File size: 4,332 Bytes
7a0b206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#Imports
from langchain_core.tools import tool
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from datetime import datetime
from langgraph.graph import StateGraph, END
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from typing import TypedDict, Annotated
from langchain_core.messages import AnyMessage
from langgraph.graph.message import add_messages
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition, ToolNode
import gradio as gr
from dotenv import load_dotenv

load_dotenv()

#Fetch from the space's secrets (previously added)
import os
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

#LLM Setup
# llm = ChatOpenAI(model="gpt-4.1")
llm = ChatGroq(model="llama3-70b-8192", api_key=os.getenv("GROQ_API_KEY"), temperature=0.0, max_tokens=1000, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0)

#Tools to be used by the LLM

@tool
def add(a: float, b: float) -> float:
    """Add two numbers."""
    return a + b


@tool
def subtract(a: float, b: float) -> float:
    """Subtract the second number from the first."""
    return a - b


@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers."""
    return a * b


@tool
def divide(a: float, b: float) -> float:
    """Divide the first number by the second."""
    if b == 0:
        raise ValueError("Division by zero.")
    return a / b


@tool
def get_current_time() -> str:
    """Get the current date and time."""
    return datetime.now().isoformat()


search = DuckDuckGoSearchResults()

#Tool List
tools = [add, subtract, multiply, divide, get_current_time, search]

#Bind LLM with Tools
llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=True)

#Class to hold the state to be passed through the graph/ flow
class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]

#Define the Assistant Node
def assistant(state: AgentState) -> AgentState:
    messages = state["messages"]
    response = llm_with_tools.invoke(messages)
    return {"messages": messages + [response]}

#Graph
builder = StateGraph(AgentState)

# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))

# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
    "assistant",
    # If the latest message (result) from assistant is a tool call -> tools_condition routes to tools
    # If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END
    tools_condition,
)
builder.add_edge("tools", "assistant")

react_graph = builder.compile()

#Helper function to find the last LLM message/ response
def final_ai_message(input: str) -> str:
    final_ai_message_temp = None
    for message in reversed(input):
        if isinstance(message, AIMessage):
            final_ai_message_temp = message.content
            return final_ai_message_temp
            break
    return final_ai_message_temp

sys_prompt = "You are a general AI assistant. I will ask you a question. Report your thoughts, and\nfinish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].\nYOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated\nlist of numbers and/or strings.\nIf you are asked for a number, don’t use comma to write your number neither use units such as $ or\npercent sign unless specified otherwise.\nIf you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the\ndigits in plain text unless specified otherwise.\nIf you are asked for a comma separated list, apply the above rules depending of whether the element\nto be put in the list is a number or a string."

#Create a function to interact with graph
def chat_with_agent(user_input):
    inputs = {
        "messages": [
            SystemMessage(content=sys_prompt),
            HumanMessage(content=user_input)
        ]
    }
    
    # Run the graph
    state = react_graph.invoke(inputs)

    final_ai_message_text = final_ai_message(state["messages"])

    return final_ai_message_text if final_ai_message_text else "Sorry, I couldn't find a response."