File size: 22,508 Bytes
b4b1c15 8166792 297af59 8166792 b4b1c15 afdb8e3 661e202 00ab2e7 3ece440 25c991c 8166792 661e202 8166792 6ea8a1f f796a73 512f124 297af59 4642da2 8569624 a45b657 8569624 297af59 8569624 a45b657 8569624 7a68aca 6ea8a1f f796a73 8166792 b4b1c15 2f27314 a45b657 b4b1c15 a45b657 8569624 7a68aca 661e202 8166792 8569624 8166792 a45b657 b4b1c15 8166792 7a68aca 8166792 4642da2 8166792 8db3d77 4642da2 8db3d77 4642da2 2f27314 4642da2 b4b1c15 2f27314 4642da2 661e202 831d4de 557ac16 f84b937 867cbce f84b937 867cbce 4715c42 557ac16 831d4de 7ac5451 4642da2 7ac5451 da9e022 6df2431 966fb6f 4b3d198 7ac5451 da9e022 6df2431 966fb6f 4b3d198 da9e022 7ac5451 da9e022 a9bcd01 da9e022 a4031b7 966fb6f b87681d ce67713 79c734b 89c89f9 966fb6f 4642da2 966fb6f ce67713 fcdc601 ce67713 a4031b7 4715c42 47467fd 2185b58 4715c42 cbee5f7 89c89f9 ebd552a 0b582a2 ebd552a 5a818ae 0b582a2 ebd552a aa2b603 5a818ae 2185b58 2ce0c64 4b3d198 a8cdde2 4b3d198 7ac5451 4715c42 d4a489e 831d4de 89c89f9 7ac5451 831d4de a4031b7 831d4de 8166792 c5c62a8 b4b1c15 2f27314 b4b1c15 8166792 b4b1c15 8166792 00ab2e7 8166792 661e202 8166792 661e202 00ab2e7 8166792 b4b1c15 8166792 00ab2e7 8166792 00ab2e7 8166792 25c991c 8166792 661e202 00ab2e7 661e202 8166792 00ab2e7 661e202 8166792 b4b1c15 8166792 00ab2e7 8166792 b4b1c15 8166792 b4b1c15 ef0cbed dcdf01a ef0cbed dcdf01a ef0cbed 8166792 8db3d77 00ab2e7 8166792 8db3d77 8166792 8db3d77 661e202 8db3d77 8166792 8db3d77 6377841 c98e585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import spaces
import os
import torch
import tempfile
import utils
import plotly.graph_objects as go
from io import BytesIO
from PIL import Image
import base64
import sys
import csv
csv.field_size_limit(1048576) # 1MB
from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd
device = torch.device("cpu") # Start in CPU mode
# Global instances (can be reinitialized dynamically)
img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
def initialize_gpu():
"""Ensure ZeroGPU assigns a GPU before initializing CUDA"""
global device
try:
with spaces.GPU(): # Ensures ZeroGPU assigns a GPU
torch.cuda.empty_cache() # Prevent leftover memory issues
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"✅ GPU initialized: {torch.cuda.get_device_name(0)}")
else:
print("❌ No GPU detected after ZeroGPU allocation.")
device = torch.device("cpu")
except Exception as e:
print(f"🚨 GPU initialization failed: {e}")
device = torch.device("cpu")
# Run GPU initialization before using CUDA
initialize_gpu()
# params
CANCEL_PROCESSING = False
img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
@spaces.GPU # Ensures ZeroGPU assigns a GPU
def process_image(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
plot_fig = display_pcd(objs_pcd)
return image_segmentation, depth_colormap, dist_image, plot_fig
@spaces.GPU # Requests GPU for depth estimation
def test_process_img(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
return image_segmentation, objects_data, depthmap, depth_colormap
@spaces.GPU
def process_video(vid_path=None):
vid_cap = cv2.VideoCapture(vid_path)
while vid_cap.isOpened():
ret, frame = vid_cap.read()
if ret:
print("making predictions ....")
