Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load model and tokenizer | |
model_name = "meta-llama/Llama-3.2-3b-base" # Use the actual model path | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
# Define inference function | |
def generate_text(prompt, max_length=100, temperature=0.7): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
output = model.generate( | |
inputs["input_ids"], | |
max_new_tokens=max_length, | |
do_sample=True, | |
temperature=temperature | |
) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=1, maximum=500, value=100, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature") | |
], | |
outputs=gr.Textbox(), | |
title="Llama 3.2 3B API", | |
description="Generate text using Meta's Llama 3.2 3B model" | |
) | |
# Add API functionality | |
demo.queue() | |
demo.launch() |