chats / app.py
abdullahalioo's picture
Update app.py
b685be0 verified
raw
history blame
5.69 kB
import os
import asyncio
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
from collections import defaultdict
app = FastAPI()
# Define available models
AVAILABLE_MODELS = {
"openai/gpt-4.1": "OpenAI GPT-4.1",
"openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
"openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
"openai/gpt-4o": "OpenAI GPT-4o",
"openai/gpt-4o-mini": "OpenAI GPT-4o mini",
"openai/o4-mini": "OpenAI o4-mini",
"microsoft/MAI-DS-R1": "MAI-DS-R1",
"microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
"microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
"microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
"microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
"microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
"microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
"microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
"microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
"microsoft/Phi-4": "Phi-4",
"microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
"microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
"ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
"ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
"mistral-ai/Codestral-2501": "Codestral 25.01",
"cohere/Cohere-command-r": "Cohere Command R",
"cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
"cohere/Cohere-command-r-plus": "Cohere Command R+",
"cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
"deepseek/DeepSeek-R1": "DeepSeek-R1",
"deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
"meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
"meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
"meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
"meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
"meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
"meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
"meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
"mistral-ai/Ministral-3B": "Ministral 3B",
"mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
"mistral-ai/Mistral-Nemo": "Mistral Nemo",
"mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
"mistral-ai/Mistral-small": "Mistral Small",
"cohere/cohere-command-a": "Cohere Command A",
"core42/jais-30b-chat": "JAIS 30b Chat",
"mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}
# In-memory chat history and locks
chat_histories = defaultdict(list)
chat_locks = defaultdict(asyncio.Lock)
MAX_HISTORY = 100
# Streaming AI generation
async def generate_ai_response(chat_id: str, model: str):
token = os.getenv("GITHUB_TOKEN")
if not token:
yield "Error: GitHub token not configured"
raise HTTPException(status_code=500, detail="GitHub token not configured")
if model not in AVAILABLE_MODELS:
yield f"Error: Invalid model {model}"
raise HTTPException(status_code=400, detail="Invalid model")
client = AsyncOpenAI(
base_url="https://models.github.ai/inference",
api_key=token
)
try:
async with chat_locks[chat_id]:
stream = await asyncio.wait_for(
client.chat.completions.create(
messages=chat_histories[chat_id],
model=model,
temperature=1.0,
top_p=1.0,
stream=True
),
timeout=60
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
yield content
async with chat_locks[chat_id]:
chat_histories[chat_id].append({"role": "assistant", "content": content})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
except asyncio.TimeoutError:
yield "Error: Response timed out."
raise HTTPException(status_code=504, detail="Timeout")
except Exception as e:
yield f"Error: {str(e)}"
raise HTTPException(status_code=500, detail="AI generation failed")
# POST /generate
@app.post("/generate")
async def generate_response(
chat_id: str = Query(..., description="Unique chat ID"),
prompt: str = Query(..., description="User prompt"),
model: str = Query("openai/gpt-4.1-mini", description="Model to use")
):
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt is required")
async with chat_locks[chat_id]:
chat_histories[chat_id].append({"role": "user", "content": prompt})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
return StreamingResponse(
generate_ai_response(chat_id, model),
media_type="text/event-stream"
)
# POST /reset
@app.post("/reset")
async def reset_chat(chat_id: str = Query(..., description="Chat ID to reset")):
async with chat_locks[chat_id]:
chat_histories[chat_id].clear()
return {"message": f"Chat history for {chat_id} cleared."}
# For ASGI hosting
def get_app():
return app