File size: 22,508 Bytes
b4b1c15
8166792
 
 
297af59
8166792
b4b1c15
afdb8e3
661e202
00ab2e7
3ece440
 
 
25c991c
 
 
8166792
 
 
661e202
8166792
6ea8a1f
f796a73
512f124
297af59
 
4642da2
 
 
 
 
 
 
 
8569624
a45b657
8569624
 
297af59
 
8569624
 
 
 
 
 
 
 
 
 
a45b657
8569624
 
7a68aca
6ea8a1f
 
f796a73
8166792
 
 
b4b1c15
 
2f27314
a45b657
b4b1c15
a45b657
 
 
 
 
 
 
 
8569624
7a68aca
661e202
 
 
 
 
8166792
8569624
8166792
a45b657
 
 
 
 
 
 
 
 
 
b4b1c15
8166792
7a68aca
8166792
 
 
 
 
4642da2
 
8166792
8db3d77
 
 
 
 
 
4642da2
 
8db3d77
 
 
4642da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f27314
4642da2
 
 
 
b4b1c15
 
 
 
 
 
 
 
2f27314
4642da2
 
 
 
661e202
831d4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557ac16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84b937
 
 
 
 
 
 
 
867cbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84b937
 
 
 
 
867cbce
4715c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557ac16
831d4de
7ac5451
4642da2
 
7ac5451
 
da9e022
 
6df2431
966fb6f
 
4b3d198
7ac5451
da9e022
6df2431
966fb6f
 
4b3d198
da9e022
 
 
7ac5451
da9e022
 
 
 
a9bcd01
da9e022
 
 
 
a4031b7
966fb6f
 
b87681d
ce67713
 
79c734b
89c89f9
966fb6f
 
4642da2
966fb6f
ce67713
fcdc601
ce67713
a4031b7
4715c42
47467fd
2185b58
 
4715c42
cbee5f7
 
 
89c89f9
ebd552a
 
0b582a2
ebd552a
 
5a818ae
0b582a2
ebd552a
aa2b603
5a818ae
 
 
2185b58
 
2ce0c64
4b3d198
 
 
 
 
 
 
 
 
 
a8cdde2
4b3d198
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac5451
 
4715c42
d4a489e
 
 
 
 
 
831d4de
89c89f9
7ac5451
 
831d4de
a4031b7
 
 
831d4de
8166792
 
 
 
c5c62a8
b4b1c15
 
 
 
 
 
 
 
 
2f27314
b4b1c15
 
 
 
 
 
 
 
8166792
b4b1c15
8166792
00ab2e7
 
 
8166792
 
 
 
 
 
661e202
 
 
 
 
 
8166792
 
 
 
 
 
 
 
661e202
 
 
00ab2e7
8166792
b4b1c15
8166792
00ab2e7
 
 
 
 
8166792
00ab2e7
8166792
25c991c
 
8166792
 
 
 
 
 
661e202
 
 
 
 
00ab2e7
661e202
8166792
 
 
 
 
 
 
 
00ab2e7
 
661e202
 
 
8166792
b4b1c15
8166792
00ab2e7
 
 
 
8166792
b4b1c15
 
8166792
b4b1c15
ef0cbed
 
dcdf01a
 
ef0cbed
 
dcdf01a
 
ef0cbed
 
 
8166792
 
8db3d77
 
 
 
 
 
 
 
 
 
 
 
