NIMA / main.py
abhishek-kumar's picture
Add files from Neural-IMage-Assessment repo
1e8d169
"""
file - main.py
Main script to train the aesthetic model on the AVA dataset.
Copyright (C) Yunxiao Shi 2017 - 2021
NIMA is released under the MIT license. See LICENSE for the fill license text.
"""
import argparse
import os
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.autograd as autograd
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from dataset.dataset import AVADataset
from model.model import *
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter()
train_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
base_model = models.vgg16(pretrained=True)
model = NIMA(base_model)
if config.warm_start:
model.load_state_dict(torch.load(os.path.join(config.ckpt_path, 'epoch-%d.pth' % config.warm_start_epoch)))
print('Successfully loaded model epoch-%d.pth' % config.warm_start_epoch)
if config.multi_gpu:
model.features = torch.nn.DataParallel(model.features, device_ids=config.gpu_ids)
model = model.to(device)
else:
model = model.to(device)
conv_base_lr = config.conv_base_lr
dense_lr = config.dense_lr
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': conv_base_lr},
{'params': model.classifier.parameters(), 'lr': dense_lr}],
momentum=0.9
)
param_num = 0
for param in model.parameters():
if param.requires_grad:
param_num += param.numel()
print('Trainable params: %.2f million' % (param_num / 1e6))
if config.train:
trainset = AVADataset(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
valset = AVADataset(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size,
shuffle=True, num_workers=config.num_workers)
val_loader = torch.utils.data.DataLoader(valset, batch_size=config.val_batch_size,
shuffle=False, num_workers=config.num_workers)
# for early stopping
count = 0
init_val_loss = float('inf')
train_losses = []
val_losses = []
for epoch in range(config.warm_start_epoch, config.epochs):
batch_losses = []
for i, data in enumerate(train_loader):
images = data['image'].to(device)
labels = data['annotations'].to(device).float()
outputs = model(images)
outputs = outputs.view(-1, 10, 1)
optimizer.zero_grad()
loss = emd_loss(labels, outputs)
batch_losses.append(loss.item())
loss.backward()
optimizer.step()
print('Epoch: %d/%d | Step: %d/%d | Training EMD loss: %.4f' % (epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size + 1, loss.data[0]))
writer.add_scalar('batch train loss', loss.data[0], i + epoch * (len(trainset) // config.train_batch_size + 1))
avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size + 1)
train_losses.append(avg_loss)
print('Epoch %d mean training EMD loss: %.4f' % (epoch + 1, avg_loss))
# exponetial learning rate decay
if config.decay:
if (epoch + 1) % 10 == 0:
conv_base_lr = conv_base_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
dense_lr = dense_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': conv_base_lr},
{'params': model.classifier.parameters(), 'lr': dense_lr}],
momentum=0.9
)
# do validation after each epoch
batch_val_losses = []
for data in val_loader:
images = data['image'].to(device)
labels = data['annotations'].to(device).float()
with torch.no_grad():
outputs = model(images)
outputs = outputs.view(-1, 10, 1)
val_loss = emd_loss(labels, outputs)
batch_val_losses.append(val_loss.item())
avg_val_loss = sum(batch_val_losses) / (len(valset) // config.val_batch_size + 1)
val_losses.append(avg_val_loss)
print('Epoch %d completed. Mean EMD loss on val set: %.4f.' % (epoch + 1, avg_val_loss))
writer.add_scalars('epoch losses', {'epoch train loss': avg_loss, 'epoch val loss': avg_val_loss}, epoch + 1)
# Use early stopping to monitor training
if avg_val_loss < init_val_loss:
init_val_loss = avg_val_loss
# save model weights if val loss decreases
print('Saving model...')
if not os.path.exists(config.ckpt_path):
os.makedirs(config.ckpt_path)
torch.save(model.state_dict(), os.path.join(config.ckpt_path, 'epoch-%d.pth' % (epoch + 1)))
print('Done.\n')
# reset count
count = 0
elif avg_val_loss >= init_val_loss:
count += 1
if count == config.early_stopping_patience:
print('Val EMD loss has not decreased in %d epochs. Training terminated.' % config.early_stopping_patience)
break
print('Training completed.')
'''
# use tensorboard to log statistics instead
if config.save_fig:
# plot train and val loss
epochs = range(1, epoch + 2)
plt.plot(epochs, train_losses, 'b-', label='train loss')
plt.plot(epochs, val_losses, 'g-', label='val loss')
plt.title('EMD loss')
plt.legend()
plt.savefig('./loss.png')
'''
if config.test:
model.eval()
# compute mean score
test_transform = val_transform
testset = AVADataset(csv_file=config.test_csv_file, root_dir=config.img_path, transform=val_transform)
test_loader = torch.utils.data.DataLoader(testset, batch_size=config.test_batch_size, shuffle=False, num_workers=config.num_workers)
mean_preds = []
std_preds = []
for data in test_loader:
image = data['image'].to(device)
output = model(image)
output = output.view(10, 1)
predicted_mean, predicted_std = 0.0, 0.0
for i, elem in enumerate(output, 1):
predicted_mean += i * elem
for j, elem in enumerate(output, 1):
predicted_std += elem * (j - predicted_mean) ** 2
predicted_std = predicted_std ** 0.5
mean_preds.append(predicted_mean)
std_preds.append(predicted_std)
# Do what you want with predicted and std...
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--img_path', type=str, default='./data/images')
parser.add_argument('--train_csv_file', type=str, default='./data/train_labels.csv')
parser.add_argument('--val_csv_file', type=str, default='./data/val_labels.csv')
parser.add_argument('--test_csv_file', type=str, default='./data/test_labels.csv')
# training parameters
parser.add_argument('--train',action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--decay', action='store_true')
parser.add_argument('--conv_base_lr', type=float, default=5e-3)
parser.add_argument('--dense_lr', type=float, default=5e-4)
parser.add_argument('--lr_decay_rate', type=float, default=0.95)
parser.add_argument('--lr_decay_freq', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=128)
parser.add_argument('--val_batch_size', type=int, default=128)
parser.add_argument('--test_batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--epochs', type=int, default=100)
# misc
parser.add_argument('--ckpt_path', type=str, default='./ckpts')
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--gpu_ids', type=list, default=None)
parser.add_argument('--warm_start', action='store_true')
parser.add_argument('--warm_start_epoch', type=int, default=0)
parser.add_argument('--early_stopping_patience', type=int, default=10)
parser.add_argument('--save_fig', action='store_true')
config = parser.parse_args()
main(config)