -201,9 +201,9 @@ with gr.Blocks(title="CSM 1B Demo") as demo:
|
|
201 |
outputs=[context_display]
|
202 |
)
|
203 |
|
204 |
-
#
|
205 |
initialize_model()
|
206 |
|
207 |
-
#
|
208 |
demo.launch(share=False)
|
209 |
|
|
|
17 |
|
18 |
def initialize_model():
|
19 |
global generator
|
20 |
+
logger.info("Loading CSM 1B model...")
|
21 |
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
if device == "cpu":
|
24 |
+
logger.warning("GPU not available. Using CPU, performance may be slow!")
|
25 |
+
logger.info(f"Using device: {device}")
|
26 |
|
27 |
try:
|
28 |
generator = load_csm_1b(device=device)
|
29 |
+
logger.info(f"Model loaded successfully on device: {device}")
|
30 |
return True
|
31 |
except Exception as e:
|
32 |
+
logger.error(f"Could not load model: {str(e)}")
|
33 |
return False
|
34 |
|
35 |
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
|
|
|
37 |
|
38 |
if generator is None:
|
39 |
if not initialize_model():
|
40 |
+
return None, "Could not load model. Please try again later."
|
41 |
|
42 |
try:
|
43 |
+
# Process context if provided
|
44 |
context_segments = []
|
45 |
if context_texts and context_speakers:
|
46 |
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
|
|
|
49 |
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32))
|
50 |
)
|
51 |
|
52 |
+
# Generate audio from text
|
53 |
audio = generator.generate(
|
54 |
text=text,
|
55 |
speaker=int(speaker_id),
|
|
|
59 |
topk=int(topk),
|
60 |
)
|
61 |
|
62 |
+
# Convert tensor to numpy array for Gradio
|
63 |
audio_numpy = audio.cpu().numpy()
|
64 |
sample_rate = generator.sample_rate
|
65 |
|
66 |
return (sample_rate, audio_numpy), None
|
67 |
|
68 |
except Exception as e:
|
69 |
+
logger.error(f"Error generating audio: {str(e)}")
|
70 |
+
return None, f"Error generating audio: {str(e)}"
|
71 |
|
72 |
def clear_context():
|
73 |
return [], []
|
|
|
78 |
context_speakers.append(int(speaker_id))
|
79 |
return context_texts, context_speakers
|
80 |
|
81 |
+
# Set up Gradio interface
|
82 |
with gr.Blocks(title="CSM 1B Demo") as demo:
|
83 |
+
gr.Markdown("# CSM 1B - Conversational Speech Model")
|
84 |
+
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
|
85 |
|
86 |
with gr.Row():
|
87 |
with gr.Column(scale=2):
|
88 |
text_input = gr.Textbox(
|
89 |
+
label="Text to convert to speech",
|
90 |
+
placeholder="Enter your text here...",
|
91 |
lines=3
|
92 |
)
|
93 |
speaker_id = gr.Slider(
|
94 |
+
label="Speaker ID",
|
95 |
minimum=0,
|
96 |
maximum=10,
|
97 |
step=1,
|
98 |
value=0
|
99 |
)
|
100 |
|
101 |
+
with gr.Accordion("Advanced Options", open=False):
|
102 |
max_length = gr.Slider(
|
103 |
+
label="Maximum length (milliseconds)",
|
104 |
minimum=1000,
|
105 |
maximum=30000,
|
106 |
step=1000,
|
107 |
value=10000
|
108 |
)
|
109 |
temp = gr.Slider(
|
110 |
+
label="Temperature",
|
111 |
minimum=0.1,
|
112 |
maximum=1.5,
|
113 |
step=0.1,
|
|
|
121 |
value=50
|
122 |
)
|
123 |
|
124 |
+
with gr.Accordion("Conversation Context", open=False):
|
125 |
context_list = gr.State([])
|
126 |
context_speakers_list = gr.State([])
|
127 |
|
128 |
with gr.Row():
|
129 |
+
context_text = gr.Textbox(label="Context text", lines=2)
|
130 |
context_speaker = gr.Slider(
|
131 |
+
label="Context speaker ID",
|
132 |
minimum=0,
|
133 |
maximum=10,
|
134 |
step=1,
|
|
|
136 |
)
|
137 |
|
138 |
with gr.Row():
|
139 |
+
add_ctx_btn = gr.Button("Add Context")
|
140 |
+
clear_ctx_btn = gr.Button("Clear All Context")
|
141 |
|
142 |
context_display = gr.Dataframe(
|
143 |
+
headers=["Text", "Speaker ID"],
|
144 |
+
