File size: 13,663 Bytes
0d3d327
f44d7de
706fc89
 
34d7c10
23eb166
706fc89
609d4a9
34d7c10
0d3d327
34d7c10
c1221c4
 
 
0d3d327
34d7c10
3b8e826
34d7c10
 
 
0d3d327
 
 
 
 
 
34d7c10
 
 
 
0d3d327
706fc89
 
34d7c10
706fc89
da716d7
3b8e826
 
 
 
 
 
 
 
 
 
 
 
 
da716d7
 
dada62e
c3614ab
dac6f4a
da716d7
54b1666
 
 
da716d7
 
54b1666
 
 
da716d7
 
54b1666
 
 
da716d7
 
54b1666
 
da716d7
 
54b1666
 
 
da716d7
 
54b1666
 
 
 
 
 
 
 
da716d7
 
54b1666
 
 
da716d7
 
54b1666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da716d7
706fc89
 
da716d7
5a05bef
706fc89
 
 
 
34d7c10
 
706fc89
 
3b8e826
773ca30
34d7c10
cf0ede7
 
34d7c10
 
 
3b8e826
 
 
 
 
 
 
 
 
 
773ca30
609d4a9
 
 
 
0d3d327
 
 
 
34d7c10
0d3d327
 
 
da716d7
0d3d327
da716d7
0d3d327
 
 
 
 
1be98f5
0d3d327
0aa8317
0d3d327
34d7c10
0d3d327
da716d7
 
 
 
 
 
 
 
0d3d327
da716d7
0d3d327
34d7c10
609d4a9
706fc89
 
 
 
 
 
 
 
609d4a9
706fc89
609d4a9
 
706fc89
da716d7
 
 
 
 
 
 
 
 
5893c88
da716d7
 
 
 
 
 
 
 
 
5893c88
da716d7
40be765
cf0ede7
3b8e826
da716d7
 
3b8e826
da716d7
 
 
 
3b8e826
 
da716d7
 
e38265e
da716d7
 
 
dada62e
da716d7
e38265e
da716d7
3b8e826
 
 
40be765
2bc09f4
40be765
34d7c10
706fc89
da716d7
 
 
f44d7de
 
706fc89
da716d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5893c88
da716d7
5893c88
da716d7
 
 
 
 
 
5893c88
da716d7
 
40be765
1be98f5
40be765
0d3d327
da716d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline


# Load environment variables
load_dotenv()

# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
    logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
    st.error("API key is missing. Please provide a valid API key.")

# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")

# Download required NLTK resources
nltk.download("punkt")

# Tone categories for fallback method
tone_categories = {
    "Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
    "Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
    "Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"],
    "Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
    "Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
    "Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
    "Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
    "Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
    "Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
    "Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
}

