|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for input_preprocessing.""" |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from deeplab2.data.preprocessing import input_preprocessing |
|
|
|
|
|
class InputPreprocessingTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
super().setUp() |
|
self._image = tf.convert_to_tensor(np.random.randint(256, size=[33, 33, 3])) |
|
self._label = tf.convert_to_tensor(np.random.randint(19, size=[33, 33, 1])) |
|
|
|
def test_cropping(self): |
|
crop_height = np.random.randint(33) |
|
crop_width = np.random.randint(33) |
|
|
|
original_image, processed_image, processed_label, prev_image, prev_label = ( |
|
input_preprocessing.preprocess_image_and_label( |
|
image=self._image, |
|
label=self._label, |
|
prev_image=tf.identity(self._image), |
|
prev_label=tf.identity(self._label), |
|
crop_height=crop_height, |
|
crop_width=crop_width, |
|
ignore_label=255)) |
|
|
|
self.assertListEqual(original_image.shape.as_list(), |
|
[33, 33, 3]) |
|
self.assertListEqual(processed_image.shape.as_list(), |
|
[crop_height, crop_width, 3]) |
|
self.assertListEqual(processed_label.shape.as_list(), |
|
[crop_height, crop_width, 1]) |
|
np.testing.assert_equal(processed_image.numpy(), prev_image.numpy()) |
|
np.testing.assert_equal(processed_label.numpy(), prev_label.numpy()) |
|
|
|
def test_resizing(self): |
|
height, width = 65, 65 |
|
|
|
original_image, processed_image, processed_label, prev_image, prev_label = ( |
|
input_preprocessing.preprocess_image_and_label( |
|
image=self._image, |
|
label=self._label, |
|
prev_image=tf.identity(self._image), |
|
prev_label=tf.identity(self._label), |
|
crop_height=height, |
|
crop_width=width, |
|
min_resize_value=65, |
|
max_resize_value=65, |
|
resize_factor=32, |
|
ignore_label=255)) |
|
|
|
self.assertListEqual(original_image.shape.as_list(), |
|
[height, width, 3]) |
|
self.assertListEqual(processed_image.shape.as_list(), |
|
[height, width, 3]) |
|
self.assertListEqual(processed_label.shape.as_list(), |
|
[height, width, 1]) |
|
np.testing.assert_equal(processed_image.numpy(), prev_image.numpy()) |
|
np.testing.assert_equal(processed_label.numpy(), prev_label.numpy()) |
|
|
|
def test_scaling(self): |
|
height, width = 65, 65 |
|
|
|
original_image, processed_image, processed_label, prev_image, prev_label = ( |
|
input_preprocessing.preprocess_image_and_label( |
|
image=self._image, |
|
label=self._label, |
|
prev_image=tf.identity(self._image), |
|
prev_label=tf.identity(self._label), |
|
crop_height=height, |
|
crop_width=width, |
|
min_scale_factor=0.5, |
|
max_scale_factor=2.0, |
|
ignore_label=255)) |
|
|
|
self.assertListEqual(original_image.shape.as_list(), |
|
[33, 33, 3]) |
|
self.assertListEqual(processed_image.shape.as_list(), |
|
[height, width, 3]) |
|
self.assertListEqual(processed_label.shape.as_list(), |
|
[height, width, 1]) |
|
np.testing.assert_equal(processed_image.numpy(), prev_image.numpy()) |
|
np.testing.assert_equal(processed_label.numpy(), prev_label.numpy()) |
|
|
|
def test_return_padded_image_and_label(self): |
|
image = np.dstack([[[5, 6], [9, 0]], [[4, 3], [3, 5]], [[7, 8], [1, 2]]]) |
|
image = tf.convert_to_tensor(image, dtype=tf.float32) |
|
label = np.array([[[1], [2]], [[3], [4]]]) |
|
expected_image = np.dstack([[[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 5, 6, 127.5, 127.5], |
|
[127.5, 9, 0, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5]], |
|
[[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 4, 3, 127.5, 127.5], |
|
[127.5, 3, 5, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5]], |
|
[[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5], |
|
[127.5, 7, 8, 127.5, 127.5], |
|
[127.5, 1, 2, 127.5, 127.5], |
|
[127.5, 127.5, 127.5, 127.5, 127.5]]]) |
|
expected_label = np.array([[[255], [255], [255], [255], [255]], |
|
[[255], [255], [255], [255], [255]], |
|
[[255], [1], [2], [255], [255]], |
|
[[255], [3], [4], [255], [255]], |
|
[[255], [255], [255], [255], [255]]]) |
|
|
|
padded_image, padded_label = input_preprocessing._pad_image_and_label( |
|
image, label, 2, 1, 5, 5, 255) |
|
np.testing.assert_allclose(padded_image.numpy(), expected_image) |
|
np.testing.assert_allclose(padded_label.numpy(), expected_label) |
|
|
|
def test_return_original_image_when_target_size_is_equal_to_image_size(self): |
|
height, width, _ = tf.shape(self._image) |
|
padded_image, _ = input_preprocessing._pad_image_and_label( |
|
self._image, None, 0, 0, height, width) |
|
np.testing.assert_allclose(padded_image.numpy(), self._image) |
|
|
|
def test_die_on_target_size_greater_than_image_size(self): |
|
height, width, _ = tf.shape(self._image) |
|
with self.assertRaises(tf.errors.InvalidArgumentError): |
|
_ = input_preprocessing._pad_image_and_label(self._image, None, 0, 0, |
|
height, width - 1) |
|
|
|
with self.assertRaises(tf.errors.InvalidArgumentError): |
|
_ = input_preprocessing._pad_image_and_label(self._image, None, 0, 0, |
|
height - 1, width) |
|
|
|
def test_die_if_target_size_not_possible_with_given_offset(self): |
|
height, width, _ = tf.shape(self._image) |
|
with self.assertRaises(tf.errors.InvalidArgumentError): |
|
_ = input_preprocessing._pad_image_and_label(self._image, None, 3, 3, |
|
height + 2, width + 2) |
|
|
|
def test_set_min_resize_value_only_during_training(self): |
|
crop_height = np.random.randint(33) |
|
crop_width = np.random.randint(33) |
|
|
|
_, processed_image, _, _, _ = ( |
|
input_preprocessing.preprocess_image_and_label( |
|
image=self._image, |
|
label=self._label, |
|
crop_height=crop_height, |
|
crop_width=crop_width, |
|
min_resize_value=[10], |
|
max_resize_value=None, |
|
ignore_label=255)) |
|
|
|
self.assertListEqual(processed_image.shape.as_list(), |
|
[crop_height, crop_width, 3]) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|