Alessio Grancini
commited on
Update monocular_depth_estimator.py
Browse files- monocular_depth_estimator.py +122 -60
monocular_depth_estimator.py
CHANGED
@@ -5,7 +5,6 @@ import time
|
|
5 |
from midas.model_loader import default_models, load_model
|
6 |
import os
|
7 |
import urllib.request
|
8 |
-
import spaces
|
9 |
|
10 |
MODEL_FILE_URL = {
|
11 |
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt",
|
@@ -16,101 +15,164 @@ MODEL_FILE_URL = {
|
|
16 |
}
|
17 |
|
18 |
class MonocularDepthEstimator:
|
19 |
-
def __init__(self,
|
20 |
-
|
21 |
-
|
22 |
optimize=False,
|
23 |
side_by_side=False,
|
24 |
height=None,
|
25 |
square=False,
|
26 |
grayscale=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
self.model_weights_path = model_weights_path
|
31 |
self.is_optimize = optimize
|
32 |
self.is_square = square
|
33 |
self.is_grayscale = grayscale
|
34 |
self.height = height
|
35 |
self.side_by_side = side_by_side
|
36 |
-
self.model = None
|
37 |
-
self.transform = None
|
38 |
-
self.net_w = None
|
39 |
-
self.net_h = None
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
43 |
print("Model file not found. Downloading...")
|
|
|
44 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
45 |
print("Model file downloaded successfully.")
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
self.model_type,
|
55 |
-
self.is_optimize,
|
56 |
-
self.height,
|
57 |
-
self.is_square
|
58 |
-
)
|
59 |
-
print("Model loaded successfully")
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
self.load_model_if_needed()
|
64 |
-
img_tensor = torch.from_numpy(image).to('cuda').unsqueeze(0)
|
65 |
|
66 |
-
if self.is_optimize:
|
67 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
68 |
img_tensor = img_tensor.half()
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
align_corners=False,
|
78 |
-
)
|
79 |
-
.squeeze()
|
80 |
-
.cpu()
|
81 |
-
.numpy()
|
82 |
)
|
|
|
|
|
|
|
|
|
83 |
|
84 |
return prediction
|
85 |
|
86 |
def process_prediction(self, depth_map):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
depth_min = depth_map.min()
|
88 |
depth_max = depth_map.max()
|
89 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
|
|
|
|
|
|
90 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
91 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
|
|
92 |
return normalized_depth/255, depth_colormap/255
|
93 |
|
94 |
-
@spaces.GPU
|
95 |
def make_prediction(self, image):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
self.load_model_if_needed()
|
101 |
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
depthmap, depth_colormap = self.process_prediction(pred)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from midas.model_loader import default_models, load_model
|
6 |
import os
|
7 |
import urllib.request
|
|
|
8 |
|
9 |
MODEL_FILE_URL = {
|
10 |
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt",
|
|
|
15 |
}
|
16 |
|
17 |
class MonocularDepthEstimator:
|
18 |
+
def __init__(self,
|
19 |
+
model_type="midas_v21_small_256",
|
20 |
+
model_weights_path="models/",
|
21 |
optimize=False,
|
22 |
side_by_side=False,
|
23 |
height=None,
|
24 |
square=False,
|
25 |
grayscale=False):
|
26 |
+
|
27 |
+
# model type
|
28 |
+
# MiDaS 3.1:
|
29 |
+
# For highest quality: dpt_beit_large_512
|
30 |
+
# For moderately less quality, but better speed-performance trade-off: dpt_swin2_large_384
|
31 |
+
# For embedded devices: dpt_swin2_tiny_256, dpt_levit_224
|
32 |
+
# For inference on Intel CPUs, OpenVINO may be used for the small legacy model: openvino_midas_v21_small .xml, .bin
|
33 |
+
|
34 |
+
# MiDaS 3.0:
|
35 |
+
# Legacy transformer models dpt_large_384 and dpt_hybrid_384
|
36 |
+
|
37 |
+
# MiDaS 2.1:
|
38 |
+
# Legacy convolutional models midas_v21_384 and midas_v21_small_256
|
39 |
|
40 |
+
# params
|
41 |
+
print("Initializing parameters and model...")
|
|
|
42 |
self.is_optimize = optimize
|
43 |
self.is_square = square
|
44 |
self.is_grayscale = grayscale
|
45 |
self.height = height
|
46 |
self.side_by_side = side_by_side
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# select device
|
49 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
print("Running inference on : %s" % self.device)
|
51 |
+
|
52 |
+
# loading model
|
53 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
54 |
print("Model file not found. Downloading...")
