adventus commited on
Commit
97d49d6
·
verified ·
1 Parent(s): 4b8258f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -115
app.py CHANGED
@@ -1,116 +1,116 @@
1
- import gradio as gr
2
- import requests
3
- import io
4
- import random
5
- import os
6
- import time
7
- from PIL import Image
8
- from deep_translator import GoogleTranslator
9
- import json
10
-
11
- # Project by Nymbo
12
-
13
- API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
14
- API_TOKEN = os.getenv("HF_READ_TOKEN")
15
- headers = {"Authorization": f"Bearer {API_TOKEN}"}
16
- timeout = 100
17
-
18
- # Function to query the API and return the generated image
19
- def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
20
- if prompt == "" or prompt is None:
21
- return None
22
-
23
- key = random.randint(0, 999)
24
-
25
- API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
26
- headers = {"Authorization": f"Bearer {API_TOKEN}"}
27
-
28
- # Translate the prompt from Russian to English if necessary
29
- prompt = GoogleTranslator(source='my', target='en').translate(prompt)
30
- print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
31
-
32
- # Add some extra flair to the prompt
33
- prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
34
- print(f'\033[1mGeneration {key}:\033[0m {prompt}')
35
-
36
- # Prepare the payload for the API call, including width and height
37
- payload = {
38
- "inputs": prompt,
39
- "is_negative": is_negative,
40
- "steps": steps,
41
- "cfg_scale": cfg_scale,
42
- "seed": seed if seed != -1 else random.randint(1, 1000000000),
43
- "strength": strength,
44
- "parameters": {
45
- "width": width, # Pass the width to the API
46
- "height": height # Pass the height to the API
47
- }
48
- }
49
-
50
- # Send the request to the API and handle the response
51
- response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
52
- if response.status_code != 200:
53
- print(f"Error: Failed to get image. Response status: {response.status_code}")
54
- print(f"Response content: {response.text}")
55
- if response.status_code == 503:
56
- raise gr.Error(f"{response.status_code} : The model is being loaded")
57
- raise gr.Error(f"{response.status_code}")
58
-
59
- try:
60
- # Convert the response content into an image
61
- image_bytes = response.content
62
- image = Image.open(io.BytesIO(image_bytes))
63
- print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
64
- return image
65
- except Exception as e:
66
- print(f"Error when trying to open the image: {e}")
67
- return None
68
-
69
- # CSS to style the app
70
- css = """
71
- #app-container {
72
- max-width: 800px;
73
- margin-left: auto;
74
- margin-right: auto;
75
- }
76
- """
77
-
78
- # Build the Gradio UI with Blocks
79
- with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
80
- # Add a title to the app
81
- gr.HTML("<center><h1>Walone AI Image Pro Max</h1></center>")
82
-
83
- # Container for all the UI elements
84
- with gr.Column(elem_id="app-container"):
85
- # Add a text input for the main prompt
86
- with gr.Row():
87
- with gr.Column(elem_id="prompt-container"):
88
- with gr.Row():
89
- text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
90
-
91
- # Accordion for advanced settings
92
- with gr.Row():
93
- with gr.Accordion("Advanced Settings", open=False):
94
- negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
95
- with gr.Row():
96
- width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
97
- height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
98
- steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1)
99
- cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
100
- strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
101
- seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
102
- method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
103
-
104
- # Add a button to trigger the image generation
105
- with gr.Row():
106
- text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
107
-
108
- # Image output area to display the generated image
109
- with gr.Row():
110
- image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
111
-
112
- # Bind the button to the query function with the added width and height inputs
113
- text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
114
-
115
- # Launch the Gradio app
116
  app.launch(show_api=False, share=False)
 
1
+ import gradio as gr
2
+ import requests
3
+ import io
4
+ import random
5
+ import os
6
+ import time
7
+ from PIL import Image
8
+ from deep_translator import GoogleTranslator
9
+ import json
10
+
11
+ # Project by Nymbo
12
+
13
+ API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
14
+ API_TOKEN = os.getenv("HF_READ_TOKEN")
15
+ headers = {"Authorization": f"Bearer {API_TOKEN}"}
16
+ timeout = 100
17
+
18
+ # Function to query the API and return the generated image
19
+ def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
20
+ if prompt == "" or prompt is None:
21
+ return None
22
+
23
+ key = random.randint(0, 999)
24
+
25
+ API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
26
+ headers = {"Authorization": f"Bearer {API_TOKEN}"}
27
+
28
+ # Translate the prompt from Russian to English if necessary
29
+ prompt = GoogleTranslator(source='my', target='en').translate(prompt)
30
+ print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
31
+
32
+ # Add some extra flair to the prompt
33
+ prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
34
+ print(f'\033[1mGeneration {key}:\033[0m {prompt}')
35
+
36
+ # Prepare the payload for the API call, including width and height
37
+ payload = {
38
+ "inputs": prompt,
39
+ "is_negative": is_negative,
40
+ "steps": steps,
41
+ "cfg_scale": cfg_scale,
42
+ "seed": seed if seed != -1 else random.randint(1, 1000000000),
43
+ "strength": strength,
44
+ "parameters": {
45
+ "width": width, # Pass the width to the API
46
+ "height": height # Pass the height to the API
47
+ }
48
+ }
49
+
50
+ # Send the request to the API and handle the response
51
+ response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
52
+ if response.status_code != 200:
53
+ print(f"Error: Failed to get image. Response status: {response.status_code}")
54
+ print(f"Response content: {response.text}")
55
+ if response.status_code == 503:
56
+ raise gr.Error(f"{response.status_code} : The model is being loaded")
57
+ raise gr.Error(f"{response.status_code}")
58
+
59
+ try:
60
+ # Convert the response content into an image
61
+ image_bytes = response.content
62
+ image = Image.open(io.BytesIO(image_bytes))
63
+ print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
64
+ return image
65
+ except Exception as e:
66
+ print(f"Error when trying to open the image: {e}")
67
+ return None
68
+
69
+ # CSS to style the app
70
+ css = """
71
+ #app-container {
72
+ max-width: 800px;
73
+ margin-left: auto;
74
+ margin-right: auto;
75
+ }
76
+ """
77
+
78
+ # Build the Gradio UI with Blocks
79
+ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
80
+ # Add a title to the app
81
+ gr.HTML("<center><h1>AI Image Pro</h1></center>")
82
+
83
+ # Container for all the UI elements
84
+ with gr.Column(elem_id="app-container"):
85
+ # Add a text input for the main prompt
86
+ with gr.Row():
87
+ with gr.Column(elem_id="prompt-container"):
88
+ with gr.Row():
89
+ text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
90
+
91
+ # Accordion for advanced settings
92
+ with gr.Row():
93
+ with gr.Accordion("Advanced Settings", open=False):
94
+ negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
95
+ with gr.Row():
96
+ width = gr.Slider(label="Width", value=1216, minimum=64, maximum=1216, step=32)
97
+ height = gr.Slider(label="Height", value=760, minimum=64, maximum=1216, step=32)
98
+ steps = gr.Slider(label="Sampling steps", value=15, minimum=1, maximum=100, step=1)
99
+ cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
100
+ strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
101
+ seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
102
+ method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
103
+
104
+ # Add a button to trigger the image generation
105
+ with gr.Row():
106
+ text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
107
+
108
+ # Image output area to display the generated image
109
+ with gr.Row():
110
+ image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
111
+
112
+ # Bind the button to the query function with the added width and height inputs
113
+ text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
114
+
115
+ # Launch the Gradio app
116
  app.launch(show_api=False, share=False)