|
import gradio as gr
|
|
import requests
|
|
import io
|
|
import random
|
|
import os
|
|
import time
|
|
from PIL import Image
|
|
from deep_translator import GoogleTranslator
|
|
import json
|
|
|
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
|
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
|
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
timeout = 100
|
|
|
|
|
|
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
|
|
if prompt == "" or prompt is None:
|
|
return None
|
|
|
|
key = random.randint(0, 999)
|
|
|
|
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
|
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
|
|
|
|
prompt = GoogleTranslator(source='my', target='en').translate(prompt)
|
|
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
|
|
|
|
|
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
|
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
|
|
|
|
|
payload = {
|
|
"inputs": prompt,
|
|
"is_negative": is_negative,
|
|
"steps": steps,
|
|
"cfg_scale": cfg_scale,
|
|
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
|
"strength": strength,
|
|
"parameters": {
|
|
"width": width,
|
|
"height": height
|
|
}
|
|
}
|
|
|
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
|
if response.status_code != 200:
|
|
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
|
print(f"Response content: {response.text}")
|
|
if response.status_code == 503:
|
|
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
|
raise gr.Error(f"{response.status_code}")
|
|
|
|
try:
|
|
|
|
image_bytes = response.content
|
|
image = Image.open(io.BytesIO(image_bytes))
|
|
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
|
return image
|
|
except Exception as e:
|
|
print(f"Error when trying to open the image: {e}")
|
|
return None
|
|
|
|
|
|
css = """
|
|
#app-container {
|
|
max-width: 800px;
|
|
margin-left: auto;
|
|
margin-right: auto;
|
|
}
|
|
"""
|
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
|
|
|
gr.HTML("<center><h1>AI Image Pro</h1></center>")
|
|
|
|
|
|
with gr.Column(elem_id="app-container"):
|
|
|
|
with gr.Row():
|
|
with gr.Column(elem_id="prompt-container"):
|
|
with gr.Row():
|
|
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
|
|
|
|
|
with gr.Row():
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
|
with gr.Row():
|
|
width = gr.Slider(label="Width", value=1216, minimum=64, maximum=1216, step=32)
|
|
height = gr.Slider(label="Height", value=760, minimum=64, maximum=1216, step=32)
|
|
steps = gr.Slider(label="Sampling steps", value=15, minimum=1, maximum=100, step=1)
|
|
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
|
|
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
|
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
|
|
|
|
|
with gr.Row():
|
|
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
|
|
|
|
|
with gr.Row():
|
|
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
|
|
|
|
|
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
|
|
|
|
|
|
app.launch(show_api=False, share=False) |