File size: 10,820 Bytes
0d3d327 f44d7de 706fc89 34d7c10 23eb166 706fc89 609d4a9 34d7c10 0d3d327 34d7c10 c1221c4 0d3d327 34d7c10 0d3d327 34d7c10 0d3d327 706fc89 34d7c10 706fc89 da716d7 3b8e826 bba1b37 dac6f4a bba1b37 706fc89 74033b7 706fc89 34d7c10 706fc89 773ca30 34d7c10 bba1b37 34d7c10 3b8e826 773ca30 609d4a9 bba1b37 74033b7 bba1b37 74033b7 bba1b37 74033b7 bba1b37 74033b7 bba1b37 706fc89 609d4a9 706fc89 609d4a9 706fc89 da716d7 5893c88 da716d7 bba1b37 da716d7 5893c88 bba1b37 706fc89 d4724ab da716d7 f44d7de 706fc89 da716d7 bba1b37 da716d7 bba1b37 da716d7 74033b7 da716d7 bba1b37 da716d7 bba1b37 da716d7 5893c88 da716d7 5893c88 da716d7 bba1b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
# Load environment variables
load_dotenv()
# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
st.error("API key is missing. Please provide a valid API key.")
# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")
# Download required NLTK resources
nltk.download("punkt")
# Tone categories for fallback method
tone_categories = {
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"],
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
}
# Frame categories for fallback method
frame_categories = {
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
}
# Initialize zero-shot classifier for qualitative frame categorization
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
candidate_labels = ["Major Focus", "Significant Focus", "Minor Mention", "Not Applicable"]
def detect_language(text):
try:
return detect(text)
except Exception as e:
logging.error(f"Error detecting language: {e}")
return "unknown"
def extract_tone(text):
try:
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
{"role": "user", "content": text}])
return response["choices"][0]["message"]["content"].split(", ")
except Exception as e:
logging.error(f"Groq API error: {e}")
return extract_tone_fallback(text)
def extract_tone_fallback(text):
detected_tones = set()
text_lower = text.lower()
for category, keywords in tone_categories.items():
if any(word in text_lower for word in keywords):
detected_tones.add(category)
return list(detected_tones) if detected_tones else ["Neutral"]
def extract_hashtags(text):
return re.findall(r"#\w+", text)
# -------------------------------------------------------------------
# New functions for qualitative frame categorization using zero-shot classification
# -------------------------------------------------------------------
def get_frame_category_mapping(text):
"""
For each frame category defined in frame_categories, this function uses a zero-shot classification
approach to qualitatively assess how strongly the text discusses the frame. The classifier returns one of:
"Major Focus", "Significant Focus", "Minor Mention", or "Not Applicable".
"""
mapping = {}
for frame in frame_categories.keys():
hypothesis_template = f"This text is {{}} about {frame}."
result = classifier(text, candidate_labels=candidate_labels, hypothesis_template=hypothesis_template)
best_label = result["labels"][0] # select the highest scoring label
mapping[frame] = best_label
return mapping
def format_frame_categories_table(mapping):
"""
Returns a markdown-formatted table that displays each frame along with four columns:
Major Focus, Significant Focus, Minor Mention, and Not Applicable.
A tick (✓) is shown only in the column corresponding to the assigned category.
"""
header = "| Frame | Major Focus | Significant Focus | Minor Mention | Not Applicable |\n"
header += "| --- | --- | --- | --- | --- |\n"
rows = ""
tick = "✓"
for frame, category in mapping.items():
major = tick if category == "Major Focus" else ""
significant = tick if category == "Significant Focus" else ""
minor = tick if category == "Minor Mention" else ""
not_applicable = tick if category == "Not Applicable" else ""
rows += f"| {frame} | {major} | {significant} | {minor} | {not_applicable} |\n"
return header + rows
# -------------------------------------------------------------------
# Existing functions for file processing
# -------------------------------------------------------------------
def extract_captions_from_docx(docx_file):
doc = Document(docx_file)
captions = {}
current_post = None
for para in doc.paragraphs:
text = para.text.strip()
if re.match(r"Post \d+", text, re.IGNORECASE):
current_post = text
captions[current_post] = []
elif current_post:
captions[current_post].append(text)
return {post: " ".join(lines) for post, lines in captions.items() if lines}
def extract_metadata_from_excel(excel_file):
try:
df = pd.read_excel(excel_file)
extracted_data = df.to_dict(orient="records")
return extracted_data
except Exception as e:
logging.error(f"Error processing Excel file: {e}")
return []
def merge_metadata_with_generated_data(generated_data, excel_metadata):
for post_data in excel_metadata:
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
if post_number in generated_data:
generated_data[post_number].update(post_data)
else:
generated_data[post_number] = post_data
return generated_data
def create_docx_from_data(extracted_data):
doc = Document()
for post_number, data in extracted_data.items():
doc.add_heading(post_number, level=1)
ordered_keys = [
"Post Number", "Date of Post", "Media Type", "Number of Pictures",
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
"Full Caption", "Language", "Tone", "Hashtags", "Frames"
]
for key in ordered_keys:
value = data.get(key, "N/A")
if key in ["Tone", "Hashtags"]:
value = ", ".join(value) if isinstance(value, list) else value
doc.add_paragraph(f"**{key}:** {value}")
doc.add_paragraph("\n")
return doc
# -------------------------------------------------------------------
# Streamlit App UI
# -------------------------------------------------------------------
st.title("AI-Powered Coding Sheet Generator")
st.write("Enter text or upload a DOCX/Excel file for analysis:")
input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
output_data = {}
if input_text:
frame_mapping = get_frame_category_mapping(input_text)
frames_table = format_frame_categories_table(frame_mapping)
output_data["Manual Input"] = {
"Full Caption": input_text,
"Language": detect_language(input_text),
"Tone": extract_tone(input_text),
"Hashtags": extract_hashtags(input_text),
"Frames": frames_table,
}
if uploaded_docx:
captions = extract_captions_from_docx(uploaded_docx)
for caption, text in captions.items():
frame_mapping = get_frame_category_mapping(text)
frames_table = format_frame_categories_table(frame_mapping)
output_data[caption] = {
"Full Caption": text,
"Language": detect_language(text),
"Tone": extract_tone(text),
"Hashtags": extract_hashtags(text),
"Frames": frames_table,
}
if uploaded_excel:
excel_metadata = extract_metadata_from_excel(uploaded_excel)
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
if output_data:
for post_number, data in output_data.items():
with st.expander(post_number):
for key, value in data.items():
if key == "Frames":
st.markdown(f"**{key}:**\n{value}")
else:
st.write(f"**{key}:** {value}")
if output_data:
docx_output = create_docx_from_data(output_data)
docx_io = io.BytesIO()
docx_output.save(docx_io)
docx_io.seek(0)
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="coding_sheet.docx")
|