Spaces:
Runtime error
Runtime error
Commit
·
7a0b206
1
Parent(s):
81917a3
'Added agent'
Browse files- __init__.py +0 -0
- agent.py +124 -0
- app.py +89 -50
- requirements.txt +4 -1
__init__.py
ADDED
File without changes
|
agent.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Imports
|
2 |
+
from langchain_core.tools import tool
|
3 |
+
from langchain_community.tools import DuckDuckGoSearchResults
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
from datetime import datetime
|
7 |
+
from langgraph.graph import StateGraph, END
|
8 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
9 |
+
from typing import TypedDict, Annotated
|
10 |
+
from langchain_core.messages import AnyMessage
|
11 |
+
from langgraph.graph.message import add_messages
|
12 |
+
from langgraph.graph import START, StateGraph
|
13 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
14 |
+
import gradio as gr
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
#Fetch from the space's secrets (previously added)
|
20 |
+
import os
|
21 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
22 |
+
|
23 |
+
#LLM Setup
|
24 |
+
# llm = ChatOpenAI(model="gpt-4.1")
|
25 |
+
llm = ChatGroq(model="llama3-70b-8192", api_key=os.getenv("GROQ_API_KEY"), temperature=0.0, max_tokens=1000, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0)
|
26 |
+
|
27 |
+
#Tools to be used by the LLM
|
28 |
+
|
29 |
+
@tool
|
30 |
+
def add(a: float, b: float) -> float:
|
31 |
+
"""Add two numbers."""
|
32 |
+
return a + b
|
33 |
+
|
34 |
+
|
35 |
+
@tool
|
36 |
+
def subtract(a: float, b: float) -> float:
|
37 |
+
"""Subtract the second number from the first."""
|
38 |
+
return a - b
|
39 |
+
|
40 |
+
|
41 |
+
@tool
|
42 |
+
def multiply(a: float, b: float) -> float:
|
43 |
+
"""Multiply two numbers."""
|
44 |
+
return a * b
|
45 |
+
|
46 |
+
|
47 |
+
@tool
|
48 |
+
def divide(a: float, b: float) -> float:
|
49 |
+
"""Divide the first number by the second."""
|
50 |
+
if b == 0:
|
51 |
+
raise ValueError("Division by zero.")
|
52 |
+
return a / b
|
53 |
+
|
54 |
+
|
55 |
+
@tool
|
56 |
+
def get_current_time() -> str:
|
57 |
+
"""Get the current date and time."""
|
58 |
+
return datetime.now().isoformat()
|
59 |
+
|
60 |
+
|
61 |
+
search = DuckDuckGoSearchResults()
|
62 |
+
|
63 |
+
#Tool List
|
64 |
+
tools = [add, subtract, multiply, divide, get_current_time, search]
|
65 |
+
|
66 |
+
#Bind LLM with Tools
|
67 |
+
llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=True)
|
68 |
+
|
69 |
+
#Class to hold the state to be passed through the graph/ flow
|
70 |
+
class AgentState(TypedDict):
|
71 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
72 |
+
|
73 |
+
#Define the Assistant Node
|
74 |
+
def assistant(state: AgentState) -> AgentState:
|
75 |
+
messages = state["messages"]
|
76 |
+
response = llm_with_tools.invoke(messages)
|
77 |
+
return {"messages": messages + [response]}
|
78 |
+
|
79 |
+
#Graph
|
80 |
+
builder = StateGraph(AgentState)
|
81 |
+
|
82 |
+
# Define nodes: these do the work
|
83 |
+
builder.add_node("assistant", assistant)
|
84 |
+
builder.add_node("tools", ToolNode(tools))
|
85 |
+
|
86 |
+
# Define edges: these determine how the control flow moves
|
87 |
+
builder.add_edge(START, "assistant")
|
88 |
+
builder.add_conditional_edges(
|
89 |
+
"assistant",
|
90 |
+
# If the latest message (result) from assistant is a tool call -> tools_condition routes to tools
|
91 |
+
# If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END
|
92 |
+
tools_condition,
|
93 |
+
)
|
94 |
+
builder.add_edge("tools", "assistant")
|
95 |
+
|
96 |
+
react_graph = builder.compile()
|