 
00ab2e7
8166792
8db3d77
 
8166792
8db3d77
661e202
8db3d77
8166792
 
8db3d77
6377841
c98e585
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import spaces
import os
import torch
import tempfile
import utils
import plotly.graph_objects as go
from io import BytesIO
from PIL import Image
import base64
import sys
import csv
csv.field_size_limit(1048576)  # 1MB

from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd




device = torch.device("cpu")  # Start in CPU mode

# Global instances (can be reinitialized dynamically)
img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")





def initialize_gpu():
    """Ensure ZeroGPU assigns a GPU before initializing CUDA"""
    global device
    try:
        with spaces.GPU():  # Ensures ZeroGPU assigns a GPU
            torch.cuda.empty_cache()  # Prevent leftover memory issues
            if torch.cuda.is_available():
                device = torch.device("cuda")
                print(f"✅ GPU initialized: {torch.cuda.get_device_name(0)}")
            else:
                print("❌ No GPU detected after ZeroGPU allocation.")
                device = torch.device("cpu")
    except Exception as e:
        print(f"🚨 GPU initialization failed: {e}")
        device = torch.device("cpu")


# Run GPU initialization before using CUDA
initialize_gpu()




# params
CANCEL_PROCESSING = False

img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")

@spaces.GPU  # Ensures ZeroGPU assigns a GPU
def process_image(image):
    image = utils.resize(image)
    image_segmentation, objects_data = img_seg.predict(image)
    depthmap, depth_colormap = depth_estimator.make_prediction(image)
    dist_image = utils.draw_depth_info(image, depthmap, objects_data)
    objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
    plot_fig = display_pcd(objs_pcd)
    return image_segmentation, depth_colormap, dist_image, plot_fig


@spaces.GPU  # Requests GPU for depth estimation
def test_process_img(image):
    image = utils.resize(image)
    image_segmentation, objects_data = img_seg.predict(image)
    depthmap, depth_colormap = depth_estimator.make_prediction(image)
    return image_segmentation, objects_data, depthmap, depth_colormap

@spaces.GPU
def process_video(vid_path=None):
    vid_cap = cv2.VideoCapture(vid_path)
    while vid_cap.isOpened():
        ret, frame = vid_cap.read()
        if ret:
            print("making predictions ....")
            frame = utils.resize(frame)
            image_segmentation, objects_data = img_seg.predict(frame)
            depthmap, depth_colormap = depth_estimator.make_prediction(frame)
            dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
            yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
    return None


def update_segmentation_options(options):
    img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
    img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
    img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False

#def update_confidence_threshold(thres_val):
#    img_seg.confidence_threshold = thres_val/100

#def update_confidence_threshold(thres_val, img_seg_instance):
#    """Update confidence threshold in ImageSegmenter"""
#    img_seg_instance.confidence_threshold = thres_val
#    print(f"Confidence threshold updated to: {thres_val}")


def update_confidence_threshold(thres_val, img_seg_instance):
    """Update confidence threshold in ImageSegmenter"""
    # For Gradio UI (0-100), convert to 0.0-1.0; for API (0.0-1.0), use directly
    if thres_val > 1.0:  # Assume Gradio slider value
        thres_val = thres_val / 100.0
    img_seg_instance.confidence_threshold = thres_val
    print(f"Confidence threshold updated to: {thres_val}")

#@spaces.GPU  # Ensures YOLO + MiDaS get GPU access
#def model_selector(model_type):
#    global img_seg, depth_estimator

#    if "Small - Better performance and less accuracy" == model_type:
#        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
#    elif "Medium - Balanced performance and accuracy" == model_type:
#        midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
#    elif "Large - Slow performance and high accuracy" == model_type:
#        midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
#    else:
#        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
#
#    img_seg = ImageSegmenter(model_type=yolo_model)
#    depth_estimator = MonocularDepthEstimator(model_type=midas_model)


# Updated model_selector to accept img_seg and depth_estimator instances
@spaces.GPU  # Ensures YOLO + MiDaS get GPU access
def model_selector(model_type, img_seg_instance, depth_estimator_instance):
    if "Small - Better performance and less accuracy" == model_type:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
    elif "Medium - Balanced performance and accuracy" == model_type:
        midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
    elif "Large - Slow performance and high accuracy" == model_type:
        midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
    else:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"

    # Reinitialize the provided instances with the selected model types
    img_seg_instance.__init__(model_type=yolo_model)
    depth_estimator_instance.__init__(model_type=midas_model)
    print(f"Model updated: YOLO={yolo_model}, MiDaS={midas_model}")

