|
import os |
|
import pandas as pd |
|
import streamlit as st |
|
import re |
|
import logging |
|
import nltk |
|
from docx import Document |
|
import io |
|
from langdetect import detect |
|
from collections import Counter |
|
from dotenv import load_dotenv |
|
from langchain_groq import ChatGroq |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from transformers import pipeline |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY") |
|
if not GROQ_API_KEY: |
|
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.") |
|
st.error("API key is missing. Please provide a valid API key.") |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
|
|
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192") |
|
|
|
|
|
nltk.download("punkt") |
|
|
|
|
|
tone_categories = { |
|
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"], |
|
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"], |
|
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"], |
|
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"], |
|
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"], |
|
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"], |
|
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"], |
|
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"], |
|
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"], |
|
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"] |
|
} |
|
|
|
|
|
|
|
|
|
|
|
frame_categories = { |
|
"Human Rights & Justice": { |
|
"Legal Rights & Reforms": ["law", "justice", "legal", "reforms", "legislation"], |
|
"Humanitarian Issues": ["humanitarian", "aid", "refugees", "asylum", "crisis response"], |
|
"Civil Liberties": ["freedom", "expression", "privacy", "rights violations"] |
|
}, |
|
"Political & State Accountability": { |
|
"Corruption & Governance": ["corruption", "government", "policy", "accountability", "transparency"], |
|
"Political Oppression": ["authoritarianism", "censorship", "state control", "dissent", "crackdown"], |
|
"Elections & Political Representation": ["voting", "elections", "political participation", "democracy"] |
|
}, |
|
"Gender & Patriarchy": { |
|
"Gender-Based Violence": ["violence", "domestic abuse", "sexual harassment", "femicide"], |
|
"Women's Rights & Equality": ["gender equality", "feminism", "reproductive rights", "patriarchy"], |
|
"LGBTQ+ Rights": ["queer rights", "LGBTQ+", "gender identity", "trans rights", "homophobia"] |
|
}, |
|
"Religious Freedom & Persecution": { |
|
"Religious Discrimination": ["persecution", "intolerance", "sectarianism", "faith-based violence"], |
|
"Religious Minorities' Rights": ["minorities", "blasphemy laws", "religious freedom", "forced conversion"] |
|
}, |
|
"Grassroots Mobilization": { |
|
"Community Activism": ["activism", "grassroots", "volunteering", "local organizing"], |
|
"Protests & Demonstrations": ["march", "strike", "rally", "sit-in", "boycott"], |
|
"Coalition Building": ["solidarity", "collaboration", "alliances", "mutual aid"] |
|
}, |
|
"Environmental Crisis & Activism": { |
|
"Climate Change Awareness": ["climate crisis", "global warming", "carbon emissions", "fossil fuels"], |
|
"Conservation & Sustainability": ["deforestation", "wildlife protection", "biodiversity"], |
|
"Environmental Justice": ["pollution", "water crisis", "land rights", "indigenous rights"] |
|
}, |
|
"Anti-Extremism & Anti-Violence": { |
|
"Hate Speech & Radicalization": ["hate speech", "extremism", "online radicalization", "propaganda"], |
|
"Mob & Sectarian Violence": ["mob attack", "lynching", "sectarian violence", "hate crimes"], |
|
"Counterterrorism & De-Radicalization": ["terrorism", "prevention", "peacebuilding", "rehabilitation"] |
|
}, |
|
"Social Inequality & Economic Disparities": { |
|
"Class Privilege & Labor Rights": ["classism", "labor rights", "unions", "wage gap"], |
|
