import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from peft import PeftModel from deep_translator import GoogleTranslator import torch # Load tokenizer and base model tokenizer = T5Tokenizer.from_pretrained("./") base_model = T5ForConditionalGeneration.from_pretrained("t5-small") model = PeftModel.from_pretrained(base_model, "./") # Use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def summarize(text, language='en'): if language != 'en': text = GoogleTranslator(source='auto', target='en').translate(text) input_ids = tokenizer("summarize: " + text, return_tensors="pt", truncation=True, max_length=512).input_ids.to(device) output_ids = model.generate( input_ids, max_length=80, min_length=15, length_penalty=1.5, num_beams=8, no_repeat_ngram_size=3, early_stopping=True ) summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) if language != 'en': summary = GoogleTranslator(source='en', target=language).translate(summary) return summary gr.Interface( fn=summarize, inputs=[ gr.Textbox(lines=10, label="Enter Article"), gr.Dropdown(choices=["en", "hi", "te", "fr", "es", "de"], value="en", label="Output Language") ], outputs="textbox", title="T5 Summarizer (LoRA Optimized)", description="Summarize articles using a fine-tuned T5 model with LoRA. Supports multiple languages." ).launch()