    # START 
    # added for lens studio 

    
def get_box_vertices(bbox):
    """Convert bbox to corner vertices"""
    x1, y1, x2, y2 = bbox
    return [
        [x1, y1],  # top-left
        [x2, y1],  # top-right
        [x2, y2],  # bottom-right
        [x1, y2]   # bottom-left
    ]

def depth_at_center(depth_map, bbox):
    """Get depth at center of bounding box"""
    x1, y1, x2, y2 = bbox
    center_x = int((x1 + x2) / 2)
    center_y = int((y1 + y2) / 2)
    
    # Sample a small region around center for stability
    region = depth_map[
        max(0, center_y-2):min(depth_map.shape[0], center_y+3),
        max(0, center_x-2):min(depth_map.shape[1], center_x+3)
    ]
    return np.median(region)

def get_camera_matrix(depth_estimator):
    """Get camera calibration matrix"""
    return {
        "fx": depth_estimator.fx_depth,
        "fy": depth_estimator.fy_depth,
        "cx": depth_estimator.cx_depth,
        "cy": depth_estimator.cy_depth
    }

def encode_base64_image(image_array):
    """
    Encodes a NumPy (OpenCV) image array to a base64-encoded PNG DataURL 
    like "data:image/png;base64,<...>".
    """
    import base64
    import cv2
    
    # If your image is BGR, that’s fine. We just need to encode it as PNG bytes.
    # (Optionally convert to RGB first if you need consistent color channels.)
    
    success, encoded_buffer = cv2.imencode(".png", image_array)
    if not success:
        raise ValueError("Could not encode image to PNG buffer")

    # Encode the buffer to base64
    b64_str = base64.b64encode(encoded_buffer).decode("utf-8")
    
    # Return a data URL
    return "data:image/png;base64," + b64_str

def save_image_to_url(image):
    """Save an OpenCV image to a temporary file and return its URL."""
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
        cv2.imwrite(temp_file.name, image)
        return "/".join(temp_file.name.split("/")[-2:])  # Return relative path for URL

def save_plot_to_url(objs_pcd):
    """Save a Plotly 3D scatter plot to a temporary file and return its URL."""
    fig = go.Figure()

    for data, clr in objs_pcd:
        points = np.asarray(data.points)
        point_range = range(0, points.shape[0], 1)

        fig.add_trace(go.Scatter3d(
            x=points[point_range, 0],
            y=points[point_range, 1], 
            z=points[point_range, 2]*100,
            mode='markers',
            marker=dict(
                size=1,
                color='rgb'+str(clr), 
                opacity=1
            )
        ))

    fig.update_layout(
        scene=dict(
            xaxis_title='X',
            yaxis_title='Y',
            zaxis_title='Z'
        )
    )
    
    with tempfile.NamedTemporaryFile(suffix=".html", delete=False) as temp_file:
        fig.write_html(temp_file.name)
        return "/".join(temp_file.name.split("/")[-2:])  # Return relative path for URL

 

def get_3d_position(center, depth, camera_matrix):
    """Project 2D center into 3D space using depth and camera matrix."""
    cx, cy = center
    fx, fy = camera_matrix["fx"], camera_matrix["fy"] 
    cx_d, cy_d = camera_matrix["cx"], camera_matrix["cy"]
    
    x = (cx - cx_d) * depth / fx
    y = (cy - cy_d) * depth / fy
    z = depth
    
    return [x, y, z]

def get_bbox_from_mask(mask):
    """Get bounding box (x1, y1, x2, y2) from a binary mask."""
    contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    biggest_contour = max(contours, key=cv2.contourArea)
    x, y, w, h = cv2.boundingRect(biggest_contour)
    return x, y, x+w, y+h