"Poverty & Economic Justice": ["poverty", "inequality", "economic disparity", "wealth gap"], |
|
"Housing & Healthcare": ["housing crisis", "healthcare access", "social safety nets"] |
|
}, |
|
"Activism & Advocacy": { |
|
"Policy Advocacy & Legal Reforms": ["campaign", "policy change", "legal advocacy"], |
|
"Social Media Activism": ["hashtags", "digital activism", "awareness campaign"], |
|
"Freedom of Expression & Press": ["press freedom", "censorship", "media rights"] |
|
}, |
|
"Systemic Oppression": { |
|
"Marginalized Communities": ["minorities", "exclusion", "systemic discrimination"], |
|
"Racial & Ethnic Discrimination": ["racism", "xenophobia", "ethnic cleansing", "casteism"], |
|
"Institutional Bias": ["institutional racism", "structural oppression", "biased laws"] |
|
}, |
|
"Intersectionality": { |
|
"Multiple Oppressions": ["overlapping struggles", "intersecting identities", "double discrimination"], |
|
"Women & Marginalized Identities": ["feminism", "queer feminism", "minority women"], |
|
"Global Solidarity Movements": ["transnational activism", "cross-movement solidarity"] |
|
}, |
|
"Call to Action": { |
|
"Petitions & Direct Action": ["sign petition", "protest", "boycott"], |
|
"Fundraising & Support": ["donate", "crowdfunding", "aid support"], |
|
"Policy & Legislative Action": ["policy change", "demand action", "write to lawmakers"] |
|
}, |
|
"Empowerment & Resistance": { |
|
"Grassroots Organizing": ["community empowerment", "leadership training"], |
|
"Revolutionary Movements": ["resistance", "revolt", "revolutionary change"], |
|
"Inspiration & Motivational Messaging": ["hope", "courage", "overcoming struggles"] |
|
}, |
|
"Climate Justice": { |
|
"Indigenous Environmental Activism": ["land rights", "indigenous climate leadership"], |
|
"Corporate Accountability": ["big oil", "corporate greed", "environmental negligence"], |
|
"Sustainable Development": ["eco-friendly", "renewable energy", "circular economy"] |
|
}, |
|
"Human Rights Advocacy": { |
|
"Criminal Justice Reform": ["police brutality", "wrongful convictions", "prison reform"], |
|
"Workplace Discrimination & Labor Rights": ["workplace bias", "equal pay", "unions"], |
|
"International Human Rights": ["humanitarian law", "UN declarations", "international treaties"] |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
def detect_language(text): |
|
try: |
|
return detect(text) |
|
except Exception as e: |
|
logging.error(f"Error detecting language: {e}") |
|
return "unknown" |
|
|
|
|
|
def extract_tone(text): |
|
try: |
|
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."}, |
|
{"role": "user", "content": text}]) |
|
return response["choices"][0]["message"]["content"].split(", ") |
|
except Exception as e: |
|
logging.error(f"Groq API error: {e}") |
|
return extract_tone_fallback(text) |
|
|
|
|
|
def extract_tone_fallback(text): |
|
detected_tones = set() |
|
text_lower = text.lower() |
|
for category, keywords in tone_categories.items(): |
|
if any(word in text_lower for word in keywords): |
|
detected_tones.add(category) |
|
return list(detected_tones) if detected_tones else ["Neutral"] |
|
|
|
|
|
def extract_hashtags(text): |
|
return re.findall(r"#\w+", text) |
|
|
|
|
|
def categorize_frames(frame_list): |
|
frame_counter = Counter(frame_list) |
|
categorized_frames = {"Major Focus": [], "Significant Focus": [], "Minor Mention": []} |
|
|
|
sorted_frames = sorted(frame_counter.items(), key=lambda x: x[1], reverse=True) |
|
|
|
for i, (frame, count) in enumerate(sorted_frames): |
|
if i == 0: |
|
categorized_frames["Major Focus"].append(frame) |
|
elif i < 3: |
|
categorized_frames["Significant Focus"].append(frame) |
|
else: |
|
categorized_frames["Minor Mention"].append(frame) |
|
|
|
return categorized_frames |
|
|
|
|
|
def extract_frames_fallback(text): |
|
detected_frames = [] |
|
text_lower = text.lower() |
|
|
|
|
|
