Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
4 |
import deepspeed
|
|
|
5 |
|
6 |
# Model name
|
7 |
model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
@@ -9,19 +9,27 @@ model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
9 |
# Load tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_name,
|
15 |
trust_remote_code=True,
|
16 |
-
torch_dtype=torch.float16,
|
17 |
-
device_map="auto"
|
18 |
-
deepspeed={"stage": 3} # Enable DeepSpeed ZeRO-3
|
19 |
-
|
20 |
)
|
21 |
|
|
|
|
|
|
|
22 |
# Define inference function
|
23 |
def chat_with_model(prompt):
|
24 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
25 |
output = model.generate(**inputs, max_length=200)
|
26 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
27 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import deepspeed
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
# Model name
|
7 |
model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
|
9 |
# Load tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
|
12 |
+
# Enable DeepSpeed Inference (ZeRO-3)
|
13 |
+
ds_engine = deepspeed.init_inference(
|
14 |
+
dtype=torch.float16, # Use float16 for efficiency
|
15 |
+
replace_method="auto", # Automatically replace ops for inference
|
16 |
+
replace_with_kernel_inject=True
|
17 |
+
)
|
18 |
+
|
19 |
+
# Load model with DeepSpeed
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
trust_remote_code=True,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
device_map="auto" # Auto place on GPU
|
|
|
|
|
25 |
)
|
26 |
|
27 |
+
# Apply DeepSpeed to model
|
28 |
+
model = ds_engine.module(model)
|
29 |
+
|
30 |
# Define inference function
|
31 |
def chat_with_model(prompt):
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
33 |
output = model.generate(**inputs, max_length=200)
|
34 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
|