@spaces.GPU
def get_detection_data(image_data):
    global img_seg, depth_estimator  # Still reference global instances
    
    try:
        if isinstance(image_data, dict):
            nested_dict = image_data.get("image", {}).get("image", {})
            full_data_url = nested_dict.get("data", "")
            # get model size and confidence threshold
            model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
            confidence_threshold = image_data.get("confidence_threshold", 0.1)  # Default from Lens Studio
            distance_threshold = image_data.get("distance_threshold", 10.0)  # Default to 10 meters
        else:
            full_data_url = image_data
            
            model_size = "Small - Better performance and less accuracy"  # Fallback default
            confidence_threshold = 0.6  # Fallback default
            distance_threshold = 10.0  # Default to 10 meters

        if not full_data_url:
            return {"error": "No base64 data found in input."}

        if full_data_url.startswith("data:image"):
            _, b64_string = full_data_url.split(",", 1)
        else:
            b64_string = full_data_url

        img_data = base64.b64decode(b64_string)
        img = Image.open(BytesIO(img_data))
        img = np.array(img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        

        #image = utils.resize(img)
        resized_image = utils.resize(img) #depth requires resizing 
        print(f"Debug - Resized image shape: {resized_image.shape}")
        image = img
        print(f"Debug - Original image shape: {image.shape}")

        # Dynamically update model size and confidence threshold
        model_selector(model_size, img_seg, depth_estimator)  # Pass the global instances
        update_confidence_threshold(confidence_threshold, img_seg)
        
        image_segmentation, objects_data = img_seg.predict(resized_image)
        depthmap, depth_colormap = depth_estimator.make_prediction(resized_image)

        detections = []
        for idx, obj in enumerate(objects_data):
            # Unpack all 6 values
            cls_id, cls_name, center, mask, color_bgr, confidence = obj  
            x1, y1, x2, y2 = get_bbox_from_mask(mask)
            
            # Debug: Log original center and vertices (1536x1024)
            print(f"Debug - Object {idx}: Original Center = {center}, Original Vertices = {get_box_vertices([x1, y1, x2, y2])}")

            # Use get_masked_depth to get mean depth directly from depthmap and mask
            masked_depth_map, mean_depth = utils.get_masked_depth(depthmap, mask)
            print(f"Debug - Object {idx}: Masked depth min/max: {masked_depth_map.min()}, {masked_depth_map.max()}, Mean depth: {mean_depth}")

            # Handle invalid or NaN mean_depth
            if np.isnan(mean_depth) or not isinstance(mean_depth, (int, float)) or mean_depth <= 0:
                print(f"Warning: Invalid mean depth ({mean_depth}) for Object {idx}. Using default depth of 1.0...")
                mean_depth = 1.0  # Fallback to 1.0 meter

            # Calculate real-world distance as done in draw_depth_info
            real_distance = mean_depth * 10  # Scale by 10 to match draw_depth_info

            # Convert BGR to RGB
            color_rgb = (int(color_bgr[2]), int(color_bgr[1]), int(color_bgr[0]))

    #       detections.append({
    #           "class_id": cls_id,
    #           "class_name": cls_name,
    #           "bounding_box": {
    #                "vertices": get_box_vertices([x1, y1, x2, y2])
    #            },
    #            "center_2d": center, 
    #            "distance": float(real_distance),
    #            "color": color_rgb,
    #            "confidence": float(confidence)
            
    #})
            # Filter based on distance threshold
            if real_distance <= distance_threshold:
                detections.append({
                    "class_id": cls_id,
                    "class_name": cls_name,
                    "bounding_box": {"vertices": get_box_vertices([x1, y1, x2, y2])},
                    "center_2d": center, 
                    "distance": float(real_distance),
                    "color": color_rgb,
                    "confidence": float(confidence)
                })
            else:
                print(f"Debug - Object {idx} filtered out: Distance {real_distance} exceeds threshold {distance_threshold}")

