File size: 9,467 Bytes
1e8d169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
file - main.py
Main script to train the aesthetic model on the AVA dataset.

Copyright (C) Yunxiao Shi 2017 - 2021
NIMA is released under the MIT license. See LICENSE for the fill license text.
"""

import argparse
import os

import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt

import torch
import torch.autograd as autograd
import torch.optim as optim

import torchvision.transforms as transforms
import torchvision.datasets as dsets
import torchvision.models as models

from torch.utils.tensorboard import SummaryWriter

from dataset.dataset import AVADataset

from model.model import *


def main(config):

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    writer = SummaryWriter()

    train_transform = transforms.Compose([
        transforms.Scale(256),
        transforms.RandomCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(), 
        transforms.Normalize(mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])])

    val_transform = transforms.Compose([
        transforms.Scale(256),
        transforms.RandomCrop(224),
        transforms.ToTensor(), 
        transforms.Normalize(mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])])

    base_model = models.vgg16(pretrained=True)
    model = NIMA(base_model)

    if config.warm_start:
        model.load_state_dict(torch.load(os.path.join(config.ckpt_path, 'epoch-%d.pth' % config.warm_start_epoch)))
        print('Successfully loaded model epoch-%d.pth' % config.warm_start_epoch)

    if config.multi_gpu:
        model.features = torch.nn.DataParallel(model.features, device_ids=config.gpu_ids)
        model = model.to(device)
    else:
        model = model.to(device)

    conv_base_lr = config.conv_base_lr
    dense_lr = config.dense_lr
    optimizer = optim.SGD([
        {'params': model.features.parameters(), 'lr': conv_base_lr},
        {'params': model.classifier.parameters(), 'lr': dense_lr}],
        momentum=0.9
        )

    param_num = 0
    for param in model.parameters():
        if param.requires_grad:
            param_num += param.numel()
    print('Trainable params: %.2f million' % (param_num / 1e6))

    if config.train:
        trainset = AVADataset(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
        valset = AVADataset(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)

        train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size,
            shuffle=True, num_workers=config.num_workers)
        val_loader = torch.utils.data.DataLoader(valset, batch_size=config.val_batch_size,
            shuffle=False, num_workers=config.num_workers)
        # for early stopping
        count = 0
        init_val_loss = float('inf')
        train_losses = []
        val_losses = []
        for epoch in range(config.warm_start_epoch, config.epochs):
            batch_losses = []
            for i, data in enumerate(train_loader):
                images = data['image'].to(device)
                labels = data['annotations'].to(device).float()
                outputs = model(images)
                outputs = outputs.view(-1, 10, 1)

                optimizer.zero_grad()

                loss = emd_loss(labels, outputs)
                batch_losses.append(loss.item())

                loss.backward()

                optimizer.step()

                print('Epoch: %d/%d | Step: %d/%d | Training EMD loss: %.4f' % (epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size + 1, loss.data[0]))
                writer.add_scalar('batch train loss', loss.data[0], i + epoch * (len(trainset) // config.train_batch_size + 1))

            avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size + 1)
            train_losses.append(avg_loss)
            print('Epoch %d mean training EMD loss: %.4f' % (epoch + 1, avg_loss))

            # exponetial learning rate decay
            if config.decay:
                if (epoch + 1) % 10 == 0:
                    conv_base_lr = conv_base_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
                    dense_lr = dense_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
                    optimizer = optim.SGD([
                        {'params': model.features.parameters(), 'lr': conv_base_lr},
                        {'params': model.classifier.parameters(), 'lr': dense_lr}],
                        momentum=0.9
                    )

            # do validation after each epoch
            batch_val_losses = []
            for data in val_loader:
                images = data['image'].to(device)
                labels = data['annotations'].to(device).float()
                with torch.no_grad():
                    outputs = model(images)
                outputs = outputs.view(-1, 10, 1)
                val_loss = emd_loss(labels, outputs)
                batch_val_losses.append(val_loss.item())
            avg_val_loss = sum(batch_val_losses) / (len(valset) // config.val_batch_size + 1)
            val_losses.append(avg_val_loss)
            print('Epoch %d completed. Mean EMD loss on val set: %.4f.' % (epoch + 1, avg_val_loss))
            writer.add_scalars('epoch losses', {'epoch train loss': avg_loss, 'epoch val loss': avg_val_loss}, epoch + 1)

