Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,23 +13,31 @@ from point_cloud_generator import display_pcd
|
|
13 |
|
14 |
|
15 |
|
16 |
-
import
|
17 |
-
import subprocess
|
18 |
-
import os
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
except Exception as e:
|
31 |
-
print(f"🚨 Error checking CUDA: {e}")
|
32 |
-
device = torch.device("cpu")
|
33 |
|
34 |
|
35 |
|
@@ -39,15 +47,17 @@ CANCEL_PROCESSING = False
|
|
39 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
40 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
41 |
|
42 |
-
@spaces.GPU # Ensures GPU is allocated
|
43 |
def process_image(image):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
@spaces.GPU # Requests GPU for depth estimation
|
53 |
def test_process_img(image):
|
@@ -56,19 +66,20 @@ def test_process_img(image):
|
|
56 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
57 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
58 |
|
59 |
-
@spaces.GPU
|
60 |
def process_video(vid_path=None):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
return None
|
73 |
|
74 |
|
|
|
13 |
|
14 |
|
15 |
|
16 |
+
import spaces # Required for ZeroGPU
|
|
|
|
|
17 |
|
18 |
+
# Ensure CUDA is NOT initialized before ZeroGPU assigns a device
|
19 |
+
torch.backends.cudnn.enabled = False # Prevents CUDA errors on first GPU allocation
|
20 |
|
21 |
+
def initialize_gpu():
|
22 |
+
"""Ensure that ZeroGPU assigns a GPU before using CUDA"""
|
23 |
+
global device
|
24 |
+
try:
|
25 |
+
with spaces.GPU(): # Ensures GPU allocation
|
26 |
+
torch.cuda.init()
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
device = torch.device("cuda")
|
29 |
+
print(f"✅ GPU initialized: {torch.cuda.get_device_name(0)}")
|
30 |
+
torch.cuda.empty_cache() # Clear memory
|
31 |
+
else:
|
32 |
+
print("❌ No GPU detected after ZeroGPU allocation.")
|
33 |
+
device = torch.device("cpu")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"🚨 GPU initialization failed: {e}")
|
36 |
+
device = torch.device("cpu")
|
37 |
+
|
38 |
+
# Run GPU initialization before using CUDA
|
39 |
+
initialize_gpu()
|
40 |
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
|
|
|
47 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
48 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
49 |
|
50 |
+
@spaces.GPU # Ensures GPU is allocated before running
|
51 |
def process_image(image):
|
52 |
+
with spaces.GPU(): # Explicitly allocate a GPU
|
53 |
+
image = utils.resize(image)
|
54 |
+
image_segmentation, objects_data = img_seg.predict(image)
|
55 |
+
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
56 |
+
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
57 |
+
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
58 |
+
plot_fig = display_pcd(objs_pcd)
|
59 |
+
return image_segmentation, depth_colormap, dist_image, plot_fig
|
60 |
+
|
61 |
|
62 |
@spaces.GPU # Requests GPU for depth estimation
|
63 |
def test_process_img(image):
|
|
|
66 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
67 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
68 |
|
69 |
+
@spaces.GPU
|
70 |
def process_video(vid_path=None):
|
71 |
+
with spaces.GPU():
|
72 |
+
vid_cap = cv2.VideoCapture(vid_path)
|
73 |
+
while vid_cap.isOpened():
|
74 |
+
ret, frame = vid_cap.read()
|
75 |
+
if ret:
|
76 |
+
print("making predictions ....")
|
77 |
+
frame = utils.resize(frame)
|
78 |
+
image_segmentation, objects_data = img_seg.predict(frame)
|
79 |
+
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
|
80 |
+
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
81 |
+
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
|
82 |
+
|
83 |
return None
|
84 |
|
85 |
|