        response = {
            "detections": detections,
            #"segmentation_url": save_image_to_url(image_segmentation),
            #"depth_url": save_image_to_url(depth_colormap),
            #"distance_url": save_image_to_url(utils.draw_depth_info(image, depthmap, objects_data)),
            #"point_cloud_url": save_plot_to_url(utils.generate_obj_pcd(depthmap, objects_data)),
            #"camera_matrix": get_camera_matrix(depth_estimator),
            #"camera_position": [0, 0, 0]  # Assumed at origin based on camera intrinsics
        }
        print(f"Debug - Response: {response}")
        return response

    except Exception as e:
        print(f"🚨 Error in get_detection_data: {str(e)}")
        return {"error": str(e)}


def cancel():
    CANCEL_PROCESSING = True

if __name__ == "__main__":

    # testing
    # img_1 = cv2.imread("assets/images/bus.jpg")
    # img_1 = utils.resize(img_1)

    # image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
    # final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
    # objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
    # # print(objs_pcd[0][0])
    # display_pcd(objs_pcd, use_matplotlib=True)

    # cv2.imshow("Segmentation", image_segmentation)
    # cv2.imshow("Depth", depthmap*objects_data[2][3])
    # cv2.imshow("Final", final_image)

    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    # gradio gui app
    with gr.Blocks() as my_app:

        # title
        gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
        gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
        gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")

        # tabs
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    img_input = gr.Image()
                    model_type_img = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!")
                    options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    submit_btn_img = gr.Button(value="Predict")                    

                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_img_output = gr.Image(height=300, label="Segmentation")
                        depth_img_output = gr.Image(height=300, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_img_output = gr.Image(height=300, label="Distance")
                        pcd_img_output = gr.Plot(label="Point Cloud")
            
            gr.Markdown("## Sample Images")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
                          os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
                          os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
                          os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
                          os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
                inputs=img_input,
                outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
                fn=process_image,
                cache_examples=False,
                #cache_examples=True,
            )

        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column(scale=1):
                    vid_input = gr.Video()
                    model_type_vid = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!")
                    
                    options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    with gr.Row():
                        cancel_btn = gr.Button(value="Cancel")
                        submit_btn_vid = gr.Button(value="Predict")
            
                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_vid_output = gr.Image(height=300, label="Segmentation")
                        depth_vid_output = gr.Image(height=300, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_vid_output = gr.Image(height=300, label="Distance")
            
            gr.Markdown("## Sample Videos")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
                inputs=vid_input,
                # outputs=vid_output,
                # fn=vid_segmenation,
            )
            
        # Add a new hidden tab or interface for the API endpoint
        with gr.Tab("API", visible=False):  # Hidden from UI but accessible via API
            api_input = gr.JSON()
            api_output = gr.JSON()
            gr.Interface(
                fn=get_detection_data,
                inputs=api_input,
                outputs=api_output,
                api_name="get_detection_data"  # This sets the endpoint name
            )
            

        # image tab logic
        #submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
        #options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
        #conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
        #model_type_img.change(model_selector, model_type_img, [])

        # video tab logic
        #submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
        #model_type_vid.change(model_selector, model_type_vid, [])
        #cancel_btn.click(cancel, inputs=[], outputs=[])
        #options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
        #conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, []) 

        # Image tab logic
        submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
        options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
        conf_thres_img.change(lambda x: update_confidence_threshold(x, img_seg), conf_thres_img, [])  # Pass img_seg explicitly
        model_type_img.change(lambda x: model_selector(x, img_seg, depth_estimator), model_type_img, [])

        # Video tab logic
        submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
        model_type_vid.change(lambda x: model_selector(x, img_seg, depth_estimator), model_type_vid, [])
        cancel_btn.click(cancel, inputs=[], outputs=[])
        options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
        conf_thres_vid.change(lambda x: update_confidence_threshold(x, img_seg), conf_thres_vid, [])  # Pass img_seg explicitly

    my_app.queue(max_size=20).launch(share=True)  # Add share=True here