# Frame categories for fallback method

# AI-Expanded Frame Categories for More Precise Categorization
# Expanded Frame Categories for Better Categorization
frame_categories = {
    "Human Rights & Justice": {
        "Legal Rights & Reforms": ["law", "justice", "legal", "reforms", "legislation"],
        "Humanitarian Issues": ["humanitarian", "aid", "refugees", "asylum", "crisis response"],
        "Civil Liberties": ["freedom", "expression", "privacy", "rights violations"]
    },
    "Political & State Accountability": {
        "Corruption & Governance": ["corruption", "government", "policy", "accountability", "transparency"],
        "Political Oppression": ["authoritarianism", "censorship", "state control", "dissent", "crackdown"],
        "Elections & Political Representation": ["voting", "elections", "political participation", "democracy"]
    },
    "Gender & Patriarchy": {
        "Gender-Based Violence": ["violence", "domestic abuse", "sexual harassment", "femicide"],
        "Women's Rights & Equality": ["gender equality", "feminism", "reproductive rights", "patriarchy"],
        "LGBTQ+ Rights": ["queer rights", "LGBTQ+", "gender identity", "trans rights", "homophobia"]
    },
    "Religious Freedom & Persecution": {
        "Religious Discrimination": ["persecution", "intolerance", "sectarianism", "faith-based violence"],
        "Religious Minorities' Rights": ["minorities", "blasphemy laws", "religious freedom", "forced conversion"]
    },
    "Grassroots Mobilization": {
        "Community Activism": ["activism", "grassroots", "volunteering", "local organizing"],
        "Protests & Demonstrations": ["march", "strike", "rally", "sit-in", "boycott"],
        "Coalition Building": ["solidarity", "collaboration", "alliances", "mutual aid"]
    },
    "Environmental Crisis & Activism": {
        "Climate Change Awareness": ["climate crisis", "global warming", "carbon emissions", "fossil fuels"],
        "Conservation & Sustainability": ["deforestation", "wildlife protection", "biodiversity"],
        "Environmental Justice": ["pollution", "water crisis", "land rights", "indigenous rights"]
    },
    "Anti-Extremism & Anti-Violence": {
        "Hate Speech & Radicalization": ["hate speech", "extremism", "online radicalization", "propaganda"],
        "Mob & Sectarian Violence": ["mob attack", "lynching", "sectarian violence", "hate crimes"],
        "Counterterrorism & De-Radicalization": ["terrorism", "prevention", "peacebuilding", "rehabilitation"]
    },
    "Social Inequality & Economic Disparities": {
        "Class Privilege & Labor Rights": ["classism", "labor rights", "unions", "wage gap"],
        "Poverty & Economic Justice": ["poverty", "inequality", "economic disparity", "wealth gap"],
        "Housing & Healthcare": ["housing crisis", "healthcare access", "social safety nets"]
    },
    "Activism & Advocacy": {
        "Policy Advocacy & Legal Reforms": ["campaign", "policy change", "legal advocacy"],
        "Social Media Activism": ["hashtags", "digital activism", "awareness campaign"],
        "Freedom of Expression & Press": ["press freedom", "censorship", "media rights"]
    },
    "Systemic Oppression": {
        "Marginalized Communities": ["minorities", "exclusion", "systemic discrimination"],
        "Racial & Ethnic Discrimination": ["racism", "xenophobia", "ethnic cleansing", "casteism"],
        "Institutional Bias": ["institutional racism", "structural oppression", "biased laws"]
    },
    "Intersectionality": {
        "Multiple Oppressions": ["overlapping struggles", "intersecting identities", "double discrimination"],
        "Women & Marginalized Identities": ["feminism", "queer feminism", "minority women"],
        "Global Solidarity Movements": ["transnational activism", "cross-movement solidarity"]
    },
    "Call to Action": {
        "Petitions & Direct Action": ["sign petition", "protest", "boycott"],
        "Fundraising & Support": ["donate", "crowdfunding", "aid support"],
        "Policy & Legislative Action": ["policy change", "demand action", "write to lawmakers"]
    },
    "Empowerment & Resistance": {
        "Grassroots Organizing": ["community empowerment", "leadership training"],
        "Revolutionary Movements": ["resistance", "revolt", "revolutionary change"],
        "Inspiration & Motivational Messaging": ["hope", "courage", "overcoming struggles"]
    },
    "Climate Justice": {
        "Indigenous Environmental Activism": ["land rights", "indigenous climate leadership"],
        "Corporate Accountability": ["big oil", "corporate greed", "environmental negligence"],
        "Sustainable Development": ["eco-friendly", "renewable energy", "circular economy"]
    },
    "Human Rights Advocacy": {
        "Criminal Justice Reform": ["police brutality", "wrongful convictions", "prison reform"],
        "Workplace Discrimination & Labor Rights": ["workplace bias", "equal pay", "unions"],
        "International Human Rights": ["humanitarian law", "UN declarations", "international treaties"]
    }
}



# Detect language
def detect_language(text):
    try:
        return detect(text)
    except Exception as e:
        logging.error(f"Error detecting language: {e}")
        return "unknown"

# Extract tone using Groq API (or fallback method)
def extract_tone(text):
    try:
        response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
                             {"role": "user", "content": text}])
        return response["choices"][0]["message"]["content"].split(", ")
    except Exception as e:
        logging.error(f"Groq API error: {e}")
        return extract_tone_fallback(text)

# Fallback method for tone extraction
def extract_tone_fallback(text):
    detected_tones = set()
    text_lower = text.lower()
    for category, keywords in tone_categories.items():
        if any(word in text_lower for word in keywords):
            detected_tones.add(category)
    return list(detected_tones) if detected_tones else ["Neutral"]

