Spaces:
Runtime error
Runtime error
File size: 9,467 Bytes
1e8d169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
"""
file - main.py
Main script to train the aesthetic model on the AVA dataset.
Copyright (C) Yunxiao Shi 2017 - 2021
NIMA is released under the MIT license. See LICENSE for the fill license text.
"""
import argparse
import os
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.autograd as autograd
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from dataset.dataset import AVADataset
from model.model import *
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter()
train_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
base_model = models.vgg16(pretrained=True)
model = NIMA(base_model)
if config.warm_start:
model.load_state_dict(torch.load(os.path.join(config.ckpt_path, 'epoch-%d.pth' % config.warm_start_epoch)))
print('Successfully loaded model epoch-%d.pth' % config.warm_start_epoch)
if config.multi_gpu:
model.features = torch.nn.DataParallel(model.features, device_ids=config.gpu_ids)
model = model.to(device)
else:
model = model.to(device)
conv_base_lr = config.conv_base_lr
dense_lr = config.dense_lr
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': conv_base_lr},
{'params': model.classifier.parameters(), 'lr': dense_lr}],
momentum=0.9
)
param_num = 0
for param in model.parameters():
if param.requires_grad:
param_num += param.numel()
print('Trainable params: %.2f million' % (param_num / 1e6))
if config.train:
trainset = AVADataset(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
valset = AVADataset(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size,
shuffle=True, num_workers=config.num_workers)
val_loader = torch.utils.data.DataLoader(valset, batch_size=config.val_batch_size,
shuffle=False, num_workers=config.num_workers)
# for early stopping
count = 0
init_val_loss = float('inf')
train_losses = []
val_losses = []
for epoch in range(config.warm_start_epoch, config.epochs):
batch_losses = []
for i, data in enumerate(train_loader):
images = data['image'].to(device)
labels = data['annotations'].to(device).float()
outputs = model(images)
outputs = outputs.view(-1, 10, 1)
optimizer.zero_grad()
loss = emd_loss(labels, outputs)
batch_losses.append(loss.item())
loss.backward()
optimizer.step()
print('Epoch: %d/%d | Step: %d/%d | Training EMD loss: %.4f' % (epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size + 1, loss.data[0]))
writer.add_scalar('batch train loss', loss.data[0], i + epoch * (len(trainset) // config.train_batch_size + 1))
avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size + 1)
train_losses.append(avg_loss)
print('Epoch %d mean training EMD loss: %.4f' % (epoch + 1, avg_loss))
# exponetial learning rate decay
if config.decay:
if (epoch + 1) % 10 == 0:
conv_base_lr = conv_base_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
dense_lr = dense_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': conv_base_lr},
{'params': model.classifier.parameters(), 'lr': dense_lr}],
momentum=0.9
)
# do validation after each epoch
batch_val_losses = []
for data in val_loader:
images = data['image'].to(device)
labels = data['annotations'].to(device).float()
with torch.no_grad():
outputs = model(images)
outputs = outputs.view(-1, 10, 1)
val_loss = emd_loss(labels, outputs)
batch_val_losses.append(val_loss.item())
avg_val_loss = sum(batch_val_losses) / (len(valset) // config.val_batch_size + 1)
val_losses.append(avg_val_loss)
print('Epoch %d completed. Mean EMD loss on val set: %.4f.' % (epoch + 1, avg_val_loss))
writer.add_scalars('epoch losses', {'epoch train loss': avg_loss, 'epoch val loss': avg_val_loss}, epoch + 1)
# Use early stopping to monitor training
if avg_val_loss < init_val_loss:
init_val_loss = avg_val_loss
# save model weights if val loss decreases
print('Saving model...')
if not os.path.exists(config.ckpt_path):
os.makedirs(config.ckpt_path)
torch.save(model.state_dict(), os.path.join(config.ckpt_path, 'epoch-%d.pth' % (epoch + 1)))
print('Done.\n')
# reset count
count = 0
elif avg_val_loss >= init_val_loss:
count += 1
if count == config.early_stopping_patience:
print('Val EMD loss has not decreased in %d epochs. Training terminated.' % config.early_stopping_patience)
break
print('Training completed.')
'''
# use tensorboard to log statistics instead
if config.save_fig:
# plot train and val loss
epochs = range(1, epoch + 2)
plt.plot(epochs, train_losses, 'b-', label='train loss')
plt.plot(epochs, val_losses, 'g-', label='val loss')
plt.title('EMD loss')
plt.legend()
plt.savefig('./loss.png')
'''
if config.test:
model.eval()
# compute mean score
test_transform = val_transform
testset = AVADataset(csv_file=config.test_csv_file, root_dir=config.img_path, transform=val_transform)
test_loader = torch.utils.data.DataLoader(testset, batch_size=config.test_batch_size, shuffle=False, num_workers=config.num_workers)
mean_preds = []
std_preds = []
for data in test_loader:
image = data['image'].to(device)
output = model(image)
output = output.view(10, 1)
predicted_mean, predicted_std = 0.0, 0.0
for i, elem in enumerate(output, 1):
predicted_mean += i * elem
for j, elem in enumerate(output, 1):
predicted_std += elem * (j - predicted_mean) ** 2
predicted_std = predicted_std ** 0.5
mean_preds.append(predicted_mean)
std_preds.append(predicted_std)
# Do what you want with predicted and std...
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--img_path', type=str, default='./data/images')
parser.add_argument('--train_csv_file', type=str, default='./data/train_labels.csv')
parser.add_argument('--val_csv_file', type=str, default='./data/val_labels.csv')
parser.add_argument('--test_csv_file', type=str, default='./data/test_labels.csv')
# training parameters
parser.add_argument('--train',action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--decay', action='store_true')
parser.add_argument('--conv_base_lr', type=float, default=5e-3)
parser.add_argument('--dense_lr', type=float, default=5e-4)
parser.add_argument('--lr_decay_rate', type=float, default=0.95)
parser.add_argument('--lr_decay_freq', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=128)
parser.add_argument('--val_batch_size', type=int, default=128)
parser.add_argument('--test_batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--epochs', type=int, default=100)
# misc
parser.add_argument('--ckpt_path', type=str, default='./ckpts')
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--gpu_ids', type=list, default=None)
parser.add_argument('--warm_start', action='store_true')
parser.add_argument('--warm_start_epoch', type=int, default=0)
parser.add_argument('--early_stopping_patience', type=int, default=10)
parser.add_argument('--save_fig', action='store_true')
config = parser.parse_args()
main(config)
|