label="Current Context",
|
145 |
interactive=False
|
146 |
)
|
147 |
|
148 |
+
generate_btn = gr.Button("Generate Audio", variant="primary")
|
149 |
|
150 |
with gr.Column(scale=1):
|
151 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
152 |
+
error_output = gr.Textbox(label="Error Message", visible=False)
|
153 |
|
154 |
+
# Connect events
|
155 |
generate_btn.click(
|
156 |
fn=generate_speech,
|
157 |
inputs=[
|
|
|
183 |
outputs=[context_list, context_speakers_list]
|
184 |
)
|
185 |
|
186 |
+
# Update context display
|
187 |
def update_context_display(texts, speakers):
|
188 |
if not texts or not speakers:
|
189 |
return []
|
|
|
201 |
outputs=[context_display]
|
202 |
)
|
203 |
|
204 |
+
# Initialize model when page loads
|
205 |
initialize_model()
|
206 |
|
207 |
+
# Configuration for Hugging Face Spaces
|
208 |
demo.launch(share=False)
|
209 |
|
app_huggingface.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from generator import load_csm_1b, Segment
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
generator = None
|
17 |
+
|
18 |
+
def initialize_model():
|
19 |
+
global generator
|
20 |
+
logger.info("Loading CSM 1B model...")
|
21 |
+
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
if device == "cpu":
|
24 |
+
logger.warning("GPU not available. Using CPU, performance may be slow!")
|
25 |
+
logger.info(f"Using device: {device}")
|
26 |
+
|
27 |
+
try:
|
28 |
+
generator = load_csm_1b(device=device)
|
29 |
+
logger.info(f"Model loaded successfully on device: {device}")
|
30 |
+
return True
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Could not load model: {str(e)}")
|
33 |
+
return False
|
34 |
+
|
35 |
+
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
|
36 |
+
global generator
|
37 |
+
|
38 |
+
if generator is None:
|
39 |
+
if not initialize_model():
|
40 |
+
return None, "Could not load model. Please try again later."
|
41 |
+
|
42 |
+
try:
|
43 |
+
# Process context if provided
|
44 |
+
context_segments = []
|
45 |
+
if context_texts and context_speakers:
|
46 |
+
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
|
47 |
+
if ctx_text and ctx_speaker is not None:
|
48 |
+
context_segments.append(
|
49 |
+
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=torch.zeros(0, dtype=torch.float32))
|
50 |
+
)
|
51 |
+
|
52 |
+
# Generate audio from text
|
53 |
+
audio = generator.generate(
|
54 |
+
text=text,
|
55 |
+
speaker=int(speaker_id),
|
56 |
+
context=context_segments,
|
57 |
+
max_audio_length_ms=float(max_audio_length_ms),
|
58 |
+
temperature=float(temperature),
|
59 |
+
topk=int(topk),
|
60 |
+
)
|
61 |
+
|
62 |
+
# Convert tensor to numpy array for Gradio
|
63 |
+
audio_numpy = audio.cpu().numpy()
|
64 |
+
sample_rate = generator.sample_rate
|
65 |
+
|
66 |
+
return (sample_rate, audio_numpy), None
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"Error generating audio: {str(e)}")
|
70 |
+
return None, f"Error generating audio: {str(e)}"
|
71 |
+
|
72 |
+
def clear_context():
|
73 |
+
return [], []
|
74 |
+
|
75 |
+
def add_context(text, speaker_id, context_texts, context_speakers):
|
76 |
+
if text and speaker_id is not None:
|
77 |
+
context_texts.append(text)
|
78 |
+
context_speakers.append(int(speaker_id))
|
79 |
+
return context_texts, context_speakers
|
80 |
+
|
81 |
+
def update_context_display(texts, speakers):
|
82 |
+
if not texts or not speakers:
|
83 |
+
return []
|
84 |
+
return [[text, speaker] for text, speaker in zip(texts, speakers)]
|
85 |
+
|
86 |
+
def create_demo():
|
87 |
+
# Set up Gradio interface
|