for main_category, subcategories in frame_categories.items(): |
|
for subcategory, keywords in subcategories.items(): |
|
|
|
keyword_count = sum(1 for word in keywords if word in text_lower) |
|
if keyword_count > 0: |
|
|
|
detected_frames.append((main_category, subcategory)) |
|
|
|
|
|
return categorize_frames(detected_frames) |
|
|
|
|
|
def extract_captions_from_docx(docx_file): |
|
doc = Document(docx_file) |
|
captions = {} |
|
current_post = None |
|
for para in doc.paragraphs: |
|
text = para.text.strip() |
|
if re.match(r"Post \d+", text, re.IGNORECASE): |
|
current_post = text |
|
captions[current_post] = [] |
|
elif current_post: |
|
captions[current_post].append(text) |
|
return {post: " ".join(lines) for post, lines in captions.items() if lines} |
|
|
|
|
|
def extract_metadata_from_excel(excel_file): |
|
try: |
|
df = pd.read_excel(excel_file) |
|
extracted_data = df.to_dict(orient="records") |
|
return extracted_data |
|
except Exception as e: |
|
logging.error(f"Error processing Excel file: {e}") |
|
return [] |
|
|
|
|
|
def merge_metadata_with_generated_data(generated_data, excel_metadata): |
|
for post_data in excel_metadata: |
|
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}" |
|
if post_number in generated_data: |
|
generated_data[post_number].update(post_data) |
|
else: |
|
generated_data[post_number] = post_data |
|
return generated_data |
|
|
|
|
|
def create_docx_from_data(extracted_data): |
|
doc = Document() |
|
|
|
for post_number, data in extracted_data.items(): |
|
doc.add_heading(post_number, level=1) |
|
|
|
ordered_keys = [ |
|
"Post Number", "Date of Post", "Media Type", "Number of Pictures", |
|
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience", |
|
"Full Caption", "Language", "Tone", "Hashtags", "Frames" |
|
] |
|
|
|
for key in ordered_keys: |
|
value = data.get(key, "N/A") |
|
|
|
if key in ["Tone", "Hashtags"]: |
|
value = ", ".join(value) if isinstance(value, list) else value |
|
elif key == "Frames" and isinstance(value, dict): |
|
frame_text = "\n".join([f" {category}: {', '.join([' → '.join(frame) for frame in frames])}" for category, frames in value.items() if frames]) |
|
value = f"\n{frame_text}" if frame_text else "N/A" |
|
|
|
doc.add_paragraph(f"**{key}:** {value}") |
|
|
|
doc.add_paragraph("\n") |
|
|
|
return doc |
|
|
|
|
|
st.title("AI-Powered Activism Message Analyzer") |
|
|
|
st.write("Enter text or upload a DOCX/Excel file for analysis:") |
|
|
|
input_text = st.text_area("Input Text", height=200) |
|
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"]) |
|
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"]) |
|
|
|
output_data = {} |
|
|
|
if input_text: |
|
output_data["Manual Input"] = { |
|
"Full Caption": input_text, |
|
"Language": detect_language(input_text), |
|
"Tone": extract_tone(input_text), |
|
"Hashtags": extract_hashtags(input_text), |
|
"Frames": extract_frames_fallback(input_text), |
|
} |
|
|
|
if uploaded_docx: |
|
captions = extract_captions_from_docx(uploaded_docx) |
|
for caption, text in captions.items(): |
|
output_data[caption] = { |
|
"Full Caption": text, |
|
"Language": detect_language(text), |
|
"Tone": extract_tone(text), |
|
"Hashtags": extract_hashtags(text), |
|
"Frames": extract_frames_fallback(text), |
|
} |
|
|
|
if uploaded_excel: |
|
excel_metadata = extract_metadata_from_excel(uploaded_excel) |
|
output_data = merge_metadata_with_generated_data(output_data, excel_metadata) |
|
|
|
|
|
if output_data: |
|
for post_number, data in output_data.items(): |
|
with st.expander(post_number): |
|
for key, value in data.items(): |
|
st.write(f"**{key}:** {value}") |
|
|
|
if output_data: |
|
docx_output = create_docx_from_data(output_data) |
|
docx_io = io.BytesIO() |
|
docx_output.save(docx_io) |
|
docx_io.seek(0) |
|
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="merged_analysis.docx") |
|
|
|
|