97 |
+
|
98 |
+
#Helper function to find the last LLM message/ response
|
99 |
+
def final_ai_message(input: str) -> str:
|
100 |
+
final_ai_message_temp = None
|
101 |
+
for message in reversed(input):
|
102 |
+
if isinstance(message, AIMessage):
|
103 |
+
final_ai_message_temp = message.content
|
104 |
+
return final_ai_message_temp
|
105 |
+
break
|
106 |
+
return final_ai_message_temp
|
107 |
+
|
108 |
+
sys_prompt = "You are a general AI assistant. I will ask you a question. Report your thoughts, and\nfinish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].\nYOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated\nlist of numbers and/or strings.\nIf you are asked for a number, don’t use comma to write your number neither use units such as $ or\npercent sign unless specified otherwise.\nIf you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the\ndigits in plain text unless specified otherwise.\nIf you are asked for a comma separated list, apply the above rules depending of whether the element\nto be put in the list is a number or a string."
|
109 |
+
|
110 |
+
#Create a function to interact with graph
|
111 |
+
def chat_with_agent(user_input):
|
112 |
+
inputs = {
|
113 |
+
"messages": [
|
114 |
+
SystemMessage(content=sys_prompt),
|
115 |
+
HumanMessage(content=user_input)
|
116 |
+
]
|
117 |
+
}
|
118 |
+
|
119 |
+
# Run the graph
|
120 |
+
state = react_graph.invoke(inputs)
|
121 |
+
|
122 |
+
final_ai_message_text = final_ai_message(state["messages"])
|
123 |
+
|
124 |
+
return final_ai_message_text if final_ai_message_text else "Sorry, I couldn't find a response."
|
app.py
CHANGED
@@ -3,22 +3,101 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer =
|
19 |
-
print(f"Agent
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return fixed_answer
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
@@ -34,13 +113,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
34 |
print("User not logged in.")
|
35 |
return "Please Login to Hugging Face with the button.", None
|
36 |
|
37 |
-
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
-
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
@@ -49,47 +124,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
49 |
print(agent_code)
|
50 |
|
51 |
# 2. Fetch Questions
|
52 |
-
|
53 |
-
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
# 3. Run your Agent
|
73 |
-
results_log =
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
-
|
90 |
-
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
@@ -97,9 +136,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
97 |
print(status_update)
|
98 |
|
99 |
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {
|
101 |
try:
|
102 |
-
response = requests.post(
|
103 |
response.raise_for_status()
|
104 |
result_data = response.json()
|
105 |
final_status = (
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
# import agent
|
7 |
+
from typing import Any
|
8 |
+
from agent import chat_with_agent # import the function directly
|
9 |
|
10 |
+
#Constants
|
|
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
+
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
13 |
+
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
14 |
+
|
15 |
+
#Fetch Questions
|
16 |
+
def fetchQuestions():
|
17 |
+
print(f"Fetching questions from: {QUESTIONS_URL}")
|
18 |
+
print("I am fetching questions from the server...")
|
19 |
+
try:
|
20 |
+
response = requests.get(QUESTIONS_URL, timeout=15)
|
21 |
+
response.raise_for_status()
|
22 |
+
questions_data = response.json()
|
23 |
+
if not questions_data:
|
24 |
+
print("Fetched questions list is empty.")