frame = utils.resize(frame)
image_segmentation, objects_data = img_seg.predict(frame)
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
return None
def update_segmentation_options(options):
img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
#def update_confidence_threshold(thres_val):
# img_seg.confidence_threshold = thres_val/100
#def update_confidence_threshold(thres_val, img_seg_instance):
# """Update confidence threshold in ImageSegmenter"""
# img_seg_instance.confidence_threshold = thres_val
# print(f"Confidence threshold updated to: {thres_val}")
def update_confidence_threshold(thres_val, img_seg_instance):
"""Update confidence threshold in ImageSegmenter"""
# For Gradio UI (0-100), convert to 0.0-1.0; for API (0.0-1.0), use directly
if thres_val > 1.0: # Assume Gradio slider value
thres_val = thres_val / 100.0
img_seg_instance.confidence_threshold = thres_val
print(f"Confidence threshold updated to: {thres_val}")
#@spaces.GPU # Ensures YOLO + MiDaS get GPU access
#def model_selector(model_type):
# global img_seg, depth_estimator
# if "Small - Better performance and less accuracy" == model_type:
# midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
# elif "Medium - Balanced performance and accuracy" == model_type:
# midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
# elif "Large - Slow performance and high accuracy" == model_type:
# midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
# else:
# midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
#
# img_seg = ImageSegmenter(model_type=yolo_model)
# depth_estimator = MonocularDepthEstimator(model_type=midas_model)
# Updated model_selector to accept img_seg and depth_estimator instances
@spaces.GPU # Ensures YOLO + MiDaS get GPU access
def model_selector(model_type, img_seg_instance, depth_estimator_instance):
if "Small - Better performance and less accuracy" == model_type:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
elif "Medium - Balanced performance and accuracy" == model_type:
midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
elif "Large - Slow performance and high accuracy" == model_type:
midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
else:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
# Reinitialize the provided instances with the selected model types
img_seg_instance.__init__(model_type=yolo_model)
depth_estimator_instance.__init__(model_type=midas_model)
print(f"Model updated: YOLO={yolo_model}, MiDaS={midas_model}")
# START
# added for lens studio
def get_box_vertices(bbox):
"""Convert bbox to corner vertices"""
x1, y1, x2, y2 = bbox
return [
[x1, y1], # top-left
[x2, y1], # top-right
[x2, y2], # bottom-right
[x1, y2] # bottom-left
]
def depth_at_center(depth_map, bbox):
"""Get depth at center of bounding box"""
x1, y1, x2, y2 = bbox
center_x = int((x1 + x2) / 2)
center_y = int((y1 + y2) / 2)
# Sample a small region around center for stability
region = depth_map[
max(0, center_y-2):min(depth_map.shape[0], center_y+3),
max(0, center_x-2):min(depth_map.shape[1], center_x+3)
]
return np.median(region)
def get_camera_matrix(depth_estimator):
"""Get camera calibration matrix"""
return {
"fx": depth_estimator.fx_depth,
"fy": depth_estimator.fy_depth,
"cx": depth_estimator.cx_depth,
"cy": depth_estimator.cy_depth
}
def encode_base64_image(image_array):
"""
Encodes a NumPy (OpenCV) image array to a base64-encoded PNG DataURL
like "data:image/png;base64,<...>".
"""
import base64
import cv2
# If your image is BGR, that’s fine. We just need to encode it as PNG bytes.
# (Optionally convert to RGB first if you need consistent color channels.)
success, encoded_buffer = cv2.imencode(".png", image_array)
if not success:
raise ValueError("Could not encode image to PNG buffer")
# Encode the buffer to base64
b64_str = base64.b64encode(encoded_buffer).decode("utf-8")
# Return a data URL
return "data:image/png;base64," + b64_str
def save_image_to_url(image):
"""Save an OpenCV image to a temporary file and return its URL."""