            # Use early stopping to monitor training
            if avg_val_loss < init_val_loss:
                init_val_loss = avg_val_loss
                # save model weights if val loss decreases
                print('Saving model...')
                if not os.path.exists(config.ckpt_path):
                    os.makedirs(config.ckpt_path)
                torch.save(model.state_dict(), os.path.join(config.ckpt_path, 'epoch-%d.pth' % (epoch + 1)))
                print('Done.\n')
                # reset count
                count = 0
            elif avg_val_loss >= init_val_loss:
                count += 1
                if count == config.early_stopping_patience:
                    print('Val EMD loss has not decreased in %d epochs. Training terminated.' % config.early_stopping_patience)
                    break

        print('Training completed.')

        '''
        # use tensorboard to log statistics instead
        if config.save_fig:
            # plot train and val loss
            epochs = range(1, epoch + 2)
            plt.plot(epochs, train_losses, 'b-', label='train loss')
            plt.plot(epochs, val_losses, 'g-', label='val loss')
            plt.title('EMD loss')
            plt.legend()
            plt.savefig('./loss.png')
        '''

    if config.test:
        model.eval()
        # compute mean score
        test_transform = val_transform
        testset = AVADataset(csv_file=config.test_csv_file, root_dir=config.img_path, transform=val_transform)
        test_loader = torch.utils.data.DataLoader(testset, batch_size=config.test_batch_size, shuffle=False, num_workers=config.num_workers)

        mean_preds = []
        std_preds = []
        for data in test_loader:
            image = data['image'].to(device)
            output = model(image)
            output = output.view(10, 1)
            predicted_mean, predicted_std = 0.0, 0.0
            for i, elem in enumerate(output, 1):
                predicted_mean += i * elem
            for j, elem in enumerate(output, 1):
                predicted_std += elem * (j - predicted_mean) ** 2
            predicted_std = predicted_std ** 0.5
            mean_preds.append(predicted_mean)
            std_preds.append(predicted_std)
        # Do what you want with predicted and std...


if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    # input parameters
    parser.add_argument('--img_path', type=str, default='./data/images')
    parser.add_argument('--train_csv_file', type=str, default='./data/train_labels.csv')
    parser.add_argument('--val_csv_file', type=str, default='./data/val_labels.csv')
    parser.add_argument('--test_csv_file', type=str, default='./data/test_labels.csv')

    # training parameters
    parser.add_argument('--train',action='store_true')
    parser.add_argument('--test', action='store_true')
    parser.add_argument('--decay', action='store_true')
    parser.add_argument('--conv_base_lr', type=float, default=5e-3)
    parser.add_argument('--dense_lr', type=float, default=5e-4)
    parser.add_argument('--lr_decay_rate', type=float, default=0.95)
    parser.add_argument('--lr_decay_freq', type=int, default=10)
    parser.add_argument('--train_batch_size', type=int, default=128)
    parser.add_argument('--val_batch_size', type=int, default=128)
    parser.add_argument('--test_batch_size', type=int, default=1)
    parser.add_argument('--num_workers', type=int, default=2)
    parser.add_argument('--epochs', type=int, default=100)

    # misc
    parser.add_argument('--ckpt_path', type=str, default='./ckpts')
    parser.add_argument('--multi_gpu', action='store_true')
    parser.add_argument('--gpu_ids', type=list, default=None)
    parser.add_argument('--warm_start', action='store_true')
    parser.add_argument('--warm_start_epoch', type=int, default=0)
    parser.add_argument('--early_stopping_patience', type=int, default=10)
    parser.add_argument('--save_fig', action='store_true')

    config = parser.parse_args()

    main(config)