|
25 |
+
return "Fetched questions list is empty or invalid format.", None
|
26 |
+
return questions_data
|
27 |
+
except requests.exceptions.RequestException as e:
|
28 |
+
print(f"Error fetching questions: {e}")
|
29 |
+
return f"Error fetching questions: {e}", None
|
30 |
+
except requests.exceptions.JSONDecodeError as e:
|
31 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
32 |
+
print(f"Response text: {response.text[:500]}")
|
33 |
+
return f"Error decoding server response for questions: {e}", None
|
34 |
+
except Exception as e:
|
35 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
36 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
37 |
|
38 |
# --- Basic Agent Definition ---
|
39 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
40 |
+
|
41 |
class BasicAgent:
|
42 |
def __init__(self):
|
43 |
print("BasicAgent initialized.")
|
44 |
+
|
45 |
def __call__(self, question: str) -> str:
|
46 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
47 |
+
fixed_answer = chat_with_agent(question)
|
48 |
+
print(f"Agent's answer (last 200 chars): {fixed_answer[-200:]}")
|
49 |
+
|
50 |
+
# --- FORCE FINAL ANSWER Format ---
|
51 |
+
if "FINAL ANSWER:" not in fixed_answer:
|
52 |
+
print("WARNING: FINAL ANSWER not found. Formatting...")
|
53 |
+
fixed_answer = f"FINAL ANSWER: {fixed_answer.strip()}"
|
54 |
+
|
55 |
return fixed_answer
|
56 |
|
57 |
+
|
58 |
+
def runAgent(agent_object: BasicAgent, questions_data:list[Any]):
|
59 |
+
# gets submitted at the end
|
60 |
+
results_log = []
|
61 |
+
# For reference only
|
62 |
+
answers_payload = []
|
63 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
64 |
+
for item in questions_data:
|
65 |
+
task_id = item.get("task_id")
|
66 |
+
print(f"Processing task_id: {task_id}")
|
67 |
+
question_text = item.get("question")
|
68 |
+
print(f"Question text (first 50 chars): {question_text[:50]}...")
|
69 |
+
if not task_id or question_text is None:
|
70 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
71 |
+
continue
|
72 |
+
try:
|
73 |
+
submitted_answer = agent_object(question_text)
|
74 |
+
answers_payload.append(
|
75 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
76 |
+
)
|
77 |
+
results_log.append(
|
78 |
+
{
|
79 |
+
"Task ID": task_id,
|
80 |
+
"Question": question_text,
|
81 |
+
"Submitted Answer": submitted_answer,
|
82 |
+
}
|
83 |
+
)
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error running agent on task {task_id}: {e}")
|
86 |
+
results_log.append(
|
87 |
+
{
|
88 |
+
"Task ID": task_id,
|
89 |
+
"Question": question_text,
|
90 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
91 |
+
}
|
92 |
+
)
|
93 |
+
print(results_log)
|
94 |
+
|
95 |
+
if not answers_payload:
|
96 |
+
print("Agent did not produce any answers to submit.")
|
97 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
98 |
+
|
99 |
+
return results_log, answers_payload
|
100 |
+
|
101 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
102 |
"""
|
103 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
113 |
print("User not logged in.")
|
114 |
return "Please Login to Hugging Face with the button.", None
|
115 |
|
|
|
|
|
|
|
|
|
116 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
117 |
try:
|
118 |
+
agent_temp = BasicAgent()
|
119 |
except Exception as e:
|
120 |
print(f"Error instantiating agent: {e}")
|
121 |
return f"Error initializing agent: {e}", None
|
|
|
124 |
print(agent_code)
|
125 |
|
126 |
# 2. Fetch Questions
|
127 |
+
questions_data = fetchQuestions()
|
128 |
+
print(questions_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
# 3. Run your Agent
|
131 |
+
results_log, answers_payload = runAgent(agent_temp, questions_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# 4. Prepare Submission
|
134 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
136 |
print(status_update)
|
137 |
|
138 |
# 5. Submit
|
139 |
+
print(f"Submitting {len(answers_payload)} answers to: {SUBMIT_URL}")
|
140 |
try:
|
141 |
+
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
|
142 |
response.raise_for_status()
|
143 |
result_data = response.json()
|
144 |
final_status = (
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
langchain
|
4 |
+
langgraph
|
5 |
+
langchain-groq
|