Alessio Grancini
commited on
Update image_segmenter.py
Browse files- image_segmenter.py +71 -92
image_segmenter.py
CHANGED
@@ -2,124 +2,103 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
import random
|
5 |
-
import spaces
|
6 |
-
import os
|
7 |
import torch
|
8 |
|
9 |
class ImageSegmenter:
|
10 |
-
def __init__(self, model_type="yolov8s-seg"
|
11 |
-
|
12 |
-
self.
|
|
|
|
|
|
|
13 |
self.is_show_bounding_boxes = True
|
14 |
self.is_show_segmentation_boundary = False
|
15 |
self.is_show_segmentation = False
|
16 |
self.confidence_threshold = 0.5
|
17 |
self.cls_clr = {}
|
|
|
|
|
18 |
self.bb_thickness = 2
|
19 |
self.bb_clr = (255, 0, 0)
|
|
|
|
|
20 |
self.masks = {}
|
21 |
-
|
22 |
-
|
23 |
-
# Ensure model directory exists
|
24 |
-
os.makedirs('models', exist_ok=True)
|
25 |
-
|
26 |
-
# Check if model file exists, if not download it
|
27 |
-
model_path = os.path.join('models', f'{model_type}.pt')
|
28 |
-
if not os.path.exists(model_path):
|
29 |
-
print(f"Downloading {model_type} model...")
|
30 |
-
self.model = YOLO(model_type)
|
31 |
-
self.model.export()
|
32 |
-
print("Model downloaded successfully")
|
33 |
|
34 |
def get_cls_clr(self, cls_id):
|
35 |
if cls_id in self.cls_clr:
|
36 |
return self.cls_clr[cls_id]
|
|
|
|
|
37 |
r = random.randint(50, 200)
|
38 |
g = random.randint(50, 200)
|
39 |
b = random.randint(50, 200)
|
40 |
self.cls_clr[cls_id] = (r, g, b)
|
41 |
return (r, g, b)
|
42 |
|
43 |
-
@spaces.GPU
|
44 |
def predict(self, image):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if seg_mask.size > 0:
|
87 |
-
self.masks[id] = seg_mask[id]
|
88 |
-
|
89 |
-
if self.is_show_segmentation:
|
90 |
-
alpha = 0.8
|
91 |
-
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
|
92 |
-
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
93 |
-
|
94 |
-
if image.shape[:2] != seg_mask[id].shape[:2]:
|
95 |
-
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
|
96 |
-
|
97 |
-
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
|
98 |
-
image_overlay = masked.filled()
|
99 |
-
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
100 |
-
|
101 |
-
if self.is_show_bounding_boxes:
|
102 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
103 |
-
cls_name = self.model.names[
|
104 |
cls_confidence = cls_conf[id]
|
105 |
-
disp_str =
|
106 |
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
|
107 |
-
cv2.rectangle(image, (x1, y1), (x1+len(disp_str)*9, y1+15), cls_clr, -1)
|
108 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
|
|
114 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
115 |
-
center =
|
116 |
-
objects_data.append([
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
import traceback
|
124 |
-
print(traceback.format_exc())
|
125 |
-
raise
|
|
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
import random
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
class ImageSegmenter:
|
8 |
+
def __init__(self, model_type="yolov8s-seg") -> None:
|
9 |
+
|
10 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
self.model = YOLO('models/'+ model_type +'.pt')
|
12 |
+
self.model.to(self.device)
|
13 |
+
|
14 |
self.is_show_bounding_boxes = True
|
15 |
self.is_show_segmentation_boundary = False
|
16 |
self.is_show_segmentation = False
|
17 |
self.confidence_threshold = 0.5
|
18 |
self.cls_clr = {}
|
19 |
+
|
20 |
+
# params
|
21 |
self.bb_thickness = 2
|
22 |
self.bb_clr = (255, 0, 0)
|
23 |
+
|
24 |
+
# variables
|
25 |
self.masks = {}
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def get_cls_clr(self, cls_id):
|
29 |
if cls_id in self.cls_clr:
|
30 |
return self.cls_clr[cls_id]
|
31 |
+
|
32 |
+
# gen rand color
|
33 |
r = random.randint(50, 200)
|
34 |
g = random.randint(50, 200)
|
35 |
b = random.randint(50, 200)
|
36 |
self.cls_clr[cls_id] = (r, g, b)
|
37 |
return (r, g, b)
|
38 |
|
|
|
39 |
def predict(self, image):
|
40 |
+
# params
|
41 |
+
objects_data = []
|
42 |
+
image = image.copy()
|
43 |
+
predictions = self.model.predict(image)
|
44 |
+
|
45 |
+
cls_ids = predictions[0].boxes.cls.cpu().numpy()
|
46 |
+
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy()
|
47 |
+
cls_conf = predictions[0].boxes.conf.cpu().numpy()
|
48 |
+
# segmentation
|
49 |
+
if predictions[0].masks:
|
50 |
+
seg_mask_boundary = predictions[0].masks.xy
|
51 |
+
seg_mask = predictions[0].masks.data.cpu().numpy()
|
52 |
+
else:
|
53 |
+
seg_mask_boundary, seg_mask = [], np.array([])
|
54 |
+
|
55 |
+
for id, cls in enumerate(cls_ids):
|
56 |
+
cls_clr = self.get_cls_clr(cls)
|
57 |
+
|
58 |
+
# draw filled segmentation region
|
59 |
+
if seg_mask.any() and cls_conf[id] > self.confidence_threshold:
|
60 |
+
|
61 |
+
self.masks[id] = seg_mask[id]
|
62 |
+
|
63 |
+
if self.is_show_segmentation:
|
64 |
+
alpha = 0.8
|
65 |
+
|
66 |
+
# converting the mask from 1 channel to 3 channels
|
67 |
+
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
|
68 |
+
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
69 |
+
|
70 |
+
# Resize the mask to match the image size, if necessary
|
71 |
+
if image.shape[:2] != seg_mask[id].shape[:2]:
|
72 |
+
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
|
73 |
+
|
74 |
+
# filling the mased area with class color
|
75 |
+
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
|
76 |
+
image_overlay = masked.filled()
|
77 |
+
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
78 |
+
|
79 |
+
# draw bounding box with class name and score
|
80 |
+
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
82 |
+
cls_name = self.model.names[cls]
|
83 |
cls_confidence = cls_conf[id]
|
84 |
+
disp_str = cls_name +' '+ str(round(cls_confidence, 2))
|
85 |
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
|
86 |
+
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1)
|
87 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
88 |
|
89 |
+
|
90 |
+
# draw segmentation boundary
|
91 |
+
if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold:
|
92 |
+
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2)
|
93 |
+
|
94 |
|
95 |
+
# object variables
|
96 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
97 |
+
center = x1+(x2-x1)//2, y1+(y2-y1)//2
|
98 |
+
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr])
|
99 |
+
|
100 |
+
return image, objects_data
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
|
|
|
|
|