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
cv2.imwrite(temp_file.name, image)
return "/".join(temp_file.name.split("/")[-2:]) # Return relative path for URL
def save_plot_to_url(objs_pcd):
"""Save a Plotly 3D scatter plot to a temporary file and return its URL."""
fig = go.Figure()
for data, clr in objs_pcd:
points = np.asarray(data.points)
point_range = range(0, points.shape[0], 1)
fig.add_trace(go.Scatter3d(
x=points[point_range, 0],
y=points[point_range, 1],
z=points[point_range, 2]*100,
mode='markers',
marker=dict(
size=1,
color='rgb'+str(clr),
opacity=1
)
))
fig.update_layout(
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z'
)
)
with tempfile.NamedTemporaryFile(suffix=".html", delete=False) as temp_file:
fig.write_html(temp_file.name)
return "/".join(temp_file.name.split("/")[-2:]) # Return relative path for URL
def get_3d_position(center, depth, camera_matrix):
"""Project 2D center into 3D space using depth and camera matrix."""
cx, cy = center
fx, fy = camera_matrix["fx"], camera_matrix["fy"]
cx_d, cy_d = camera_matrix["cx"], camera_matrix["cy"]
x = (cx - cx_d) * depth / fx
y = (cy - cy_d) * depth / fy
z = depth
return [x, y, z]
def get_bbox_from_mask(mask):
"""Get bounding box (x1, y1, x2, y2) from a binary mask."""
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
biggest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(biggest_contour)
return x, y, x+w, y+h
@spaces.GPU
def get_detection_data(image_data):
global img_seg, depth_estimator # Still reference global instances
try:
if isinstance(image_data, dict):
nested_dict = image_data.get("image", {}).get("image", {})
full_data_url = nested_dict.get("data", "")
# get model size and confidence threshold
model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
confidence_threshold = image_data.get("confidence_threshold", 0.1) # Default from Lens Studio
distance_threshold = image_data.get("distance_threshold", 10.0) # Default to 10 meters
else:
full_data_url = image_data
model_size = "Small - Better performance and less accuracy" # Fallback default
confidence_threshold = 0.6 # Fallback default
distance_threshold = 10.0 # Default to 10 meters
if not full_data_url:
return {"error": "No base64 data found in input."}
if full_data_url.startswith("data:image"):
_, b64_string = full_data_url.split(",", 1)
else:
b64_string = full_data_url
img_data = base64.b64decode(b64_string)
img = Image.open(BytesIO(img_data))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
#image = utils.resize(img)
resized_image = utils.resize(img) #depth requires resizing
print(f"Debug - Resized image shape: {resized_image.shape}")
image = img
print(f"Debug - Original image shape: {image.shape}")
# Dynamically update model size and confidence threshold
model_selector(model_size, img_seg, depth_estimator) # Pass the global instances
update_confidence_threshold(confidence_threshold, img_seg)
image_segmentation, objects_data = img_seg.predict(resized_image)
depthmap, depth_colormap = depth_estimator.make_prediction(resized_image)
detections = []
for idx, obj in enumerate(objects_data):
# Unpack all 6 values
cls_id, cls_name, center, mask, color_bgr, confidence = obj
x1, y1, x2, y2 = get_bbox_from_mask(mask)
# Debug: Log original center and vertices (1536x1024)
print(f"Debug - Object {idx}: Original Center = {center}, Original Vertices = {get_box_vertices([x1, y1, x2, y2])}")
# Use get_masked_depth to get mean depth directly from depthmap and mask
masked_depth_map, mean_depth = utils.get_masked_depth(depthmap, mask)
print(f"Debug - Object {idx}: Masked depth min/max: {masked_depth_map.min()}, {masked_depth_map.max()}, Mean depth: {mean_depth}")
# Handle invalid or NaN mean_depth
if np.isnan(mean_depth) or not isinstance(mean_depth, (int, float)) or mean_depth <= 0:
print(f"Warning: Invalid mean depth ({mean_depth}) for Object {idx}. Using default depth of 1.0...")
