File size: 7,528 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for input_preprocessing."""

import numpy as np
import tensorflow as tf

from deeplab2.data.preprocessing import input_preprocessing


class InputPreprocessingTest(tf.test.TestCase):

  def setUp(self):
    super().setUp()
    self._image = tf.convert_to_tensor(np.random.randint(256, size=[33, 33, 3]))
    self._label = tf.convert_to_tensor(np.random.randint(19, size=[33, 33, 1]))

  def test_cropping(self):
    crop_height = np.random.randint(33)
    crop_width = np.random.randint(33)

    original_image, processed_image, processed_label, prev_image, prev_label = (
        input_preprocessing.preprocess_image_and_label(
            image=self._image,
            label=self._label,
            prev_image=tf.identity(self._image),
            prev_label=tf.identity(self._label),
            crop_height=crop_height,
            crop_width=crop_width,
            ignore_label=255))

    self.assertListEqual(original_image.shape.as_list(),
                         [33, 33, 3])
    self.assertListEqual(processed_image.shape.as_list(),
                         [crop_height, crop_width, 3])
    self.assertListEqual(processed_label.shape.as_list(),
                         [crop_height, crop_width, 1])
    np.testing.assert_equal(processed_image.numpy(), prev_image.numpy())
    np.testing.assert_equal(processed_label.numpy(), prev_label.numpy())

  def test_resizing(self):
    height, width = 65, 65

    original_image, processed_image, processed_label, prev_image, prev_label = (
        input_preprocessing.preprocess_image_and_label(
            image=self._image,
            label=self._label,
            prev_image=tf.identity(self._image),
            prev_label=tf.identity(self._label),
            crop_height=height,
            crop_width=width,
            min_resize_value=65,
            max_resize_value=65,
            resize_factor=32,
            ignore_label=255))

    self.assertListEqual(original_image.shape.as_list(),
                         [height, width, 3])
    self.assertListEqual(processed_image.shape.as_list(),
                         [height, width, 3])
    self.assertListEqual(processed_label.shape.as_list(),
                         [height, width, 1])
    np.testing.assert_equal(processed_image.numpy(), prev_image.numpy())
    np.testing.assert_equal(processed_label.numpy(), prev_label.numpy())

  def test_scaling(self):
    height, width = 65, 65

    original_image, processed_image, processed_label, prev_image, prev_label = (
        input_preprocessing.preprocess_image_and_label(
            image=self._image,
            label=self._label,
            prev_image=tf.identity(self._image),
            prev_label=tf.identity(self._label),
            crop_height=height,
            crop_width=width,
            min_scale_factor=0.5,
            max_scale_factor=2.0,
            ignore_label=255))

    self.assertListEqual(original_image.shape.as_list(),
                         [33, 33, 3])
    self.assertListEqual(processed_image.shape.as_list(),
                         [height, width, 3])
    self.assertListEqual(processed_label.shape.as_list(),
                         [height, width, 1])
    np.testing.assert_equal(processed_image.numpy(), prev_image.numpy())
    np.testing.assert_equal(processed_label.numpy(), prev_label.numpy())

  def test_return_padded_image_and_label(self):
    image = np.dstack([[[5, 6], [9, 0]], [[4, 3], [3, 5]], [[7, 8], [1, 2]]])
    image = tf.convert_to_tensor(image, dtype=tf.float32)
    label = np.array([[[1], [2]], [[3], [4]]])
    expected_image = np.dstack([[[127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 5, 6, 127.5, 127.5],
                                 [127.5, 9, 0, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5]],
                                [[127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 4, 3, 127.5, 127.5],
                                 [127.5, 3, 5, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5]],
                                [[127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5],
                                 [127.5, 7, 8, 127.5, 127.5],
                                 [127.5, 1, 2, 127.5, 127.5],
                                 [127.5, 127.5, 127.5, 127.5, 127.5]]])
    expected_label = np.array([[[255], [255], [255], [255], [255]],
                               [[255], [255], [255], [255], [255]],
                               [[255], [1], [2], [255], [255]],
                               [[255], [3], [4], [255], [255]],
                               [[255], [255], [255], [255], [255]]])

    padded_image, padded_label = input_preprocessing._pad_image_and_label(
        image, label, 2, 1, 5, 5, 255)
    np.testing.assert_allclose(padded_image.numpy(), expected_image)
    np.testing.assert_allclose(padded_label.numpy(), expected_label)

  def test_return_original_image_when_target_size_is_equal_to_image_size(self):
    height, width, _ = tf.shape(self._image)
    padded_image, _ = input_preprocessing._pad_image_and_label(
        self._image, None, 0, 0, height, width)
    np.testing.assert_allclose(padded_image.numpy(), self._image)

  def test_die_on_target_size_greater_than_image_size(self):
    height, width, _ = tf.shape(self._image)
    with self.assertRaises(tf.errors.InvalidArgumentError):
      _ = input_preprocessing._pad_image_and_label(self._image, None, 0, 0,
                                                   height, width - 1)

    with self.assertRaises(tf.errors.InvalidArgumentError):
      _ = input_preprocessing._pad_image_and_label(self._image, None, 0, 0,
                                                   height - 1, width)

  def test_die_if_target_size_not_possible_with_given_offset(self):
    height, width, _ = tf.shape(self._image)
    with self.assertRaises(tf.errors.InvalidArgumentError):
      _ = input_preprocessing._pad_image_and_label(self._image, None, 3, 3,
                                                   height + 2, width + 2)

  def test_set_min_resize_value_only_during_training(self):
    crop_height = np.random.randint(33)
    crop_width = np.random.randint(33)

    _, processed_image, _, _, _ = (
        input_preprocessing.preprocess_image_and_label(
            image=self._image,
            label=self._label,
            crop_height=crop_height,
            crop_width=crop_width,
            min_resize_value=[10],
            max_resize_value=None,
            ignore_label=255))

    self.assertListEqual(processed_image.shape.as_list(),
                         [crop_height, crop_width, 3])


if __name__ == '__main__':
  tf.test.main()