# Extract hashtags
def extract_hashtags(text):
    return re.findall(r"#\w+", text)

# Categorize frames into Major, Significant, and Minor based on frequency
def categorize_frames(frame_list):
    frame_counter = Counter(frame_list)
    categorized_frames = {"Major Focus": [], "Significant Focus": [], "Minor Mention": []}

    sorted_frames = sorted(frame_counter.items(), key=lambda x: x[1], reverse=True)
    
    for i, (frame, count) in enumerate(sorted_frames):
        if i == 0:  # Highest frequency frame
            categorized_frames["Major Focus"].append(frame)
        elif i < 3:  # Top 3 most mentioned frames
            categorized_frames["Significant Focus"].append(frame)
        else:
            categorized_frames["Minor Mention"].append(frame)

    return categorized_frames

# Extract frames using keyword matching and categorize
def extract_frames_fallback(text):
    detected_frames = []
    text_lower = text.lower()

    # Iterate through the activism topics to match keywords
    for main_category, subcategories in frame_categories.items():
        for subcategory, keywords in subcategories.items():
            # Check how many keywords from the subcategory are present in the text
            keyword_count = sum(1 for word in keywords if word in text_lower)
            if keyword_count > 0:
                # Append a tuple with main category and subcategory
                detected_frames.append((main_category, subcategory))

    # Categorize detected frames based on their frequency
    return categorize_frames(detected_frames)

# Extract captions from DOCX
def extract_captions_from_docx(docx_file):
    doc = Document(docx_file)
    captions = {}
    current_post = None
    for para in doc.paragraphs:
        text = para.text.strip()
        if re.match(r"Post \d+", text, re.IGNORECASE):
            current_post = text
            captions[current_post] = []
        elif current_post:
            captions[current_post].append(text)
    return {post: " ".join(lines) for post, lines in captions.items() if lines}

# Extract metadata from Excel file
def extract_metadata_from_excel(excel_file):
    try:
        df = pd.read_excel(excel_file)
        extracted_data = df.to_dict(orient="records")
        return extracted_data
    except Exception as e:
        logging.error(f"Error processing Excel file: {e}")
        return []

# Merge metadata with generated analysis
def merge_metadata_with_generated_data(generated_data, excel_metadata):
    for post_data in excel_metadata:
        post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
        if post_number in generated_data:
            generated_data[post_number].update(post_data)
        else:
            generated_data[post_number] = post_data  
    return generated_data

# Create DOCX file matching the uploaded format
def create_docx_from_data(extracted_data):
    doc = Document()

    for post_number, data in extracted_data.items():
        doc.add_heading(post_number, level=1)

        ordered_keys = [
            "Post Number", "Date of Post", "Media Type", "Number of Pictures",
            "Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
            "Full Caption", "Language", "Tone", "Hashtags", "Frames"
        ]

        for key in ordered_keys:
            value = data.get(key, "N/A")

            if key in ["Tone", "Hashtags"]:
                value = ", ".join(value) if isinstance(value, list) else value
            elif key == "Frames" and isinstance(value, dict):
                frame_text = "\n".join([f"  {category}: {', '.join([' → '.join(frame) for frame in frames])}" for category, frames in value.items() if frames])
                value = f"\n{frame_text}" if frame_text else "N/A"

            doc.add_paragraph(f"**{key}:** {value}")

        doc.add_paragraph("\n")

    return doc

# Streamlit app
st.title("AI-Powered Activism Message Analyzer")

st.write("Enter text or upload a DOCX/Excel file for analysis:")

input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])

output_data = {}

if input_text:
    output_data["Manual Input"] = {
        "Full Caption": input_text,
        "Language": detect_language(input_text),
        "Tone": extract_tone(input_text),
        "Hashtags": extract_hashtags(input_text),
        "Frames": extract_frames_fallback(input_text),
    }

if uploaded_docx:
    captions = extract_captions_from_docx(uploaded_docx)
    for caption, text in captions.items():
        output_data[caption] = {
            "Full Caption": text,
            "Language": detect_language(text),
            "Tone": extract_tone(text),
            "Hashtags": extract_hashtags(text),
            "Frames": extract_frames_fallback(text),
        }

if uploaded_excel:
    excel_metadata = extract_metadata_from_excel(uploaded_excel)
    output_data = merge_metadata_with_generated_data(output_data, excel_metadata)

# Display results in collapsible sections for better UI
if output_data:
    for post_number, data in output_data.items():
        with st.expander(post_number):
            for key, value in data.items():
                st.write(f"**{key}:** {value}")

if output_data:
    docx_output = create_docx_from_data(output_data)
    docx_io = io.BytesIO()
    docx_output.save(docx_io)
    docx_io.seek(0)
    st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="merged_analysis.docx")