mean_depth = 1.0 # Fallback to 1.0 meter
# Calculate real-world distance as done in draw_depth_info
real_distance = mean_depth * 10 # Scale by 10 to match draw_depth_info
# Convert BGR to RGB
color_rgb = (int(color_bgr[2]), int(color_bgr[1]), int(color_bgr[0]))
# detections.append({
# "class_id": cls_id,
# "class_name": cls_name,
# "bounding_box": {
# "vertices": get_box_vertices([x1, y1, x2, y2])
# },
# "center_2d": center,
# "distance": float(real_distance),
# "color": color_rgb,
# "confidence": float(confidence)
#})
# Filter based on distance threshold
if real_distance <= distance_threshold:
detections.append({
"class_id": cls_id,
"class_name": cls_name,
"bounding_box": {"vertices": get_box_vertices([x1, y1, x2, y2])},
"center_2d": center,
"distance": float(real_distance),
"color": color_rgb,
"confidence": float(confidence)
})
else:
print(f"Debug - Object {idx} filtered out: Distance {real_distance} exceeds threshold {distance_threshold}")
response = {
"detections": detections,
#"segmentation_url": save_image_to_url(image_segmentation),
#"depth_url": save_image_to_url(depth_colormap),
#"distance_url": save_image_to_url(utils.draw_depth_info(image, depthmap, objects_data)),
#"point_cloud_url": save_plot_to_url(utils.generate_obj_pcd(depthmap, objects_data)),
#"camera_matrix": get_camera_matrix(depth_estimator),
#"camera_position": [0, 0, 0] # Assumed at origin based on camera intrinsics
}
print(f"Debug - Response: {response}")
return response
except Exception as e:
print(f"🚨 Error in get_detection_data: {str(e)}")
return {"error": str(e)}
def cancel():
CANCEL_PROCESSING = True
if __name__ == "__main__":
# testing
# img_1 = cv2.imread("assets/images/bus.jpg")
# img_1 = utils.resize(img_1)
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
# # print(objs_pcd[0][0])
# display_pcd(objs_pcd, use_matplotlib=True)
# cv2.imshow("Segmentation", image_segmentation)
# cv2.imshow("Depth", depthmap*objects_data[2][3])
# cv2.imshow("Final", final_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# gradio gui app
with gr.Blocks() as my_app:
# title
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")
# tabs
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image()
model_type_img = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
submit_btn_img = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_img_output = gr.Image(height=300, label="Segmentation")
depth_img_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_img_output = gr.Image(height=300, label="Distance")
pcd_img_output = gr.Plot(label="Point Cloud")
gr.Markdown("## Sample Images")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
inputs=img_input,
outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
fn=process_image,
cache_examples=False,
#cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_input = gr.Video()
model_type_vid = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
with gr.Row():
cancel_btn = gr.Button(value="Cancel")
submit_btn_vid = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_vid_output = gr.Image(height=300, label="Segmentation")
depth_vid_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_vid_output = gr.Image(height=300, label="Distance")
gr.Markdown("## Sample Videos")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
inputs=vid_input,
# outputs=vid_output,
# fn=vid_segmenation,
)
# Add a new hidden tab or interface for the API endpoint
with gr.Tab("API", visible=False): # Hidden from UI but accessible via API
api_input = gr.JSON()
api_output = gr.JSON()
gr.Interface(
fn=get_detection_data,
inputs=api_input,
outputs=api_output,
api_name="get_detection_data" # This sets the endpoint name
)
# image tab logic
#submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
#options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
#conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
#model_type_img.change(model_selector, model_type_img, [])
# video tab logic
#submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
#model_type_vid.change(model_selector, model_type_vid, [])
#cancel_btn.click(cancel, inputs=[], outputs=[])
#options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
#conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
# Image tab logic
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
conf_thres_img.change(lambda x: update_confidence_threshold(x, img_seg), conf_thres_img, []) # Pass img_seg explicitly
model_type_img.change(lambda x: model_selector(x, img_seg, depth_estimator), model_type_img, [])
# Video tab logic
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
model_type_vid.change(lambda x: model_selector(x, img_seg, depth_estimator), model_type_vid, [])
cancel_btn.click(cancel, inputs=[], outputs=[])
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
conf_thres_vid.change(lambda x: update_confidence_threshold(x, img_seg), conf_thres_vid, []) # Pass img_seg explicitly
my_app.queue(max_size=20).launch(share=True) # Add share=True here |