Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -52,7 +52,7 @@ current_model = models[1] if is_colab else models[0]
52
  current_model_path = current_model.path
53
 
54
  if is_colab:
55
- pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
56
 
57
  else: # download all models
58
  print(f"{datetime.datetime.now()} Downloading vae...")
@@ -61,8 +61,8 @@ else: # download all models
61
  try:
62
  print(f"{datetime.datetime.now()} Downloading {model.name} model...")
63
  unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
64
- model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
65
- model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
66
  except Exception as e:
67
  print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
68
  models.remove(model)
@@ -152,7 +152,7 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
152
  current_model_path = model_path
153
 
154
  if is_colab or current_model == custom_model:
155
- pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
156
  else:
157
  pipe = pipe.to("cpu")
158
  pipe = current_model.pipe_i2i
 
52
  current_model_path = current_model.path
53
 
54
  if is_colab:
55
+ pipe = StableDiffusionPipeline.from_pretrained(current_model.path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False)) #add torch_dtype=torch.float16 for GPU
56
 
57
  else: # download all models
58
  print(f"{datetime.datetime.now()} Downloading vae...")
 
61
  try:
62
  print(f"{datetime.datetime.now()} Downloading {model.name} model...")
63
  unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
64
+ model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
65
+ model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler) #I could add another If/Else if you want so it works with both CPU and GPU...
66
  except Exception as e:
67
  print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
68
  models.remove(model)
 
152
  current_model_path = model_path
153
 
154
  if is_colab or current_model == custom_model:
155
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False)) #removed another torch_dtype=torch.float16
156
  else:
157
  pipe = pipe.to("cpu")
158
  pipe = current_model.pipe_i2i