import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer model_name = "meta-llama/Llama-3.2-3b-base" # Use the actual model path tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) # Define inference function def generate_text(prompt, max_length=100, temperature=0.7): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate( inputs["input_ids"], max_new_tokens=max_length, do_sample=True, temperature=temperature ) return tokenizer.decode(output[0], skip_special_tokens=True) # Create Gradio interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=5, placeholder="Enter your prompt here..."), gr.Slider(minimum=1, maximum=500, value=100, label="Max Length"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature") ], outputs=gr.Textbox(), title="Llama 3.2 3B API", description="Generate text using Meta's Llama 3.2 3B model" ) # Add API functionality demo.queue() demo.launch()