88 |
+
demo = gr.Blocks(title="CSM 1B Demo")
|
89 |
+
|
90 |
+
with demo:
|
91 |
+
gr.Markdown("# CSM 1B - Conversational Speech Model")
|
92 |
+
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column(scale=2):
|
96 |
+
text_input = gr.Textbox(
|
97 |
+
label="Text to convert to speech",
|
98 |
+
placeholder="Enter your text here...",
|
99 |
+
lines=3
|
100 |
+
)
|
101 |
+
speaker_id = gr.Slider(
|
102 |
+
label="Speaker ID",
|
103 |
+
minimum=0,
|
104 |
+
maximum=10,
|
105 |
+
step=1,
|
106 |
+
value=0
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Accordion("Advanced Options", open=False):
|
110 |
+
max_length = gr.Slider(
|
111 |
+
label="Maximum length (milliseconds)",
|
112 |
+
minimum=1000,
|
113 |
+
maximum=30000,
|
114 |
+
step=1000,
|
115 |
+
value=10000
|
116 |
+
)
|
117 |
+
temp = gr.Slider(
|
118 |
+
label="Temperature",
|
119 |
+
minimum=0.1,
|
120 |
+
maximum=1.5,
|
121 |
+
step=0.1,
|
122 |
+
value=0.9
|
123 |
+
)
|
124 |
+
top_k = gr.Slider(
|
125 |
+
label="Top K",
|
126 |
+
minimum=10,
|
127 |
+
maximum=100,
|
128 |
+
step=10,
|
129 |
+
value=50
|
130 |
+
)
|
131 |
+
|
132 |
+
with gr.Accordion("Conversation Context", open=False):
|
133 |
+
context_list = gr.State([])
|
134 |
+
context_speakers_list = gr.State([])
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
context_text = gr.Textbox(label="Context text", lines=2)
|
138 |
+
context_speaker = gr.Slider(
|
139 |
+
label="Context speaker ID",
|
140 |
+
minimum=0,
|
141 |
+
maximum=10,
|
142 |
+
step=1,
|
143 |
+
value=0
|
144 |
+
)
|
145 |
+
|
146 |
+
with gr.Row():
|
147 |
+
add_ctx_btn = gr.Button("Add Context")
|
148 |
+
clear_ctx_btn = gr.Button("Clear All Context")
|
149 |
+
|
150 |
+
context_display = gr.Dataframe(
|
151 |
+
headers=["Text", "Speaker ID"],
|
152 |
+
label="Current Context",
|
153 |
+
interactive=False
|
154 |
+
)
|
155 |
+
|
156 |
+
generate_btn = gr.Button("Generate Audio", variant="primary")
|
157 |
+
|
158 |
+
with gr.Column(scale=1):
|
159 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
160 |
+
error_output = gr.Textbox(label="Error Message", visible=False)
|
161 |
+
|
162 |
+
# Connect events
|
163 |
+
generate_btn.click(
|
164 |
+
fn=generate_speech,
|
165 |
+
inputs=[
|
166 |
+
text_input,
|
167 |
+
speaker_id,
|
168 |
+
max_length,
|
169 |
+
temp,
|
170 |
+
top_k,
|
171 |
+
context_list,
|
172 |
+
context_speakers_list
|
173 |
+
],
|
174 |
+
outputs=[audio_output, error_output]
|
175 |
+
)
|
176 |
+
|
177 |
+
add_ctx_btn.click(
|
178 |
+
fn=add_context,
|
179 |
+
inputs=[
|
180 |
+
context_text,
|
181 |
+
context_speaker,
|
182 |
+
context_list,
|
183 |
+
context_speakers_list
|
184 |
+
],
|
185 |
+
outputs=[context_list, context_speakers_list]
|
186 |
+
)
|
187 |
+
|
188 |
+
clear_ctx_btn.click(
|
189 |
+
fn=clear_context,
|
190 |
+
inputs=[],
|
191 |
+
outputs=[context_list, context_speakers_list]
|
192 |
+
)
|
193 |
+
|
194 |
+
# Update context display
|
195 |
+
context_list.change(
|
196 |
+
fn=update_context_display,
|
197 |
+
inputs=[context_list, context_speakers_list],
|
198 |
+
outputs=[context_display]
|
199 |
+
)
|
200 |
+
|
201 |
+
context_speakers_list.change(
|
202 |
+
fn=update_context_display,
|
203 |
+
inputs=[context_list, context_speakers_list],
|
204 |
+
outputs=[context_display]
|
205 |
+
)
|
206 |
+
|
207 |
+
return demo
|
208 |
+
|
209 |
+
# Initialize model when page loads
|
210 |
+
initialize_model()
|
211 |
+
|
212 |
+
# Create and launch the demo
|
213 |
+
demo = create_demo()
|
214 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|