Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import deepspeed
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
# Model name
|
@@ -9,27 +8,23 @@ model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
9 |
# Load tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
dtype=torch.float16, # Use float16 for efficiency
|
15 |
-
replace_method="auto", # Automatically replace ops for inference
|
16 |
-
replace_with_kernel_inject=True
|
17 |
-
)
|
18 |
|
19 |
-
# Load model
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
-
model_name,
|
22 |
trust_remote_code=True,
|
23 |
-
torch_dtype=torch.float16,
|
24 |
-
device_map="auto" #
|
25 |
)
|
26 |
|
27 |
-
#
|
28 |
-
model
|
29 |
|
30 |
# Define inference function
|
31 |
def chat_with_model(prompt):
|
32 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
33 |
output = model.generate(**inputs, max_length=200)
|
34 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Model name
|
|
|
8 |
# Load tokenizer
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
|
11 |
+
# Detect device
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load model
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name,
|
17 |
trust_remote_code=True,
|
18 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32, # Use float16 on GPU, float32 on CPU
|
19 |
+
device_map="auto" if device == "cuda" else None # Use GPU if available
|
20 |
)
|
21 |
|
22 |
+
# Move model to device
|
23 |
+
model.to(device)
|
24 |
|
25 |
# Define inference function
|
26 |
def chat_with_model(prompt):
|
27 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
28 |
output = model.generate(**inputs, max_length=200)
|
29 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
|