AA_TT2 / app.py
ahm14's picture
Update app.py
74033b7 verified
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
# Load environment variables
load_dotenv()
# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
st.error("API key is missing. Please provide a valid API key.")
# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")
# Download required NLTK resources
nltk.download("punkt")
# Tone categories for fallback method
tone_categories = {
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"],
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
}
# Frame categories for fallback method
frame_categories = {
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
}
# Initialize zero-shot classifier for qualitative frame categorization
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
candidate_labels = ["Major Focus", "Significant Focus", "Minor Mention", "Not Applicable"]
def detect_language(text):
try:
return detect(text)
except Exception as e:
logging.error(f"Error detecting language: {e}")
return "unknown"
def extract_tone(text):
try:
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
{"role": "user", "content": text}])
return response["choices"][0]["message"]["content"].split(", ")
except Exception as e:
logging.error(f"Groq API error: {e}")
return extract_tone_fallback(text)
def extract_tone_fallback(text):
detected_tones = set()
text_lower = text.lower()
for category, keywords in tone_categories.items():
if any(word in text_lower for word in keywords):
detected_tones.add(category)
return list(detected_tones) if detected_tones else ["Neutral"]
def extract_hashtags(text):
return re.findall(r"#\w+", text)
# -------------------------------------------------------------------
# New functions for qualitative frame categorization using zero-shot classification
# -------------------------------------------------------------------
def get_frame_category_mapping(text):
"""
For each frame category defined in frame_categories, this function uses a zero-shot classification
approach to qualitatively assess how strongly the text discusses the frame. The classifier returns one of:
"Major Focus", "Significant Focus", "Minor Mention", or "Not Applicable".
"""
mapping = {}
for frame in frame_categories.keys():
hypothesis_template = f"This text is {{}} about {frame}."
result = classifier(text, candidate_labels=candidate_labels, hypothesis_template=hypothesis_template)
best_label = result["labels"][0] # select the highest scoring label
mapping[frame] = best_label
return mapping
def format_frame_categories_table(mapping):
"""
Returns a markdown-formatted table that displays each frame along with four columns:
Major Focus, Significant Focus, Minor Mention, and Not Applicable.
A tick (✓) is shown only in the column corresponding to the assigned category.
"""
header = "| Frame | Major Focus | Significant Focus | Minor Mention | Not Applicable |\n"
header += "| --- | --- | --- | --- | --- |\n"
rows = ""
tick = "✓"
for frame, category in mapping.items():
major = tick if category == "Major Focus" else ""
significant = tick if category == "Significant Focus" else ""
minor = tick if category == "Minor Mention" else ""
not_applicable = tick if category == "Not Applicable" else ""
rows += f"| {frame} | {major} | {significant} | {minor} | {not_applicable} |\n"
return header + rows
# -------------------------------------------------------------------
# Existing functions for file processing
# -------------------------------------------------------------------
def extract_captions_from_docx(docx_file):
doc = Document(docx_file)
captions = {}
current_post = None
for para in doc.paragraphs:
text = para.text.strip()
if re.match(r"Post \d+", text, re.IGNORECASE):
current_post = text
captions[current_post] = []
elif current_post:
captions[current_post].append(text)
return {post: " ".join(lines) for post, lines in captions.items() if lines}
def extract_metadata_from_excel(excel_file):
try:
df = pd.read_excel(excel_file)
extracted_data = df.to_dict(orient="records")
return extracted_data
except Exception as e:
logging.error(f"Error processing Excel file: {e}")
return []
def merge_metadata_with_generated_data(generated_data, excel_metadata):
for post_data in excel_metadata:
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
if post_number in generated_data:
generated_data[post_number].update(post_data)
else:
generated_data[post_number] = post_data
return generated_data
def create_docx_from_data(extracted_data):
doc = Document()
for post_number, data in extracted_data.items():
doc.add_heading(post_number, level=1)
ordered_keys = [
"Post Number", "Date of Post", "Media Type", "Number of Pictures",
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
"Full Caption", "Language", "Tone", "Hashtags", "Frames"
]
for key in ordered_keys:
value = data.get(key, "N/A")
if key in ["Tone", "Hashtags"]:
value = ", ".join(value) if isinstance(value, list) else value
doc.add_paragraph(f"**{key}:** {value}")
doc.add_paragraph("\n")
return doc
# -------------------------------------------------------------------
# Streamlit App UI
# -------------------------------------------------------------------
st.title("AI-Powered Coding Sheet Generator")
st.write("Enter text or upload a DOCX/Excel file for analysis:")
input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
output_data = {}
if input_text:
frame_mapping = get_frame_category_mapping(input_text)
frames_table = format_frame_categories_table(frame_mapping)
output_data["Manual Input"] = {
"Full Caption": input_text,
"Language": detect_language(input_text),
"Tone": extract_tone(input_text),
"Hashtags": extract_hashtags(input_text),
"Frames": frames_table,
}
if uploaded_docx:
captions = extract_captions_from_docx(uploaded_docx)
for caption, text in captions.items():
frame_mapping = get_frame_category_mapping(text)
frames_table = format_frame_categories_table(frame_mapping)
output_data[caption] = {
"Full Caption": text,
"Language": detect_language(text),
"Tone": extract_tone(text),
"Hashtags": extract_hashtags(text),
"Frames": frames_table,
}
if uploaded_excel:
excel_metadata = extract_metadata_from_excel(uploaded_excel)
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
if output_data:
for post_number, data in output_data.items():
with st.expander(post_number):
for key, value in data.items():
if key == "Frames":
st.markdown(f"**{key}:**\n{value}")
else:
st.write(f"**{key}:** {value}")
if output_data:
docx_output = create_docx_from_data(output_data)
docx_io = io.BytesIO()
docx_output.save(docx_io)
docx_io.seek(0)
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="coding_sheet.docx")