|
55 |
+
# Download the model file
|
56 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
57 |
print("Model file downloaded successfully.")
|
58 |
|
59 |
+
self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt",
|
60 |
+
model_type, optimize, height, square)
|
61 |
+
print("Net width and height: ", (self.net_w, self.net_h))
|
62 |
+
|
63 |
+
|
64 |
+
def predict(self, image, model, target_size):
|
65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# convert img to tensor and load to gpu
|
68 |
+
img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
|
|
|
|
|
69 |
|
70 |
+
if self.is_optimize and self.device == torch.device("cuda"):
|
71 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
72 |
img_tensor = img_tensor.half()
|
73 |
|
74 |
+
prediction = model.forward(img_tensor)
|
75 |
+
prediction = (
|
76 |
+
torch.nn.functional.interpolate(
|
77 |
+
prediction.unsqueeze(1),
|
78 |
+
size=target_size[::-1],
|
79 |
+
mode="bicubic",
|
80 |
+
align_corners=False,
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
+
.squeeze()
|
83 |
+
.cpu()
|
84 |
+
.numpy()
|
85 |
+
)
|
86 |
|
87 |
return prediction
|
88 |
|
89 |
def process_prediction(self, depth_map):
|
90 |
+
"""
|
91 |
+
Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map
|
92 |
+
for better visibility.
|
93 |
+
Args:
|
94 |
+
original_img: the RGB image
|
95 |
+
depth_img: the depth map
|
96 |
+
is_grayscale: use a grayscale colormap?
|
97 |
+
Returns:
|
98 |
+
the image and depth map place side by side
|
99 |
+
"""
|
100 |
+
|
101 |
+
# normalizing depth image
|
102 |
depth_min = depth_map.min()
|
103 |
depth_max = depth_map.max()
|
104 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
105 |
+
|
106 |
+
# normalized_depth *= 3
|
107 |
+
# grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) / 3
|
108 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
109 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
110 |
+
|
111 |
return normalized_depth/255, depth_colormap/255
|
112 |
|
|
|
113 |
def make_prediction(self, image):
|
114 |
+
image = image.copy()
|
115 |
+
with torch.no_grad():
|
116 |
+
original_image_rgb = np.flip(image, 2) # in [0, 255] (flip required to get RGB)
|
117 |
+
# resizing the image to feed to the model
|
|
|
118 |
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
|
119 |
+
|
120 |
+
# monocular depth prediction
|
121 |
+
pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1])
|
122 |
+
|
123 |
+
# process the model predictions
|
124 |
depthmap, depth_colormap = self.process_prediction(pred)
|
125 |
+
return depthmap, depth_colormap
|
126 |
+
|
127 |
+
def run(self, input_path):
|
128 |
+
|
129 |
+
# input video
|
130 |
+
cap = cv2.VideoCapture(input_path)
|
131 |
+
|
132 |
+
# Check if camera opened successfully
|
133 |
+
if not cap.isOpened():
|
134 |
+
print("Error opening video file")
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
while cap.isOpened():
|
138 |
+
|
139 |
+
# Capture frame-by-frame
|
140 |
+
inference_start_time = time.time()
|
141 |
+
ret, frame = cap.read()
|
142 |
+
|
143 |
+
if ret == True:
|
144 |
+
_, depth_colormap = self.make_prediction(frame)
|
145 |
+
inference_end_time = time.time()
|
146 |
+
fps = round(1/(inference_end_time - inference_start_time))
|
147 |
+
cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2)
|
148 |
+
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap)
|
149 |
+
|
150 |
+
# Press ESC on keyboard to exit
|
151 |
+
if cv2.waitKey(1) == 27: # Escape key
|
152 |
+
break
|
153 |
+
|
154 |
+
else:
|
155 |
+
break
|
156 |
+
|
157 |
+
|
158 |
+
# When everything done, release
|
159 |
+
# the video capture object
|
160 |
+
cap.release()
|
161 |
+
|
162 |
+
# Closes all the frames
|
163 |
+
cv2.destroyAllWindows()
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
# params
|
169 |
+
INPUT_PATH = "assets/videos/testvideo2.mp4"
|
170 |
|
171 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
172 |
|
173 |
+
# set torch options
|
174 |
+
torch.backends.cudnn.enabled = True
|
175 |
+
torch.backends.cudnn.benchmark = True
|
176 |
+
|
177 |
+
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384")
|
178 |
+
depth_estimator.run(INPUT_PATH)
|