Spaces:
Running
Running
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from peft import PeftModel | |
from deep_translator import GoogleTranslator | |
import torch | |
# Load tokenizer and base model | |
tokenizer = T5Tokenizer.from_pretrained("./") | |
base_model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
model = PeftModel.from_pretrained(base_model, "./") | |
# Use GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def summarize(text, language='en'): | |
if language != 'en': | |
text = GoogleTranslator(source='auto', target='en').translate(text) | |
input_ids = tokenizer("summarize: " + text, return_tensors="pt", truncation=True, max_length=512).input_ids.to(device) | |
output_ids = model.generate( | |
input_ids, | |
max_length=80, | |
min_length=15, | |
length_penalty=1.5, | |
num_beams=8, | |
no_repeat_ngram_size=3, | |
early_stopping=True | |
) | |
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
if language != 'en': | |
summary = GoogleTranslator(source='en', target=language).translate(summary) | |
return summary | |
gr.Interface( | |
fn=summarize, | |
inputs=[ | |
gr.Textbox(lines=10, label="Enter Article"), | |
gr.Dropdown(choices=["en", "hi", "te", "fr", "es", "de"], value="en", label="Output Language") | |
], | |
outputs="textbox", | |
title="T5 Summarizer (LoRA Optimized)", | |
description="Summarize articles using a fine-tuned T5 model with LoRA. Supports multiple languages." | |
).launch() | |